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Multi-resource allocation: analysis of a paid
spectrum sharing approach based on fluid models

Claudina Rattaro, Paola Bermolen, and Pablo Belzarena

Abstract—Nowadays industrial and academic commu-
nities are focusing much of their efforts to define the
main characteristics of 5G. Cognitive Radio, offering the
possibility to significantly increase the spectrum efficiency,
will play a key role in the whole range of IoT commu-
nications (one of the use cases of 5G networks). While
Cognitive Radio is one of the most discussed topics in
contemporary spectrum management, there are still many
issues and challenges to be solved, even more when we
think about large networks. In this context, one of the main
question that motivates this work is: how to encourage the
spectrum sharing behavior of primary users (PUs)? With
this in mind, we study a paid-sharing approach where
secondary users (SUs) pay for spectrum utilization. We
assume a preemptive system where PUs have strict priority
over SUs, and the affected SUs will then be reimbursed,
implying some cost for the PUs service provider. This
paper bears on the analysis of the behavior of the system
where the number of users is arbitrary large and an
admission control policy over SUs is applied. We develop a
computationally efficient methodology to find an accurate
estimation of the optimal admission control boundary
based on fluid limits.

Index Terms—admission control, cognitive radio, dy-
namic spectrum allocation, fluid limit

I. INTRODUCTION

IN the near future, the telecommunications in-
dustry will be faced with two big challenges: a

need for more radio spectrum and an ever-increasing
demand for data. Spectrum, however, is a finite
resource. The concept of cognitive networks has
emerged as one of the efficient means for uti-
lizing the scarce spectrum by allowing spectrum
sharing between a licensed primary network and
a secondary network. We envision that soon this
paradigm will become a reality, this is reflected by
the number of publications and conferences about
cognitive radio in 5G wireless communications [1],
[2], [3], [4], [5], [6]. However, several challenges
still need to be solved, new standards must be
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approved, new regulation is needed, and the wireless
industry will have to develop the necessary equip-
ment. Thinking about the evolution of wireless tech-
nologies, rapidly comes to our minds a world with
more and more devices connected to the Internet.
In this scenario, Internet of things (IoT) paradigm
poses new challenges to the way in which spec-
trum management is approached and implemented.
Experts estimate that the IoT will consist of about
30 billion connected objects by 2022[7], the vast
majority through wireless networks. In this sense,
there are several issues that need to be addressed
before cognitive radio technology can be used for
Internet of things. This work contributes in this
direction developing methodologies to evaluate the
spectrum allocation problem where the number of
wireless users is “unlimited”.

The concept of Cognitive Radio (CR) is not
new, it was first introduced by Mitola [8] in his
PhD thesis. CR represents a promising technology
which, based on dynamic spectrum access, strives
at solving two important problems: spectrum under-
utilization and spectrum scarcity. In this paradigm
we can identify two classes of users: primary and
secondary. Primary users (PUs) are those for which
a certain portion of the spectrum has been allocated
to (often in the form of a paid contract). Secondary
users (SUs) are devices capable of detecting unused
licensed bands and adapt their transmission param-
eters for using them.

The fundamental concept behind CR networks is
to allow SUs to use the licensed resource in the
absence of PUs in order to improve the spectrum
utilization. The key requirement in this context is
that the PUs ought to be as little affected as possible
by the presence of SUs. In the ideal case, PUs
would use the network without being affected at all
by SUs, which will in turn make use of whatever
resources are left available. Although a rather large
number of solutions already exist in the literature,
this dynamic spectrum allocation (DSA) is still one
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of the main challenges in the design of CR due to
the requirement of “peaceful” coexistence of both
types of users [9], [10].

There are roughly two different approaches for
dynamic spectrum sharing: paid-sharing or free-
sharing. An effective collaboration is achieved when
the spectrum sharing behavior of primary service
providers is stimulated. It is essential to have an in-
centive framework, then paid-sharing methods (i.e.
when SUs pay for spectrum utilization) seem to be
more suitable for this purpose.

Keeping this in mind, the focus of our analysis
is a paid spectrum sharing method based on ad-
mission control decisions over SUs. In particular,
we consider a scenario without spatial reuse of
channels where if a PU does not find enough free
channels in the system, at least one of the SUs
will be deallocated immediately. In other words, a
preemptive system is considered where some SUs
communications will be aborted whenever a PU
needs certain amount of bandwidth and the system
has an insufficient number of free bands. In addition
to that, the affected SUs (the ones that are deallo-
cated before their services were finished) will be
reimbursed, implying some cost for the PUs service
provider (SP). Clearly there is a trade-off between
the number of SU accepted (each one paying for the
use of the spectrum) and the reimbursement in case
they should be deallocated. Our problem is then to
maximize the total expected discounted revenue of
the SP over an infinite horizon. That is to say, the
goal is to find the optimal admission control policy
a SP must apply in order to obtain the maximum
possible profit from SUs.

Before introducing our solution to the optimiza-
tion problem, let us briefly describe how this general
formulation can be applied to different real life sce-
narios. For instance, the system could be a cellular
network that employs frequency division duplexing
where the operator has C frequency bands (chan-
nels) to be assigned to its users (PUs). Moreover,
in a LTE system (which is one of the predecessors
of 5G), we can consider a channel as one resource
block and then, the set of resources C represent the
cell capacity. Finally, we have digital TV spectrum
bands. In all of the described scenarios, if there
are free resources, the SUs could use them with
the constraint that their communications can be
interrupted at any time (preemption). It is important
to emphasize that our approach is useful when there

is a large amount of concurrent transmissions which
is a representative scenario in IoT applications.

