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Abstract—Accurate solar radiation data are required for solar
energy development. In absence of long-term ground measure-
ments, practitioners rely on modeled data, which typically is of
unknown uncertainty. This article benchmarks solar irradiation
estimation models over Uruguay, analyzing uncertainty behavior
and providing recommendations. The performance of six models
is evaluated using controlled-quality ground measurements for
an extended period, being one of the few benchmark studies in
Latin America. The LCIM, a model specially adapted for the
region and based on GOES-East satellite images, exhibits the
highest accuracy and spatial consistency with a remarkably low
root mean squared deviation of 6% and mean bias of less than
1%. The NSRDB and GL1.2 estimates have also a competitive
performance and are well-suited alternatives. The MERRA2
database presents high deviations and should not be an option for
solar resource assessment in the region without post-processing.
This research is a first step towards a South American benchmark
and provides information on which estimation models are suitable
for large-scale solar energy projects in the region.

Index Terms—Solar resource assessment, satellite estimation,
radiation models, GHI.

I. INTRODUCTION

PRECISE on-site solar resource assessment is required
for solar energy project sizing, simulation, and financial

evaluation. The uncertainty of the solar data sets used for
projects’ development is the main contributor to the economic
risk assessment of solar photovoltaic (PV) large-scale power
plants endeavors [1, 2]. This assessment requires controlled-
quality solar irradiation data with a span of more than a
decade [3]. This allows for predicting the long-term yield of a
solar project and its inter-annual and inter-monthly variability,
which directly affects revenue and cash flow estimations.
As ground measurements with these features are costly in
equipment, maintenance, and human resources, it is unlikely
that such measured information will be available for arbitrary
project locations. To solve this issue, industry practitioners
rely on modeled data from different sources, namely, satellite-
based estimates or numerical weather models (reanalysis data).
Depending on the data source, information without local
verification or site adaptation [4] is prone to significant biases
and uncertainties, that can undermine the viability of solar
energy projects.

Satellite models are based on high time-rate, moderate-
resolution, geostationary satellite images. These images pro-
vide the cloud’s knowledge over large territories with an
intra-hour refresh rate (10 or 15 minutes) and 500-1000 m
space resolution. This resolution is enough for large-scale solar
energy projects, as PV plants typically comprise 1 to 4 image
pixels. As satellite models use as input the actual cloud cover

and atmospheric information, i.e. it is not simulated by resolv-
ing the complex atmospheric dynamic, they are the preferred
tool for solar resource assessment [5–8]. Their utilization is
recommended, provided the models are locally validated or
adjusted to controlled-quality ground measurements.

Several satellite-based models estimate solar irradiation [9–
15]. Their performance is uneven around the globe, as their
accuracy depends on input data availability, climatic particu-
larities of each site, and satellite view angle, among others,
which means that local studies are necessary. Many scientific
works address the local evaluation and/or site adaptation of
such models in different parts of the world, typically for
isolated models or a reduced set of them. These works are
difficult to compare, as different climates, metrics, periods,
and quality procedures are utilized. Benchmarking initiatives
are rare or recent [7, 16, 17]. An effort by Yang & Bright
[7] evaluates 8 data sources (six satellite-derived and two
reanalysis databases) for 57 BSRN1 sites worldwide at an
hourly scale and with the maximum available data span at each
site. Under the popular root mean square metric, a commercial
satellite product (SolCast estimates) showed the best overall
performance, and the other free-available satellite-derived data
were significantly better than reanalysis products. This study
only used four Brazilian sites that are currently active in
the BSRN. Due to its rather low participation in the BSRN,
Latin America is always misrepresented in these kinds of
international studies and the region has not yet undergone its
own benchmarking initiative with continental coverage.

In this work we make a first step in this direction, addressing
the southern part of the South American Pampa Húmeda area
(Uruguay’s territory). The main contributions of this article
are to provide a ranking and typical uncertainty values for
modeled solar radiation estimates in a subpart of Southeastern
South America (SESA [18]) that can guide solar technology
researchers and industry data users. Six modeled data sources
are evaluated at a daily scale with a 4-years data span in
7 controlled-quality measuring sites distributed across this
region. The estimates are validated against the same data set
and metrics. The objective is to quantify the data end-user
uncertainty, evaluating the modeled data as obtained from
the different web services (data providers). Further analyses
regarding the models’ seasonal and cloudiness behavior are
provided. One reanalysis data source is included to show
the significant performance downgrade in comparison to the
satellite-based alternatives. The work comprises global hori-
zontal irradiation (GHI) and addresses models with different

1Baseline Solar Radiation Network, https://bsrn.awi.de/.

https://bsrn.awi.de/
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satellite inputs, including GOES-East, Meteosat, and low-orbit
Terra and Aqua satellites.

