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Abstract Cognitive Radio Networks have emerged in the last decade as a
solution for two problems: spectrum underutilization and spectrum scarcity.
The main idea is to manage the radio spectrum more efficiently, where sec-
ondary users (SUs) are allowed to exploit the spectrum holes in primary user’s
(PUs) frequency bands. We consider a paid-sharing approach where SUs pay
for spectrum utilization. A challenging aspect in these mechanisms is how to
proceed when a PU needs certain amount of bandwidth and the free capacity
is insufficient. We assume a preemptive system where PUs have strict priority
over SUs; when a PU arrives to the system and there are not enough free chan-
nels to accommodate the new user, one or more SUs will be deallocated. The
affected SUs will then be reimbursed, implying some cost for the PUs service
provider (SP). This paper bears on the design and analysis of an optimal SU
admission control policy; i.e. that maximizes the long-run profit of the SP. We
model the optimal revenue problem as a Markov Decision Process and we use
dynamic programming and further techniques such as sample-path analysis to
characterize properties of the optimal admission control policy. We introduce
different changes to one of the best known dynamic programming algorithms
incorporating the knowledge of the characterization. In particular, those pro-
posals accelerate the rate of convergence of the algorithm when is applied in
the considered context. Our results are validated through numerical examples.
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1 Introduction

Nowadays, with the rapid development of wireless communications, the de-
mand for spectrum has been growing dramatically resulting in the spectrum
scarcity problem. In spite of this, spectrum utilization measurements have
shown that licensed bands are vastly underutilized while unlicensed bands
are too crowded [2,20,9,5,12]. Cognitive Radio (CR) has been proposed as
a promising technology to solve these problems by an intelligent and efficient
dynamic spectrum access [22,16,35]. In the last decade, CR has attracted a lot
of attention from both industry (some examples are IEEE 802.22 and 802.11af
standards [3,4]) and academy (see for instance [15,11,41,43,31] and the refer-
ences therein). Moreover, regulators have taken note about this fact and some
proposals already exist to regulate the dynamic spectrum allocation [1].

In this paradigm we can identify two classes of users: primary and sec-
ondary. Primary users (PUs) are those for which a certain portion of the spec-
trum has been allocated to (often in the form of contractual quality of service
(QoS) guarantees). Secondary users (SUs) are devices which are capable of de-
tecting unused licensed bands and adapt their transmission parameters. The
main idea in CRs, in order to improve the spectrum utilization, is that SUs
use the licensed resource in the absence of PUs. This dynamic spectrum allo-
cation (DSA), although a rather large number of solutions already exist in the
literature, is still one of the main challenges in the design of CR due to the
requirement of “peaceful” coexistence of both types of users [10]. There are
roughly two different approaches for dynamic spectrum sharing: paid-sharing
or free-sharing [28,38,21,7].

Free-sharing spectrum is also known as opportunistic spectrum access. In
this context, a SU has to monitor licensed bands and opportunistically trans-
mit (without payments) whenever no primary signal is detected. There is no
motivation for PUs to participate in this process because they do not obtain
any benefit from it. However, it could be an impulse for regulators in order
to improve the spectrum usage. On the other hand, another approach is con-
sidering paid-sharing models, where unoccupied channels are allocated to SUs
which have to pay to the PU’s Service Provider (SP) for the spectrum uti-
lization. The paid-sharing models have drawn more attention recently because
they can provide an economic incentive to the SP and/or to its PUs. PU’s
charge and SU’s payments are vital to the PUs-SUs interactions: PUs are
motivated to share their own underutilized licensed resource and SUs are per-
suaded to wisely use the PU’s spectrum avoiding an aggressive usage. While
there are many problems yet to be solved in this area, one of the most im-
portant is how to stimulate the spectrum sharing behavior of PUs. In this
context, paid-sharing methods seem to be the most suitable. We thus focus on
this kind of mechanisms.