To solve the optimization problem we model
the optimal revenue problem as an infinite horizon
Markov Decision Process (MDP) where the arrivals
of each class are independent Poisson processes
and the service durations are also independent and
exponentially distributed. We further assume that
each class of user demands bi resources, with bi
integer (i.e. a PU requests b1 channel bands and a
SU requests b2). The set of available actions of the
MDP are reflected in the admission control policy:
accept or reject a new SU. One of the challenges
when we think about large random networks (e.g.
V2V (vehicle to vehicle), M2M (machine to ma-
chine) and the whole range of IoT topologies) is
how to manage a network with a large amount of
connections with random traffic patterns. However,
the Markovian structure allows us to analyze its
asymptotic behavior, where the number of resources
as well as the arrival rates are arbitrary large, by
means of a simpler deterministic approximation
usually named fluid limit or fluid approximation.
In our case, the approximation can be determined
as the unique solution of an ordinary differential
equation system. This approximation will allow
us to define and determine the optimal admission
control policy that maximizes the revenue of the SP.
See for example [11], [12] where there are examples
of control queueing problems analyzed through a
fluid approximation.

In terms of the preemption, this alternative of
termination model is already defined by FCC1 in
a different scenario (Block D at 700 MHz: public
safety services would act as the PUs and commercial
services would act as the SUs, where public safety
users are able to preempt commercial users during
an emergency), representing a natural way to imple-
ment that situation. Our work differs from the pre-
ceding work [11], [12] by focusing on preemptive
systems and multi-resource demand. In particular, in
[13], [14] there is a complete literature review of the
most representative studies about control policies
for systems with preemption. In those works, due
to the assumption “one user with one channel”,
the preemption mechanism is active only when all
channels are busy. In our scenario the preemption

1https://www.fcc.gov/, see: 47 CFR 90.531 - BAND PLAN and
FCC-07-72A3.
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occurs when there are not enough free resources to
satisfy primary demand.

Some preliminary results were published in our
previous article [15]. In this paper, we incorporate
aspects such as the multichannel demand in each
class of user (b1 and b2) and different arrivals
and departure rates between services. The main
contribution of this work consists in the definition
and analysis of a fluid model of the corresponding
MDP. We also develop a methodology in order to
obtain an approximation of the optimal admission
control boundary. The proposal combines fast cal-
culation with a robust performance. We also perform
a comparison of the approximation presented here
and the optimal one.

The rest of the paper is structured as follows. In
Section II we introduce the hypotheses and the main
characteristics of the considered system. In Section
III we present our main results based on a simplified
scenario (the base-case), in particular we provide the
results about the approximation by a deterministic
process and we present the methodology in order
to estimate the optimal admission control boundary.
In Section IV we show how our results, obtained
in Section III, may be adapted for the general
model hypotheses. In Section V we explain how
to deal with piecewise stationary prices. In Section
VI we validate our results presenting numerical
examples in several scenarios. Finally, we conclude
and discuss future work in Section VII.

II. PROBLEM FORMULATION

Let us begin by describing our working scenario
and introducing the notation, definitions and hy-
potheses. We assume that the spectrum is divided
into C non-overlapping channels to be distributed
between PUs and SUs.

Let Xi(t) and Yj(t) be the number of PUs and
SUs in the system at time t respectively (in order
to simplify the notation, we indistinctly use Xi and
Xi(t), as well as Yj and Yj(t)). The indexes i and
j represent the different classes of PUs and SUs.
Let λ i

1 and µ i
1 be the arrival and departure rates

for class i of PUs respectively (independent Poisson
arrivals and exponentially distributed service times).
In the same way, λ

j
2 and µ

j
2 represent the arrival

and departure rates for class j of SUs. We assume
that each PU of class i demands bi

1 resources,

and analogously each SU of class j requires b j
2

channel bands to its transmission. In this sense we
identify different classes of PUs and SUs, each class
corresponds to a set of parameters (λ ,µ,b).

We consider a paid-sharing mechanism where
SUs pay to the primary SP for its spectrum uti-
lization. We assume static prices similar to the ones
considered in previous articles [13], [16], [17]. Our
analysis can be applied to dynamic prices if the
dynamics preserves the stationarity of the process as
is explained in Section V. Let R > 0 be the reward
collected for each band when a SU is allowed to
exploit the PU’s resource (i.e. b j

2R is the collected
reward when a SU of class j is accepted in the
system). We also consider a preemptive system
where PUs have strict priority over SUs. This means
that SUs can be removed from the system if there is
insufficient free capacity when a PU arrives. In this
model, these affected SUs will be reimbursed with
b j

2K (K > 0), implying a punishment for the SP. We
take into account a discount rate α > 0, that is, the
rewards and costs at time t are scaled by a factor
e−αt .

We thus have a Continuous Time MDP (CTMDP)
with state space S = {(Xi,Yj) ∈Ni+ j : 0≤∑i bi

1Xi+

∑ j b j
2Yj ≤C} where the objective is to maximize the

total expected discounted profit over an infinite time
horizon applying admission control decisions over
SUs. In other words, we want to find the optimal
policy π∗ ∈ Π that defines the admission control
action a(s) ∈ As in each state s ∈ S maximizing
the SP’s revenue. The set of possible policies is
represented by Π = {π : S→ As}, where As is the
action space. As = {0,1} or As = {0}, depending
on s ∈ S, where action 0 corresponds to refusing a
SU’s arrival and 1 to admitting it. Note that for all
s= (Xi,Yj) : ∑i bi

1Xi+b j
2Y j >C−b j

2 the action space
is As = {0} since the system has an insufficient
number of free bands to satisfy the demand of a
SU of class j.

In order to keep the analysis more understandable
to the reader, in the next section we consider one
class of PU (λ1,µ1,b1) and one of SU (λ2,µ2,b2).
It is important to highlight that the analysis of
this base-case is fully scalable for the general case
considering more than two classes. Then, in Section
IV we return to the general problem an we show the
results for more than two classes of users.



4

III. TWO CLASSES ANALYSIS

In this illustrative scenario we have the CTMDP
with state space S = {(X ,Y )∈N2 : 0≤ b1X +b2Y ≤
C}. Making the context clear. in Fig. 1 we represent
the state space and the different economic zones
in the particular case where there is no admission
control.