The manuscript is organized as follows. Section II describes
the ground measuring stations and the main characteristics of
the region under study. Section III briefly introduces the con-
sidered models. Performance metrics and quality procedures,
applied both to the measured and modeled data, are presented
in Section IV. Results and analysis are provided in Section V,
and finally, Section IV summarizes our main conclusions.

II. GROUND STATIONS

The measuring sites are listed in Table I, including their
station code and precise location. Their geographical distri-
bution can be observed in Fig. 1. These sites are part of the
Solar Irradiance Continous Measurement Network (RMCIS,
http://les.edu.uy/rmcis/) of the Solar Energy Lab in Uruguay
(Universidad de la República). The stations are equipped with
class A or B pyranometers (according to the ISO 9060:2018
standard) for GHI measurements. All the sensors are calibrated
every two years with the local standard, with traceability to the
world’s primary radiometric reference in the World Radiation
Center (PMOD/WRC2). The RMCIS registry and sampling
protocol follows the BSRN recommendations [19]. Thus, solar
irradiance data is registered at a 1-minute time rate as the av-
erage of six 10-second instantaneous samples. This represents
a good trade-off between capturing the high temporal solar
radiation variability, keeping the data set size operationally
manageable, and accounting for the thermopile pyranometers’
time constant (which is < 10 seconds for Class A equipment).
A time span of four years for all sites is considered for
this study (between 01/2018 ad 12/2021). Quality control
procedures are applied to the 1-minute irradiance data sets.
Then, daily values are computed for the model’s validation as
explained in Subsection IV-A.

TABLE I
LOCATION OF THE MEASURING SITES

Site Code Latitude (◦) Longitude (◦) Altitude (m)
Artigas AR -30.398 -56.512 136
Salto LE -31.283 -57.918 56
Tacuarembó TA -31.739 -55.979 142
Colonia ZU -34.338 -57.690 70
Canelones LB -34.672 -56.340 38
Montevideo AZ -34.918 -56.167 58
Rocha RC -34.489 -54.320 20

The area under study is the southeast part of the Pampa
Húmeda region of South America. These sites can be con-
sidered to be representative of the broader Pampean territory,
especially LE, AR, and TA, which do not have coastal in-
fluence. Most sites are classified under the updated Köppen-
Geiger climate classification [20] as Cfa (temperate with hot
summers and no dry seasons), except for the coastal RO site,
influenced by the Atlantic Ocean, which is classified as Cfb
(same as Cfa but with warm summers). The solar resource
short-term variability of the area is intermediate [21], meaning
challenging sky conditions for satellite models, as clear-sky,
partly cloudy, and overcast conditions alternate.

2Physikalisch-Meteorologisches Observatorium Davos, www.pmodwrc.ch.

Fig. 1. Geographical distribution of the measurement stations.

III. MODELS

This section presents the models to be assessed. It includes
five satellite-based models whose estimates can be freely
downloaded from web portals. It also includes the MERRA2
reanalysis data set which is publicly accessible.

A. LES – LCIM

This model is based on the simple formulation that [9, 15],

Gh = Gcsk
h × F (η) with η =

ρ− ρmin

ρmax − ρmin
(1)

in which the estimates of a clear-sky model (Gcsk
h ) are

modulated by a cloud attenuation factor (F ). This factor is, in
turn, a function of a satellite-derived cloud index, η, defined in
Eq. (1) in a similar way than the original index proposal [22].
This family of models is known as Cloud Index Models (CIM),
and the acronym LCIM stands for the LES lab implementation
[15] with local coefficients and parameters.