X(t)

Y (t)

I

II

III

C−b1
b2

C−b2
b2

C
b2

C−b1
b1

C−b2
b1

C
b1

Fig. 1. In the two classes analysis, the state space is S = {(X ,Y ) : 0≤
b1X +b2Y ≤C}, then 0≤ X ≤C/b1 and 0≤Y ≤C/b2. If a(X ,Y ) =
1∀(X ,Y ) : b1X +b2Y ≤C−b2 and b1 > b2, we can divide the state
space in three economic zones: I, II and III. In zone I for each SU
that enters the system, the SP earns b2R. On the other hand, in zone
II, the SP has to pay Zb2K when a PU arrives (if Y ≥ Z). In addition,
it also earns b2R for each SU accepted. Finally, in zone III the SP
only pays Zb2K (if Y ≥ Z) for each PU arrived. Note: Z represents
the number of deallocated SUs, see Eq. (1).

According to the previous definitions, the tran-
sition rates between states (X ,Y ) and (X ′,Y ′),
q((X ,Y ),(X ′,Y ′)), of the CTMDP are:
• q((X ,Y ),(X +1,Y )) = λ1 if b1X +b2Y ≤C−b1,
• q((X ,Y ),(X−1,Y )) = µ1X ,
• q((X ,Y ),(X ,Y +1)) = a(X ,Y )λ2 if b1X +b2Y ≤C,
• q((X ,Y ),(X ,Y −1)) = µ2Y ,
• q((X ,Y ),(X +1,Y −Z)) = λ1 if C−b1 < b1X +b2Y ≤C

and Y ≥ Z (preemption),

where a(X ,Y )∈ As represents the admission con-
trol decision in each state and Z represents the
number of preempted SUs:

Z =

⌈
b1X +b2Y −C+b1

b2

⌉
. (1)

Note that if the system is in state s = (X ,Y ) and
a SU arrives, it will access the system only if
a(X ,Y ) = 1.

Since most of the MDPs resolution methods are
for discrete time, in the next section we explain
how to obtain an equivalent discrete time Markov
decision process (DTMDP) of our CTMDP. For that
purpose we use uniformization technique. Next, we
briefly describe the most important aspects of this
procedure. We suggest [18] and Chap. 11 of [19],
as references for a more detailed analysis.

A. Uniformization
When the transition rates are identical for each

state and action pair, one can convert a CTMDP into
an equivalent discrete time Markov decision pro-
cess (DTMDP). This means that the optimal action
of both process coincide. In order to convert our
process in a process with identical transition rates
we resort to the technique known as uniformization.
The idea behind uniformization is to use fictitious
transitions from a state to itself to obtain a CTMDP
equal in distribution to the original one and at the
same time with identical transition rates. This new
process can be then analyzed as a DTMDP.

Let (X ,Y ) be the CTMDP with transition proba-
bilities p(·|s,a). Let q(s,a) denote the transition
rate out of state s when action a is taken, that
is: p( j|s,a) = q( j|s,a)

q(s,a) . The infinitesimal generator of
(X ,Y ) satisfies:

q( j|s,a) = p( j|s,a)q(s,a),∀ j ∈ S, j 6= s,
q(s|s,a) =−(1− p(s|s,a))q(s,a) =−q(s,a).

Note that p(s|s,a) = 0, which means that, at the end
of a sojourn in state s, the system will jump to a
different state.

Let Γ be the uniformization constant; Γ is chosen
such that Γ > q(s,a),∀s ∈ S,∀a ∈ As. Then, we can
define the transition probabilities of the “uniformed
process” (X̂ ,Ŷ ) as:

p̂( j|s,a) = q( j|s,a)
Γ

=
q(s,a)

Γ
p( j|s,a),∀ j ∈ S, j 6= s,

p̂(s|s,a) = 1− q(s,a)
Γ

.
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Therefore, the correspondent infinitesimal generator
of (X̂ ,Ŷ ) is:

q̂( j|s,a) = p̂( j|s,a)Γ = q( j|s,a),∀ j ∈ S, j 6= s,
q̂(s|s,a) =−(1− p̂(s|s,a))Γ =−q(s,a).

By creating fictitious transitions (from a state to
itself), we are creating a stochastically equivalent
process in which the transitions occur more often.
We refer to (X̂ ,Ŷ ) as the uniformization of (X ,Y )
because it has an identical (or uniform) mean time
between transitions (which corresponds to the de-
cision epochs). Please note that the two processes
are equal in distribution so they have the same
probabilistic behavior.

Fig. 2 shows a generic state s = (X̂ ,Ŷ ) when
the uniformization has already been done using
Γ = λ1 +λ2 +C(µ1/b1 + µ2/b2). In particular it is
a state where the system has enough free capacity
for primary demand (b1X̂ +b2Ŷ ≤C−b1).

(X̂ ,Ŷ +1)

(X̂ ,Ŷ )

(X̂ ,Ŷ −1)

(X̂ +1,Ŷ )(X̂−1,Ŷ )

a(X̂ ,Ŷ )λ2
Γ λ1

Γ

µ2
Γ

Ŷ
µ1
Γ

X̂
Ξ

Γ

Fig. 2. Generic state (X̂ ,Ŷ ) obtained after the uniformization process
(values correspond to outgoing transition probabilities). In this work
Γ = λ1 +λ2 +C( µ1

b1
+ µ2

b2
). Observe that this transformation implies

“fictitious” transitions from a state to itself, Ξ =C( µ1
b1

+ µ2
b2
)−µ1X̂−

µ2Ŷ +λ2(1−a(X̂ ,Ŷ )).

Working with the uniformized process (X̂ ,Ŷ ), it
is possible to demonstrate that it can be analyzed
like a DTMDP with a discount factor β = Γ

Γ+α
(0 <

β < 1). The interested reader may consult [18] for

the details. In terms of the equivalent DTMDP, the
problem can be written as:

V ∗(s) = max
π∈ΠMD

Eπ

[
∞

∑
n=0

β
nr(sn,an)|s0 = s

]
,∀s ∈ S;

where:
• V ∗(s) is the maximal expected β -discounted

reward for the system with initial state s,
• ΠMD represents all the possible Markov deter-

ministic policies,
• tn is the time of n-th transition (n-decision

epoch),
• an = a(tn) and sn = s(tn), and
• r(sn,an) = l(sn,an,sn+1) (a lump reward at the

moment of the transition) such that
– if an = 1,sn = (X̂n,Ŷn) and sn+1 =

(X̂n,Ŷn +1), l(sn,an,sn+1) = b2R,
– if sn = (X̂n,Ŷn) and sn+1 = (X̂n + 1,Ŷn −

Zn), l(sn,an,sn+1) =−Ẑnb2K,
– otherwise, l(sn,an,sn+1) = 0.

In discrete time the best known practical al-
gorithms for solving infinite-horizon MDPs based
on dynamic programing are: Value Iteration (VI),
Policy Iteration (PI) and Modified Policy Iteration
(MPI). Numerical results reported in [20], [19] sug-
gest that Modified Policy Iteration is more efficient
than either VI o PI in practice. That is the main
reason why in this work we have chosen MPI. In
what follows we introduce the algorithm that we
have used to validate our methodology.

B. Modified policy iteration (MPI)

Algorithm 1 Pseudo-code of MPI algorithm
Require: C, λ1, λ2, µ1, µ2, b1, b2, β , R, K

1: select an arbitrary decision rule π ′

2: repeat
3: π := π ′;
4: Policy evaluation: compute the value function

of the policy π: Vπ(s),∀s ∈ S;
5: Policy improvement: obtain π ′ such that

argmaxa∈As

{
∑ j ∈S β p̂( j|s,a)(l(s,a, j)+Vπ( j))

}
;

6: until π = π ′

7: return π

MPI mainly applies to stationary infinite-horizon
problems. When S is finite and also As is finite
for each s ∈ S, then it is possible to demonstrate
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that MPI algorithm terminates in a finite number
of iterations with a discount optimal policy. Please
note that when no improvements are possible, then
the policy is guaranteed to be optimal.

TABLE I
PERFORMANCE OF MPI ALGORITHM (I7 3770/16GB). IN ALL

EXAMPLES λ1 = 200,λ2 = 500,α = 2,R = 1 AND K = 3.

Parameters |S| Running time
C = 100,µ1 = 3,µ2 = 1,
b1 = 5,b2 = 1 1071 46 sec
C = 100,µ1 = 3,µ2 = 1,
b1 = 1,b2 = 1 5151 9045 sec
C = 500,µ1 = 0.1,µ2 = 1,
b1 = 5,b2 = 1 25351 32267 sec

However, since MPI works over the policy-space,
the size of which is exponential in the number
of system states, when there is a large number of
system states, a big negative impact on the algorithm
convergence time occurs (see Table I). Motivated by
this fact, in this work we will present a computa-
tionally efficient alternative methodology to find an
accurate estimation of the optimal admission control
boundary based on a fluid model approximation of
the MDP.

C. Fluid Model
1) Preliminaries and Motivation: Applications

of fluid models to telecommunications appeared in
the literature and were widely developed in the last
decade. Some recent examples include for instance:
peer-to-peer systems and mobile networks (see for
example [21], [22], [23], [24], [25] and references
therein). Even if the general framework appears as
common to all these problems, each one has its own
particularities.

Before introducing the results for our model,
we briefly describe the general framework of the
methodology. In many scenarios where the number
of channels C and the user arrival rates (λi) are
large, a deterministic fluid model may offer a good
approximation to the original control problem [26],
[11]. In a nutshell, we can say that by choosing a
convenient scaling of the process it is possible to
obtain in the limit, a description of the asymptotic
behavior of the process as the solution of an ordi-
nary differential equation (ODE) system which is
denominated “fluid limit”.

Let X̃N(t) and Ỹ N(t) be the number of PUs
and SUs in the system considering a N-parametric

version of the original stochastic model. That means
that the parameters of this new process are: C̃ =CN,
λ̃i = λiN and µ̃i = µi, i = 1,2. Consider now the
scaled process (XN(t),Y N(t)) = 1/N(X̃N(t),Ỹ N(t)),
then it can be decomposed in the following way:

(XN(0)Y N(0))+
1
N

∫ t

0
QN(X̃N(s),Ỹ N(s))ds+

MN(t)
N

.

where QN(l) is the so-called drift of the process at
state l which may be calculated as ∑m(l−m)q(l,m)
(q(l,m) is the transition rate from state l to m) and
MN(t) is a Martingale.

If there exists a Lipschitz function Q
such that limN→∞ ||QN(X̃N(t),Ỹ N(t))/N −
Q(XN(t),Y N(t))|| = 0 and MN(t)/N converges
to zero in probability, then when N → ∞

(XN(t),Y N(t)) converges in probability over
compact time intervals to a deterministic process
(x(t),y(t)), described by the ODE:

(x′(t),y′(t)) = Q(x(t),y(t)). (2)

In the next subsection we calculate the drift for
our process in order to determine the fluid limit. In
this case, it is important to highlight that we can
obtain an explicit expression of (x(t),y(t)). Without
loss of generality, in the rest of the section we will
consider b2 = 1.

2) Fluid Limit: The classical results on conver-
gence of Markov processes in [27] or [26] assume
some regularity properties of the fluid ODE, i.e. the
vector field defining the ODE must be a Lipschitz
function in the domain of interest. As we will see,
due to the existence of an admission control and
preemption policies, in our system this regularity
condition does not hold.