The LCIM operational implementation adopts the ESRA
model [23] for the GHI clear-sky estimates. This model
represents the cloudless atmosphere using Linke Turbidity [24]
factors (TL) for an air mass of 2. For the LCIM, a seasonal TL

cycle derived from the GHI measured data is used [25]. This is
a single mean cycle for the whole region, averaged over 5 years
of data and 10 measuring stations. This simplification can be
done without losing much precision but implies the model’s
inability to represent small day-by-day clear-sky changes due
to aerosols or water vapor content variability. Finally, the
LCIM proposes a linear relationship between the attenuation
factor (F (η) and the cloud index:

F (η) = a(1− η) + b. (2)

The motivation of this linearity is explained in [9, 15, 26]. An
example of the relationship between F and (1− η) is showed
in Figure 2 [26].

The parameters a and b have low spatial variability within
this region [15]. This allows using a single set for the en-
tire area. LCIM operation version uses empirical parameters

http://les.edu.uy/rmcis/
https://www.pmodwrc.ch/
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Fig. 2. Example of the linearity between F and (1− η) for hourly data (LE
site) [26]. The color of the dots denotes the cosine of the solar zenith angle.

spatially averaged over ten Pampean sites. This model runs
with GOES-East satellite images (GOES16) with a 10-minutes
time rate. The LCIM estimates can be freely downloaded from
http://les.edu.uy/online/ghisat/.

B. CAMS – Heliosat-4

Heliosat-4 [14] is a full physical model that uses a fast
but still accurate, approximation to the libRadRran radiative
transfer model (RTM) [27]. The model uses various satellite
inputs and the Copernicus Atmosphere Monitoring Service
(CAMS) reanalysis database. Cloud properties are derived
from Meteosat Second Generation (MSG) satellite images
at their 15-minute time rate using an adapted APOLLO
(AVHRR3 Processing Scheme Over Clouds, Land, and Ocean)
scheme [28]. Heliosat-4 operational version takes the form
of abacuses (lookup tables), enabling its fast computation.
This model has already been validated for the region, but not
benchmarked, at hourly [15] and daily [29] time scales. Data
can be freely downloaded from the CAMS website on different
time bases via interpolation or integration of the original 15-
minute time rate. It shall be noted that the all-sky data is
only available for the MSG satellite coverage, with increasing
uncertainty with the satellite view angle [15].

C. NASA – CERES

The NASA-POWER platform provides a wide range of
information concerning renewable energy, including solar ra-
diation. It has different data sets depending on the time
range. For the period 2018-2021, the platform supplies data
from the CERES SYN1deg4 product (Edition 4.1) [30, 31].
Solar irradiance (downward shortwave flux in this context)
is computed using an RTM with a 1◦ × 1◦ space resolution.
The aerosol data required for clear-sky modeling are obtained
from a chemical transport model that assimilates aerosol
optical depth retrievals from the Terra and Aqua Moderate
Resolution Imaging Spectroradiometer (MODIS) radiances.

3Advanced Very High-Resolution Radiometer.
4Clouds & Earth Radiant Energy System (CERES) Synoptic 1° (SYN1deg).

Cloud properties are derived from MODIS and GOES satellite
data. Although MODIS data is available only two times at
daylight and 3-hourly GOES images are used, the RTM is
run with an hourly time step, which is the lowest time
resolution for this product. The data are freely accessible
in https://power.larc.nasa.gov/, being this a popular product
among Latin American solar industry practitioners.

D. INPE/CPTEC – GL1.2

GL1.2 model [11] is a physical solar radiation model
developed and operated by the INPE/CPTEC satellite divi-
sion (http://satelite.cptec.inpe.br/), Brazil. The model poses
a simple solution to the shortwave radiative balance in the
Earth-Atmosphere system. The solar broadband spectrum is
separately considered in its three main intervals; visible,
ultraviolet, and infrared. Different modeling hypotheses are
applied to each sub-band. Then, the broadband GHI is obtained
by the addition of the three components. GL’s current version
is adapted to work with GOES16 visible channel images.
The model considers the clear-sky attenuation by Rayleigh
dispersion, water vapor, and stratospheric ozone. These latter
two are considered constant across regions in South America.
Clouds modeling is done by using the cloud index expression
of Eq. (1), with ρmin = 0.090 and ρmax = 0.465. This max-
imum value is set to represent the albedo transition between
stratiform and cumuliform clouds, as seen by the satellite,
and was determined by cloud classification of satellite images
across Brazil [32, 33]. Calculated in this manner, and following
how the cloud information is introduced into the model, this
cloud index can be interpreted as cloudy coverage (the fraction
of the pixel area covered by clouds). GL 1.2 data for this work
were calculated ad-hoc by the CPTEC’s team for the stations
listed in Table I and were provided with a daily time rate.