Using the methodology proposed by Bortolussi in
[28], it is possible to consider a piecewise-smooth
(PWS) system (i.e. a dynamical system in which
the vector field is discontinuous in the domain of
interest, but with a controlled form of discontinuity).
That is to say, considering d

dt x = f (x), f : E →
Rn,E ⊆ Rn,

⋃
Ri ⊇ E (Ri i = 1 . . .s is a finite set

of disjoint regions), a PWS system is when f is
smooth on Ri and can be discontinuous only on the
boundaries of Ri. The author of [28] also proved that
the sequence of CTMC converges to the trajectories
of this hybrid dynamical system when the size of the
system N goes to infinity. Let us then consider this
result in order to obtain our fluid approximation.
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Before we start, a question that arises is: do
optimal admission control boundaries have a parti-
cular structure?. In Fig. 3 we show two generic AC
(admission control) boundaries2 obtained by MPI
algorithm for two sets of system parameters. We
can see the linear correlation between X and Y in
the AC boundaries.
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X(t)

Y
(t

)

 

 

b
1
X+b

2
Y=C

optimal AC case 1

optimal AC case 2

Fig. 3. Optimal AC boundaries. Parameters of case 1: λ1 = 200,
λ2 = 500, µ1 = 0.1, µ2 = 1, R = 1, K = 3, C = 100, b1 = 5, b2 = 1
and α = 50. Parameters of case 2: λ1 = 300, λ2 = 500, µ1 = 0.1,
µ2 = 0.5, R = 1, K = 3, C = 100, b1 = 5, b2 = 1 and α = 50. The
state space is the same in both cases ({(X ,Y ) : 0≤ b1X +b2Y ≤C}).

Fig. 3 suggests that the admission control boun-
dary in the limit can be assumed as a line with
equation y = Ax+δ with unknowns A and δ (A < 0
and 0≤ δ ≤C). This hypothesis will be used in the
following analysis but it is important to highlight
that our results and methodology can be extended
to other characteristics of the admission control
boundary.

In this context we have the three economic zones
illustrated in Fig. 4 (I, II and III). Please note
that in the limit (N → ∞) zone III converges to
the line b1x+ y−C = 0 (i.e. in the limit zone III
disappears), then z(t) = b1x(t)+ y(t)−C+b1 = b1.
As a consequence, in the limit we can think the
system with only two economic zones (I and II).

If we turn our attention to these two regions (I
and II), we have f1(x,y) = (λ1−µ1x,λ2−µ2y) and
f2(x,y) = (λ1 − µ1x,−µ2y) the velocity vectors,
both continuous in I and II respectively. In order to
be in the context of [28], as a way to see it, it is
useful to artificially extend our processes beyond
the region {b1x + y ≤ C}, assuming that in the
region {b1x + y > C} (zone III’) the vector field
is f3 = (λ1 − µ1x,−λ1b1 − µ2y) (representing the

2AC boundary represents the optimal policy, in particular it divides
the state space in two zones: one where SUs are accepted and the
other one where they are refused.

x(t)

y(t)

I
II

III

III’
δ

C− b1
N

C

C/b1

Fig. 4. Considering b2 = 1, we can divide the state space in three
different economic zones. SUs are accepted in zone I and rejected
in zones II and III. Zone III includes the states where SUs are
deallocated and Zone II represents the “neutral” one (neutral in the
sense that the SP does not earn nor lose). Zone III’ is an “artificial
zone” used to the definition of the fluid approximation.

preempted scenario). Then, in our PWS system we
identify three zones (I, II and III′) and two surfaces
(γ : −Ax + y− δ = 0 and γ ′ : b1x + y−C = 0).
According to that and excluding the behavior on
the surfaces, the deterministic system is driven by
the equations:

If −Ax+ y−δ < 0 (I):{
x′ = λ1−µ1x,
y′ = λ2−µ2y;

else, if −Ax+ y−δ > 0 and b1x+ y−C < 0 (II):{
x′ = λ1−µ1x,
y′ =−µ2y.

Some remarks are in order concerning these results.
Firstly, the equations in zones I and II are obtained
directly using classical results on convergence of
Markov processes. The difficult task consists in
analyzing the system on γ and γ ′.

Secondly, let n(x) be the normal vector to γ at x
(x ∈ γ), we find the following possible behaviors of
a solution starting in x depending on the value of
nT (x) f1(x) and nT (x) f2(x):
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• transversal crossing: if nT (x) f1(x) and
nT (x) f2(x) are non zero and have the same
sign,

• sliding motion: if nT (x) f1(x) > 0 and
nT (x) f2(x) < 0, the system cannot escape
from γ , then the solution follows a vector field
obtained as convex combination of f1 and f2,

• tangential crossing: if nT (x) f1(x) = 0 or
nT (x) f2(x) = 0.

Please note that it depends on the values of λ1, λ2,
µ1, µ2, b1, A and δ . We have an analogous situation
considering n′(x) (the normal vector to γ ′) and the
values of n′T (x) f2(x) and n′T (x) f3(x),∀x ∈ γ ′.

Finally, in the presence of fluid limits it is
usual to infer from the fixed point analysis of
the deterministic system the behavior of the
stochastic process in the stationary regime. In
particular, if there is a unique fixed point that is a
global attractor, the stochastic invariant distribution
converges in probability to this fixed point [29].
According to that, one of our main results is that
the position of the ODE (or PWS) fixed points is
decisive in defining an effective operating point of
the system. In this situation, we can identify two
scenarios depending on the value of λ1/µ1: (1) if
λ1/µ1 ≥C/b1 or (2) if λ1/µ1 <C/b1.

System saturated by PUs: If we consider the
primary system in its rush hour traffic, i.e. λ1/µ1 ≥
C/b1, we have that n′T (x) f3(x) = −µ1b1x− µ2y <
0,∀x∈ γ ′ and we can deduce that there is an interval
of γ ′ (including C/b1) where n′T (x) f2(x) = λ1b1−
µ1b1x−µ2y > 0. Then, the sliding motion condition
is verified, at least, on an interval of γ ′. In this case
it is possible to demonstrate that fixed point of the
PWS system is (x∗,y∗) = (C/b1,0). The PWS is
completely defined including the dynamic on γ ′ as:
if b1x+ y−C = 0 (γ ′):{

x′ = λ1−µ1x,
y′ =−λ1b1 +µ1b1x.

System unsaturated by PUs: On the other hand,
if λ1/µ1 < C/b1 we have three possible cases de-
pending on the unknowns values of A and δ . Let us
give an intuitive explanation:

1) if (λ1/µ1,λ2/µ2) is located in zone I
(−Aλ1/µ1 + λ2/µ2 < δ ), the fixed point
(x∗,y∗) will be (λ1/µ1,λ2/µ2). Then, a so-
lution starting in zone I will continue in zone

I. In this case the admission control does not
apply (i.e. A =−b1 and δ =C).

2) if −Aλ1/µ1+λ2/µ2 > δ and λ1/µ1 >−δ/A,
the fixed point (x∗,y∗) will be (λ1/µ1,0)
located in zone II. Then, a solution starting
in zone I will continue in zone II and will
die in II (transversal motion occurs on γ).
In the same way as in the previous case, the
admission control does not apply.

3) if −Aλ1/µ1 + λ2/µ2 > δ and λ1/µ1 <
−δ/A, the fixed point (x∗,y∗) will be
(λ1/µ1,Aλ1/µ1 + δ ) located on γ (sliding
motion). This condition is verified when
(λ1/µ1,λ2/µ2) is located in zone III’ and
λ1/µ1 < C/b1. In this case, the correspond-
ing PWS is completely defined including the
dynamic on γ as:{

x′ = λ1−µ1x,
y′ = A(λ1−µ1x).

3) Optimization problem formulation: We have
characterized the behavior of the dynamical system.
Now we will formulate the economic problem using
the deterministic approximation. Let Rt1(x0,y0) be
the SP profit function,

Rt1(x0,y0) =
∫ t1

0
λ2Re−αtdt−

∫ tC

t2
λ1Kb1e−αtdt,

where t1 verifies −Ax(t1) + y(t1) = δ (the system
reaches the admission border), t2 verifies b1x(t2)+
y(t2) =C (there is no free capacity) and tC is such
that b1x(tC)=C (all resources are occupied by PUs).

Working with the fluid approximations of x(t) and
y(t), we can re-write the optimization problem as:

maximize
t1

Rt1(x0,y0)

subject to 0≤ t1 ≤ tC
b1x(t2)+ y(t2) =C
b1x(tC) =C.

(3)

We are interested in obtain the admission control
boundary independently of the initial condition of
the system, so we propose the following methodol-
ogy:
• Step 1: Choose a set of possible initial condi-

tions {(xi
0,y

i
0)} (when the AC is considered as

a line, only two tuples are necessary).
• Step 2: Run the optimization problem to obtain

t i
1, x(t i

1) and y(t i
1),



9

• Step 3: Apply least squares fitting to obtain
the parameters of the AC border as those that
minimize the mean square error (when the AC
is considered as a line, the estimation of A and
δ is direct).

Please note that tC is not defined when the system
is unsaturated by PUs, in particular in the third
case (sliding motion) when the admission control
decision makes sense, the solution of the optimal
problem is t1 = t2 such that b1x(t2)+ y(t2) =C.

IV. GENERAL CASE ANALYSIS

In the previous sections we have analyzed what
we termed the base-case. In the following two
subsections we briefly illustrate how our results and
methodology are extended to study more complex
scenarios. In particular, we will consider different
primary arrival and departure rates, and also differ-
ent primary resource demands.
A. Different primary arrival rates

In the same way as in the base-case, the arrival
processes for primary and secondary users are inde-
pendent Poisson processes and the service durations
are independent and exponentially distributed. We
consider now different primary arrival rates. In order
to simplify the analysis we consider first the same
departure rate for all classes of users. The case of
different departure rates will be considered in the
next section. In particular, we present the analysis
where two primary arrival rates are involved.

The model assumptions for this case are the
following:
• X1(t), X2(t): number of PUs at time t with

arrival rates λ1 and λ ′1 respectively,
• Y (t): number of SUs at time t
• C: total number of identical channels,
• λ2: arrival rate for SUs,
• µ: departure rate for all classes of users, and
• b1 = b′1 = b2 = 1: we associate one user with

one channel (in order to simplify the notation).
The state space is then:

S = {(X1,X2,Y ) ∈ N3 : 0≤ X1 +X2 +Y ≤C},

According to these hypotheses, it is possible to
demonstrate that the admission control border will
be a plane with equation

X1(t)+X2(t)+Y (t)−∆ = 0.

Considering the same scaling for the process as
for the base-case, we can obtain the fluid approxi-
mation of the described stochastic system:
If x1 + x2 + y−∆ < 0:

x′1 = λ1−µx1,

x′2 = λ ′1−µx2,

y′ = λ2−µy;

else, if x1+x2+y−∆ > 0 and x1+x2+y−C < 0:
x′1 = λ1−µx1,

x′2 = λ ′1−µx2,

y′ =−µy.

When the sliding motion condition is verified, the
system of differential equations is:

x′1 = λ1−µx1,

x′2 = λ ′1−µx2,

y′ =−(λ1 +λ ′1)+µ(x1 + x2).

Please note that the same zones as for the base-
case can be identified, but with an admission control
border defined by a plane instead of a line.

Finally, the economic model is as before:

maximize
t1

Rt1(x10,x20,y0)

subject to 0≤ t1 ≤ tC
x1(t2)+ x2(t2)+ y(t2) =C
x1(tC)+ x2(tC) =C,

(4)

where

Rt1(x10,x20,y0) =
∫ t1

0
λ2Re−αtdt−

∫ tC

t2
(λ1 +λ

′
1)Ke−αtdt.

Please note that we can extend this result for more
than two different primary arrival rates, considering
more than two classes of PUs. In that context the
analytical expressions are totally analogous to the
presented ones. The difference is that the admission
control border will be a hyperplane instead of a
plane, but the analytical result will be totally anal-
ogous.



10

B. Different primary arrival and departure rates,
and different primary demands

Let us study the general case considering dif-
ferent primary arrival and departure rates and dif-
ferent demands. In this context, we identify each
set (λ i

1,µ
i
1,b

i
1) with one class of user. The main

difference with the previous case is that the ad-
mission control border will be approximated as an
hyperplane.