E. NREL – NSRDB

The National Solar Radiation Data Base (NSRDB) currently
provides the PSM v3 (Physical Solar Model) [34]. This is
an RTM that uses various sources of remotely sensed infor-
mation, including GOES satellite images and the AVHRR
Pathfinder Atmospheres-Extended (PATMOS-x) system for
cloud properties, and MODIS and MERRA5-2 aerosol optical
depth products. The available information has a 4 km space
resolution and a 30-minutes time rate. To meet this output with
serially complete and consistent records, re-gridding, temporal
interpolation, time shifting, and gap filling are implemented,
including the downscaling of the MERRA2 data set to the
4 km space resolution. Considering the wide range of infor-
mation that is ingested, especially the large volume of GOES
satellite images, the computation of the model requires a high-
performance computational method. For this, the FARMS6

algorithm is utilized [13]. The data are publicly available in
https://nsrdb.nrel.gov/.

5The Modern-Era Retrospective analysis for Research and Applications.
6Fast All-sky Radiation Model for Solar applications.

http://les.edu.uy/online/ghisat/
https://power.larc.nasa.gov/
http://satelite.cptec.inpe.br/
https://nsrdb.nrel.gov/
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F. NASA – MERRA2

MERRA2 [35] is NASA’s updated global reanalysis data set.
It provides physically consistent and complete atmosphere in-
formation for a large set of meteorological variables, including
ground-level solar irradiance. The model assimilates various
data sources; radiances and retrievals from a wide range of
satellites, ground, and airborne measurements, and pibal and
dropsondes observations, among others. The resulting data
set covers the 1980-today period with hourly time step and
0.5◦ × 0.625◦ latitude-longitude space resolution. MERRA2
improves aerosol modeling and related input information that
affects the clear-sky solar irradiance output. It includes other
physics-related improvements that involve water vapor content
and clouds’ modeling [36], affecting all-sky solar irradiance
estimates. Due to these upgrades, the data set is expected to
have a better solar irradiance performance in comparison with
its predecessor (MERRA versión 1 [37]). The data are freely
available at Giovanni’s portal: https://giovanni.gsfc.nasa.gov.

IV. METHODOLOGY

Satellite estimates are validated here on a daily time basis.
This requires the daily data integration of ground measure-
ments and model estimates originally obtained with intra-day
frequency (LCIM, NSRDB, and MERRA2). Prerequisites for
ground data daily integration are quality inspection on an intra-
day time basis and completeness. This latter also applies to the
models’ estimates. This section describes data processing and
performance metrics used for the assessment.

A. Ground data processing

A baseline quality procedure was considered at a 1-minute
time rate, including visual inspection and the BSRN filter
[19] application for GHI data with local coefficients. This
procedure excludes only anomalous, extremely rare, or highly
improbable data. As can be seen in Table II, the discarded
samples are between 4.2% and 0.3% of the daylight valid
samples (first row) depending on the site, which results in
an overall discard of 1.6%.

The daily integration procedure requires complete daylight
records, e.g. there should not be daylight gaps or missing
values to perform the integration of a given day. Although
the discard rate is low, gaps with short lengths may affect
a large number of days under this prerequisite. Solar assess-
ments are importantly influenced by the samples’ distribution
regarding clear-sky, partly cloudy, and overcast conditions.
This distribution is affected by quality control procedures and
the number of years used for evaluation. Relying on a single
data year or biased decimated daily data can lead to non-
representative evaluations. Therefore, daily completeness to
perform the integration and longer evaluation periods should
be favored, particularly when only a few intra-day minutes are
required to recover a complete day. In most cases, accepting
little interpolation, say, some minutes gap length, can recover
several daily values. An interesting analysis regarding the daily
data recovery capacity of a few minutes gap-filling is presented
in Fig. 3. It shows the available complete days (y axis) in
each station as a function of the admitted daily interpolated

samples (x axis). It is observed that the interpolation of small
gaps quickly recovers days, meaning that non-complete days
with small gaps are more common. Also, it shows that the
interpolation of a large number of missing samples has little
value, recovering a few days with the additional cost of adding
higher uncertainty. A trade-off maximum interpolation of 30
1-minute samples a day (black dotted line) was set in this
work, which allows having at least 1200 days in all sites. Most
of these cases are not sequential samples, having an uneven
distribution during the day. The resulting interpolation does
not exceed 0.47% of the filtered data in any station, being
0.23% in overall terms.

TABLE II
QUALITY CONTROL AND DAILY INTEGRATION SUMMARY

AR LE TA ZU LB AZ RC

Raw (min) 1012550 1047507 1045943 1047792 1048631 1035811 1043687

Disc. (min) 42254 24091 7152 3661 2869 22061 16273

Disc. (%) 4.17 2.30 0.68 0.35 0.27 2.13 1.56

Valid. (min) 970296 1023416 1038791 1044131 1045762 1013750 1027414

Interp. (min) 3843 4850 1277 1576 753 3451 596

Interp. (%) 0.40% 0.47% 0.12% 0.15% 0.07% 0.34% 0.06%

Valid days 1240 1300 1432 1447 1454 1333 1433

Fig. 3. Visual Analysis of interpolation limit for a day validity. The vertical
line is traced to show how the discriminant factor will affect the data set.

Interpolation can be done in a smart way using the clearness
index, kt, defined as the ratio between the GHI and the
corresponding top of the atmosphere irradiance [38]. This
allows the interpolation of a quantity that does not have an
intra-day geometrical trend associated with the Sun’s apparent
movement. Daylight linear interpolation of kt was applied,
from which the GHI values can be calculated using the
extraterrestrial irradiance. After interpolation, only complete
days are considered for daily integration. Integration was
performed with the common Riemann sum. It shall be noted
that the procedure described above, based on 1-minute data
and a sparse 1-minute gap-filling, is a more accurate daily data
retrieval approach than simply using hourly data (measured or
averaged) or daily means from the available samples, which
are rather common procedures.

https://giovanni.gsfc.nasa.gov
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B. Estimates processing

Models’ estimates are provided in different time scales:
hourly, 10-minute, or daily. Those that come on a daily scale
are ready to use (considering quality flags, if any). Those that
have a lower (intra-day) time scale, need to be daily integrated.
Most of the estimates are based on satellite models, and
satellite information is not always available due to technical
issues. This produces gaps in some models’ data sets. To avoid
discarding almost complete days, the same criterion of 30-
minute gap interpolation tolerance was used.

C. Performance metrics

An extended set of performance indicators are considered,
covering the most common metrics utilized in the solar re-
source assessment field [39]; mean bias deviation (MBD),
mean absolute deviation (MAD), root mean squared deviation
(RMSD), Kolmogorov-Smirnov integral (KSI), and Pearson’s
correlation. As researchers do not always select the same
metrics, the choice here is for a large set, so baseline values
are given for all of them and performance comparisons are
facilitated. The first three metrics are defined as follows,

MBD =
1

N

i=N∑
i=1

di, MAD =
1

N

i=N∑
i=1

|di|,

RMSD =

√√√√ 1

N

i=N∑
i=1

d2i ,

(3)

where di = ŷi − yi is the difference between the model
estimates (ŷi) and the reference measured data (yi), and N
is the number of samples in the daily data series. The MBD
measures the systematic bias that a model can introduce into
the long-term assessment, while the MAD and RMSD measure
the error dispersion with the absolute and quadratic norms,
respectively. Due to its increased sensitivity to outliers, the
RMSD is frequently employed in this field. Here, both are
reported for completeness. These metrics account for data in
individual terms (i.e. sample to sample) and are expressed
here in their relative form (rMBD, rMAD, and rRMSD) as
a percentage of the measurement’s mean value. The KSI, on
the other hand, measures statistical similarity. It is defined as
[40],

KSI =
∫

|F̂ (y)− F (y)| dy, (4)

thus integrating the absolute difference between the cumulative
probability function of the estimates (F̂ ) and the measurements
(F ) in the whole range of the target variable y (which in
this case is the GHI). This provides a negatively-oriented
metric (the lower, the better) that quantifies the statistical
difference between both data sets. Usually, a low RMSD also
leads to a low KSI, although they formally measure different
characteristics of the estimated performance. Finally, Pearson’s
correlation coefficient (Corr.) is also included, quantifying
the intensity of the linear relationship between estimates and
measurements.