Working with m classes of PUs, b2 = 1 and
assuming that the AC hyperplane has the equation
∑i Aixi +By−∆ = 0 (with unknown Ai > 0, B > 0
and 0 < ∆≤C), we have that the fluid limit verifies:
If

m
∑

i=1
Aixi +By−∆ < 0:{

x′i = λ i
1−µ i

1xi, i = 1 . . .m,

y′ = λ2−µ2y;

else, if
m
∑

i=1
Aixi+By−∆> 0 and

m
∑

i=1
bi

1xi+y−C < 0:{
x′i = λ i

1−µ i
1xi, i = 1 . . .m,

y′ =−µ2y.

Depending on the parameters λ i
1, µ i

1, λ2, µ2 and
bi

1 we can identify sliding motion on one of the

following hyperplanes
m
∑

i=1
Aixi + By− ∆ = 0 (AC

border) or on
m
∑

i=1
bi

1xi + y −C = 0 (State Space

border). Then the fluid limit is completely defined
by the next equations.

If
m
∑

i=1
Aixi+By−∆= 0 and the sliding motion occurs

on the AC border:{
x′i = λ i

1−µ i
1xi, i = 1 . . .m,

y′ =−(∑i Aiλ
i
1)+∑i Aiµ

i
1xi;

else, if
m
∑

i=1
bi

1xi + y−C = 0 and the sliding motion

occurs on the state space border:{
x′i = λ i

1−µ i
1xi, i = 1 . . .m,

y′ =−(∑i bi
1λ i

1)+∑i bi
1µ i

1xi.

Again for this case, the optimization problem is
analogous to the previous ones.

V. PIECEWISE STATIONARY PRICES

The introduction of dynamic prices in our frame-
work is indeed possible, at least if the dynamics

preserves the stationarity of the process. A possible
scenario is where the prices depend on the arrival
rate of the PUs. If we consider that these rates
remain constant during some time periods (consider
workdays or weekends or day and night) then the
system can be divided in stationary periods and
for each one of these periods our proposal and
its results are still valid. To illustrate this scenario
we can define w : {1 . . .W} time periods. In each
period w we have a set of constant system param-
eters (λ i

1w,λ
j

2w,µ
i
1w,µ

j
2w,b

i
1w,b

j
2w,Rw,Kw). In this

context, the optimization problem has to be solve
for each w obtaining different admission control
policies which the SP must apply in each period
w.

It is important to remark that to cope with instant
variations of the prices, it is necessary to introduce
a different methodology. In the next section we shall
present some simulations that will help us to gain
insight into the framework and analyze the accuracy
of our results.

VI. SIMULATED EXPERIMENTS AND RESULTS

In order to validate our proposal we will present
some examples considering systems with a large but
finite number of channel bands. In each scenario,
we calculate the admission control boundary using
the proposed methodology and we compare it with
the results obtained by MPI algorithm. We divide
the validation tests into four groups: three from the
base-case and another considering that PUs arrive
with different arrival rates and same departure rate.

In particular, in the base-case, we first study
scenarios where system parameters verify λ1/µ1 <
C/b1. Then, for λ1/µ1 ≥ C/b1 (rush hour) we
analyze the impact of the parameter b1 considering
the particular case when µ1 = µ2. In this situation,
as can be demonstrated (see [13]), the optimal
admission control boundary is a line with equation
b1x+ b2y = δ (where δ is the only parameter that
has to be determined). Finally, also for the system
in its rush hour, we show the performance of the
approximation in general cases (e.g. different arrival
and departure rates, and different demands).

A. Group 1: System unsaturated by PUs

According to the analysis of the fluid limit we
concluded that A =−b1 and δ <C but very closely
to C. In terms of the stochastic system, this thresh-
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old will be highly dependent on N, then we can
approximate the AC as the line b1x+ y =C.

In table II we present a set of cases which verify
λ1/µ1 < C/b1 and in Fig. 5 the correspondent AC
boundaries obtained by MPI. We can conclude that
the fluid approximation is accurate.

TABLE II
AC BOUNDARIES OBTAINED BY MPI. PARAMETERS COMMON TO

ALL CASES: N = 100, µ1 = 0.1, µ2 = 1, R = 1, C = 1, b1 = 5,
b2 = 1 AND α = 5. THE LINE b1XN +Y N(t) =C REPRESENTS AN

ESTIMATION OF THE AC BOUNDARY OBTAINED BY OUR
APPROXIMATION.

K λ1 λ2 AC boundary
3 0.01 2 y = f (x)
10 0.01 2 y = g(x)
10 0.01 5 y = h(x)
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Fig. 5. Optimal AC boundaries f (x), g(x) and h(x) obtained by MPI
(see Table II).

For the third case, where the optimal AC border
is given by y= h(x), we run the MPI algorithm con-
sidering different N values. In Fig. 6 we can see the
results, and as expected that the fluid approximation
improves (and so the distance between the optimal
AC border and its approximation decreases) when N
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Fig. 6. Distance between Optimal AC boundary y = h(x) (see Table
II) and the fluid AC estimation b1x+b2y =C.

increases. Although our approximation is valid for
infinity networks (N → ∞), we want to emphasize
that we obtain an excellent performance considering
large but finite number of users.

B. Group 2: Different primary bandwidth require-
ments considering λ1

µ1
≥ C

b1
.

As a first illustration of the accuracy of our
proposal when the system is operating in saturated
traffic conditions of PUs, we consider scenarios
where µ1 = µ2 (the same departure rate in both
classes of users). In this particular case, where some
characteristics of the admission control boundary
are already known, the methodology requires only
one initial condition on Step 1. This represents
an immediate calculation of policy parameters. We
test the approximation with different values of b1
(b1 = 1,2,5,10). The rest of the network parameters
(e.g. rates, prices, number of total channel bands)
are the same in all the examples.