V. RESULTS AND DISCUSSION

The assessed metrics are presented in Table III for each
model and site, including also each metric site-average (last
column). The validation is performed over the period 01/2018–
12/2021. Due to availability reasons, the periods of the GL1.2
and NSRDB estimates are shorter than the rest (04/2019-
12/2021 and 1/2019-12/2020, respectively), and the last two
rows of Table III provide further information on this issue.
This is, the data set size and measurement’s average when
considering the different spans.

GL1.2 estimates show the smallest rMBD through sites, in
the range of −2.0% and +0.5% with a site mean of −0.2%.
MERRA2 estimates, on the contrary, present the highest bias
by large, being positive and consistent across all sites, from
≃ +5% to +11%. The other models present small bias in over-
all terms, with two groups: LCIM and NSRDB having values
in the range of [−1.5,+2.6]% and a site average of +1.3%,
and CERES and Heliosat-4 with values within ≃ ±5% and
slightly higher site averages (in absolute terms). Regarding the
rRMSD metric, three groups can be distinguished. The LCIM
presents the lowest values across sites and an impressive site
average of 6%. Then, NSRDB, GL1.2, CERES, and Heliosat-
4 are in the second group, with average values between 7.3%
and 8.3%. Some rRMSD exceptions can be observed within
models and sites, for instance, a low 4.9% value for the
NSRDB in LE and some values above 9.5%, as for GL1.2
in ZU, Heliosat-4 in AZ, and CERES in LB, AZ, and RC.
Finally, MERRA2 estimates are in the last group, showing
important inaccuracies with rRMSD values surpassing 20%
in almost all sites. The rest of the metrics provide similar
insights, in particular, the rMAD follows closely the rRMSD.
It shall be noticed that the NSRDB estimates have the lowest
KSI, being similar to the one obtained by the LCIM, and
that the LCIM estimates present remarkably high correlations.
The previous analysis suggests that the LCIM, GL1.2, and
NSRDB are the best-performing models for daily scale GHI
estimates in the region, with an important rRMSD gain in favor
of the LCIM. It also discards the MERRA2 GHI estimates
utilization, as there are several much better-performing options
freely available. The CERES model provides an interesting
performance considering it only uses 3h GOES-East satellite
images. The estimates’ behavior can be observed graphically
in Fig. 4. This figure provides scatter plots (estimates vs.
reference) for each model in the LE site, and enables to arise
similar conclusions but in a qualitative manner. The color code
is used to show the four seasons of the year.

A. Seasonal performance

Seasonal performance is generally of interest in meteoro-
logical analysis, even more for solar radiation, as for the
GHI there is a well-known seasonal geometrical behavior. In
the previous analysis, the rMBD and rRMSD indicators were
mostly discussed, as they are generally preferred in the solar
resource assessment field. Also, observed performances are
fairly uniform across sites. Following this and due to ease of
presentation, only these two metrics are discussed from now
on and as site averages.
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TABLE III
MODELS’ PERFORMANCE IN ESTIMATING GHI AT A DAILY TIME SCALE.