TABLE III
AC BOUNDARIES AND REWARD CONFIDENCE INTERVALS (0.95

LEVEL OF CONFIDENCE) OBTAINED BY BOTH METHODS. SYSTEM
PARAMETERS: N = 100, λ1 = 3, λ2 = 5, µ1 = µ2 = 0.1, R = 1,

K = 3, C = 1, b2 = 1 AND α = 50.

b1 AC boundary MPI Fluid Model
δ Reward δ Reward

1 x+ y = δ 0.93 10.6±0.6 0.92 10.7±1.0
2 2x+ y = δ 0.86 9.76±0.55 0.85 9.76±0.45
5 5x+ y = δ 0.65 5.86±0.74 0.62 5.95±0.65
10 10x+ y = δ 0.29 0.66±0.40 0.24 0.81±0.47

In table III we present the ACs boundaries for all
the cases. In order to test how close to the optimal
is the approximation, we make several experiments
(n = 30) with both boundaries (the optimal and its
approximation) and compute the profit of the SP.
Each experiment consists in one realization of the
continuous time Markov chain using the appropriate
AC boundary. In each transition the discount profit
of the SP is computed. We build the reward confi-
dence intervals and they are included in table III.

Some remarks regarding the obtained results are
in order. Firstly, these results lead us to conclude
that our fluid limit provides an excellent approxi-
mation of the optimal one. Secondly, we observe
that the deterministic approximation is more con-
servative than the stochastic one. This is a direct
consequence of the limit of the penalty zone. Lastly,
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Fig. 7. Evolution on the plane of the Markov Chain (two realizations)
and the ODE. Parameters: N = 100, λ1 = 3, λ2 = 5, µ1 = µ2 = 0.1,
R = 1, K = 3, C = 1, b1 = 5, b2 = 1 and α = 50. AC boundary:
b1x+ y = 0.63.
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Fig. 8. Solid and dashed lines represent optimal and estimated AC
boundaries respectively. Parameters of case 1: N = 100, λ1 = 2, λ2 =
5, µ1 = 0.1, µ2 = 1, R = 1, K = 3, C = 1, b1 = 5, b2 = 1 and α = 50.
Parameters of case 2: N = 100, λ1 = 3, λ2 = 5, µ1 = 0.1, µ2 = 0.5,
R = 1, K = 3, C = 1, b1 = 5, b2 = 1 and α = 50.

we can observe the accuracy of our model in the
curves of Fig. 7 where we show the evolution on
the plane of two realizations of the MDP together
with the PWS system solution.

C. Group 3: Different arrivals and departure rates
considering λ1

µ1
≥ C

b1
.

When we think about cognitive radio networks
and even more when we think about IoT applica-
tions using licensed spectrum as secondaries, we
commonly imagine different primary and secondary
services (e.g. Internet access through White Space
frequency bands [30]), then the natural situation is
to model them with different arrival and service
rates. We test now the methodology in generic cases.

In Fig. 8 and in Table IV we present the results
of two examples. The differences between them are
the arrival and departure rates of PUs and SUs. The
estimation of the AC boundary is obtained using the
methodology introduced before for different values

of initial conditions. Please note that the optimal AC
boundaries are not necessarily lines when µ1 6= µ2,
in particular see case 2 where the boundary is a
piecewise linear function with three line segments
(one when x(t) ∈ [0,0.06], the second when x(t) ∈
[0.06,0.065] and the third when x(t)∈ [0.065,0.12].
Also in case 2, we can say that for x(t) > 0.12 all
SU arrivals will be rejected.

TABLE IV
REWARD CONFIDENCE INTERVALS (0.95 LEVEL OF CONFIDENCE)

OBTAINED BY BOTH METHODS. PARAMETERS OF CASE 1:
N = 100, λ1 = 2, λ2 = 5, µ1 = 0.1, µ2 = 1, R = 1, K = 3, C = 1,
b1 = 5, b2 = 1 AND α = 50. PARAMETERS OF CASE 2: N = 100,
λ1 = 3, λ2 = 5, µ1 = 0.1, µ2 = 0.5, R = 1, K = 3, C = 1, b1 = 5,

b2 = 1 AND α = 50.

Case MPI Fluid Model
1 8.16±0.82 7.60±0.70
2 4.87±0.51 4.30±0.70

Again, our estimation shows an excellent perfor-
mance in both cases. This demonstrates the versa-
tility of our technique.

D. Group 4: Different primary arrival rates
In the same way as in Group 2, in this case we

consider scenarios operating in saturated traffic con-
ditions of PUs and we consider the same departure
rate in all classes of users. We recall that in case
the assumptions are the following:
• λ1 and λ ′1: primary arrivals rates,
• λ2: secondary arrival rate,
• µ: departure rate of all classes,
• b1 = b′1 = b2 = 1: one user one channel.
Using the results of Subsection IV-A we can

obtain the parameter ∆ which completely determines
the AC border. The obtained AC border is a plane
with normal vector (1,1,1). In Table V we show
how the methodology performs for two different
arrival rates sets.

TABLE V
AC BOUNDARIES AND REWARD CONFIDENCE INTERVALS (0.95

LEVEL OF CONFIDENCE) OBTAINED BY BOTH METHODS. SYSTEM
PARAMETERS: N = 10, λ2 = 10, µ = 1, R = 1, K = 3, C = 1, b2 = 1

AND α = 5.

λ1/λ ′1 MPI Fluid Model
∆ Reward ∆ Reward

20/10 0.4 0.50±0.20 0.43 0.60±0.20
15/8 0.6 0.93±0.28 0.65 0.82±0.24
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VII. CONCLUSIONS

The main contribution of this work is the analysis
and characterization of a possible model of spec-
trum sharing in cognitive radio networks. First, we
characterize the behavior of the system when an
admission control is applied using a fluid approxi-
mation of the stochastic model. Then, we model
the economical problem and we develop a compu-
tationally efficient way to find an estimation of the
admission control boundary in order to optimize the
profit of primary SP. The proposal is flexible enough
to allow different arrival rates for the primary users
as well as different departures rates. Through exten-
sive simulations we have verified that the proposed
approximation is accurate.

We believe that the results in this work are inspir-
ing and applicable to important emerging classes
of wireless networks. However, it is important to
remark that the studied problem is much more
general than a cognitive radio network analysis,
since it can also model many other economic scenar-
ios of dynamic control of queueing systems which
consider preemptive situations with reimbursement,
admission control decisions and multi-resource al-
location.

Finally, the next stage in our research line would
be to incorporate to our problem dynamic pricing
features like for example the ones defined in [14].
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