Model metric AR LE TA ZU LB AZ RC Average

LCIM rMBD (%) 2.1 1.6 2.1 -0.2 1.2 0.5 1.7 1.3

rRMSD (%) 5.9 5.5 7.0 5.7 5.6 6.0 6.2 6.0

rMAD (%) 4.6 4.3 5.3 4.7 4.4 4.8 4.9 4.7

Corr. 0.994 0.994 0.992 0.994 0.995 0.994 0.994 0.994

KSI (kWh/m2) 0.122 0.108 0.114 0.104 0.091 0.103 0.092 0.105

NSRDB* rMBD (%) 2.6 0.1 2.7 0.3 2.3 -1.5 2.6 1.3

rRMSD (%) 7.9 4.9 9.1 6.3 7.4 6.9 8.8 7.3

rMAD (%) 4.5 3.3 5.7 4.4 5.3 4.6 6.1 4.8

Corr. 0.989 0.994 0.986 0.993 0.992 0.991 0.989 0.990

KSI (kWh/m2) 0.131 0.052 0.134 0.076 0.123 0.082 0.129 0.104

GL1.2* rMBD (%) 0.5 0.1 -0.1 0.3 -0.9 0.3 -1.8 −0.2

rRMSD (%) 5.8 5.9 6.9 13.5 6.9 7.1 8.6 7.8

rMAD (%) 4.3 4.3 5.1 9.0 5.0 5.3 6.2 5.6

Corr. 0.994 0.993 0.992 0.969 0.992 0.991 0.989 0.988

KSI (kWh/m2) 0.081 0.082 0.128 0.158 0.133 0.090 0.145 0.117

CERES rMBD (%) 0.4 0.3 1.1 1.3 5.3 4.1 3.6 2.3

rRMSD (%) 6.5 7.0 7.5 7.3 9.8 11.6 9.8 8.5

rMAD (%) 4.8 4.8 5.5 5.2 7.1 8.0 7.0 6.1

Corr. 0.992 0.989 0.990 0.990 0.988 0.976 0.985 0.987

KSI (kWh/m2) 0.101 0.111 0.112 0.089 0.251 0.209 0.164 0.148

Heliosat-4 rMBD (%) -0.8 -2.3 0.2 -2.5 -1.6 -5.0 -1.3 −1.9

rRMSD (%) 8.3 7.3 7.6 7.9 8.6 10.1 8.6 8.3

rMAD (%) 5.9 4.9 5.6 5.6 6.0 7.0 6.1 5.9

Corr. 0.987 0.990 0.991 0.990 0.988 0.985 0.988 0.988

KSI (kWh/m2) 0.137 0.148 0.124 0.152 0.133 0.251 0.116 0.152

MERRA2 rMBD (%) 6.3 4.7 10.3 6.3 8.6 6.1 11.0 7.6

rRMSD (%) 20.5 19.6 24.6 20.5 21.9 19.7 23.9 21.5

rMAD (%) 13.3 12.0 16.3 13.3 14.6 12.8 16.4 14.1

Corr. 0.917 0.907 0.903 0.924 0.925 0.927 0.921 0.918

KSI (kWh/m2) 0.319 0.248 0.496 0.308 0.407 0.303 0.497 0.368

# Data 1220 1279 1409 1422 1430 1311 1410 1354

Ground measurements mean (kWh/m2) 5.0 5.3 4.8 4.9 4.7 4.9 4.5 4.9

# Data* GL1.2 | NSRDB 800|520 870|644 959|721 971|724 976|728 898|660 958|706 919|672
Mean* GL1.2 | NSRDB (kWh/m2) 5.0|5.0 5.2|5.2 4.8|4.8 4.8|4.9 4.7|4.7 4.8|5.0 4.5|4.5 4.8|4.9

Fig. 5 displays the average rMBD and rRMSD discriminated
by seasons. The measurements’ mean values for each season
are provided in the caption as a reference. Fig. 5a shows that
the relative bias is generally more significant (in magnitude)
in autumn and winter for most models. The only exception
to this is the NSRDB, which remains low in both seasons.
GL1.2 confirms its lower bias across seasons and CERES
shows a high downgrade in the autumn-winter period. The
rRMSD behavior (Fig. 5b) is consistent with worse metrics
in autumn-winter, as a noticeable increase of ≃ 2-4% can
be observed between spring-summer and autumn-winter for
all models. LCIM presents the lowest rRMSD across almost
all seasons, with the only exception of winter, in which the
NSRDB outperforms. GL1.2 estimates, although not having
the lowest rRMSD in any of the seasons, remain competitive

in all of them. The seasonal analysis, in overall terms, is
consistent with the analysis using the whole data set span;
LCIM and NSRDB stand out for their low rRMSD, closely
followed by GL1.2, which also stands out for its low bias.
MERRA2 has no season with competitive performance.

The higher relative metrics in autumn-winter may be as-
sociated with lower average values. However, when absolute
metrics are analyzed, there are only slight differences from
the previous analysis. For the MBD the results are, in fact,
analogous to those of the rMBD. The RMSD shows some
different behavior, it remains nearly constant throughout the
year for the LCIM and CAMS, but increases a little in spring-
summer in comparison to autumn-winter for other models.
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(a) LCIM. (b) Heliosat-4.

(c) CERES. (d) GL1.2.

(e) NSRDB. (f) MERRA2.

Fig. 4. Model estimates vs. measurements for each model in the LE site.
Seasons are shown in different colors.

B. Performance dependence on cloudiness

Cloudiness discrimination is addressed by using the daily
clearness index (Kt) as a proxy. This index is calculated
by normalizing the daily GHI measured data by its corre-
sponding extraterrestrial daily value [38]. Kt is therefore a
dimensionless quantity that removes the seasonal geometrical
behavior from the daily GHI and accounts for variations due
to cloudiness. In overall terms, Kt values above 0.70 and
below 0.20 represent days with mostly clear sky and overcast
conditions, respectively, while the middle values are associated
with mixed conditions. As a first approach, Fig. 6 shows the
Kt probability density function of each model’s estimates (in
sky blue) in comparison to the measurements (in gray) for
the LB site, although are similar throughout sites. This is a
typical diagram for sites experiencing mixed sky conditions,
in which days with clear sky, partly cloudy, and overcast
conditions alternate. Almost all models misrepresent the clear
sky distribution (last 4 bars in Fig. 6), either by not being able
to account for the higher values (LCIM), having unbalanced
frequencies in each clear sky bin in comparison to the ground
data (NSRDB, Heliosat-4, GL1.2, and LCIM) or estimating
a larger number of clear days than observed (MERRA2 and
CERES). MERRA2 also estimates fewer overcast days than
observed. For mid Kt values (between 0.2 and 0.6), LCIM,
NSRDB, GL1.2, and CERES show a good agreement between

(a) rMBD metric.

(b) rRMSD metric.

Fig. 5. Performance metrics in each season. The measurement’s mean in
kWh/m2 are: 6.7 (summer), 3.3 (autumn), 3.2 (winter) and 6.5 (spring).

density curves.
A final analysis is presented in Fig. 7, showing the rMBD

and rRMSD dependence with Kt. The MERRA2 is excluded
from the plot as it results in over-ranged bars. A clear
correlation between cloudiness and uncertainty is observed;
the models amplify their relative deviations with increasing
cloudiness. GL1.2 and Heliosat-4 are the only models that
change the sign of the bias with the sky conditions, being
negative for mid Kt values. The LCIM is the model with
the lowest rRMSD in most Kt intervals but is one of the
worse for the lowest Kt interval (along with Heliosat-4 and
CERES). GL1.2 and NSRDB estimates are the most consistent
models across all conditions. NSRDB and Heliosat-4 are the
best at modeling clear sky conditions (highest Kt interval).
The anti-correlation found for all models between cloudiness
and accuracy is not strange, since clouds are usually the more
difficult phenomena to be precisely characterized by solar
radiation models.

VI. CONCLUSIONS

A benchmark study of daily solar irradiation data sources
was presented for Uruguay, southeast of South America.
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(a) LCIM. (b) Heliosat-4.

(c) CERES. (d) GL1.2.

(e) NSRDB. (f) MERRA2.

Fig. 6. Daily clearness index distribution in superposition with each model’s
estimates for the LB site. Blue: modeled data. Gray: ground data.

Six modeled data sources were analyzed, including different
satellite-based schemes and a reanalysis data source. These
data sets uncertainty was evaluated and analyzed using four
years of controlled-quality ground measurements from seven
sites. The regionally-adjusted semi-empirical LCIM model
based on GOES-East satellite images resulted as the best
option, showing better overall metrics with spatial consistency.
However, the NSRDB and GL1.2 estimates are well-positioned
in the overall metrics, with even better consistency across sky
conditions. Their performance is only slightly worse than the
LCIM. In particular, GL1.2 exhibit exceptionally low bias, a
remarkable feature of this model. A third group of models is
conformed by CERES and Heliosat-4, with higher rMBD and
rRMSD than the previous ones, but still accurate. From this,
it can be inferred that models using high time-rate (10 or 15
minutes) GOES-East images are the preferred option for this
region. MERRA2 reanalysis data show a very high uncertainty
(observed in all metrics), so it should not be used for solar
resource assessment in the region, at least not without an
important post-processing procedure based on quality ground
measurements. As a general takeaway, except for MERRA2,
all models obtain a reasonable performance and, depending
on the use, can be considered for solar resource assessment
provided the estimates’ uncertainty is enough for the intended
application. These uncertainties are provided in this work,

(a) rMBD metric.

(b) rRMSD metric.

Fig. 7. Performance metrics on cloudiness bands (spatially averaged).

so industry practitioners can evaluate their utilization. For
instance, from the models analyzed here, the LCIM, NSRDB,
and GL1.2, are recommended in this region for applications
in which the solar input uncertainty is critical.
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