There are different proposals for implementing paid spectrum sharing tech-
niques. These can be grouped into three big classes: dynamic spectrum auc-
tions [42,38,36], pricing [23,44] and admission control mechanisms [33,39,18].
In general, the aim of all the approaches is to maximize the revenue of the pri-
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mary SP. While much research has been recently dedicated to paid spectrum
sharing methods, most of the works have mainly focused on auction processes
based on conventional spectrum auctions, which is not always consistent with
the original intention of dynamic spectrum sharing. In this context admission
control policies might play a key role. There is no doubt that admission con-
trol strategies and pricing rules are strongly related. Prices, SU’s demand and
admission control boundaries are correlated variables because SU’s behavior is
sensitive to spectrum utility (costs and benefits) and QoS guarantees. Another
challenge in these mechanisms is what to do when a PU needs a channel and
there are not enough free channels to satisfy its demand. Some works permit
SU’s interference over PU’s communications and in this context SUs pay the
corresponding interference cost to the PUs [40,37]. Other studies assume a
channel reservation scheme only for PUs [36]. On the other hand, fewer works
contemplate preemptive situations [33] implying a preemption cost for the pri-
mary SP. This last alternative of termination model is already defined by FCC
in a different scenario (Block D at 700 MHz), therefore, it would represent a
natural way to implement that situation.

The focus of our analysis is a paid spectrum sharing method based on
admission control decisions over SUs. In particular, we consider a scenario
without spatial reuse of channels where if a PU arrives and does not find
enough free channels in the system, at least one of the SUs will be deallocated
immediately. In other words, a preemptive system is considered where some
SUs communications will be aborted whenever a PU needs certain amount
of bandwidth and the system has an insufficient number of free bands (free
interference between PUs and SUs is considered). In addition to that, the
affected SUs (the ones that are deallocated before their services are finished)
will be reimbursed. We consider static prices similar to the ones considered
in previous articles [33,18,17] and we address the problem of maximizing the
total expected discounted revenue of the SP over an infinite horizon. That
is to say, the goal is to find the optimal admission control policy for SUs in
order to maximize the SP profit. In this work we concentrate on analyzing and
characterizing the optimal admission control policies, and also on exploiting
their properties to design computational procedures for efficiently finding the
parameters of such policies.

To this end, we model the optimal revenue problem as a Markov Decision
Process (MDP) where the arrivals of each class are independent Poisson pro-
cesses with rate λ1 for PUs and λ2 for SUs. Besides, the service durations
are independent and exponentially distributed with mean µ1

−1 and µ2
−1 re-

spectively. We also consider that each class of user demands bi resources, with
bi integer (i.e. a PU requests b1 channel bands and a SU requests b2). This
problem formulation is much more general than a cognitive radio network
analysis, since it can also model many other economic scenarios of dynamic
control of queueing systems which consider two different classes of users (or
services), one with strict priority, and contemplate preemptive situations with
reimbursement, admission control decisions and multi-resource allocation. To
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the best of our knowledge, this general admission control problem has not been
deeply explored yet in the literature.

In a nutshell the main contribution of this paper is the analysis and char-
acterization of this general asymmetric queueing system and its application to
the particular context of cognitive radio networks where PUs and SUs repre-
sent the two classes. We use dynamic programming and other techniques such
as sample-path to make a complete analysis of the properties of the optimal
admission control policies. Not only is the analysis the main contribution, but
also we propose many alternatives to improve the dynamic programming al-
gorithms performance based on the system characterization. The proposed al-
ternatives decrease the computational complexity as well as the large running
time introduced by methods like value iteration and policy iteration (com-
monly used to solve MDP problems). In particular, as one of the results of
this work, we have obtained a customized version of Modified Policy Iteration
Algorithm (MPI [26]) which combines faster calculation with a robust perfor-
mance. Unlike previous works that study similar models of DSA, the analysis
and characterization proposed in this paper are based on more realistic hy-
potheses.

There are some previous works which contribute in this direction, being the
most representative examples [33,34]. In particular, in [33] the authors assume
that call durations are exponentially distributed with identical means for both
classes. This hypothesis strongly simplifies the problem (it can be analyzed as
a 1-D Markov Chain) and does not represent the most common real scenarios.
The vast majority of the CR related articles consider different primary and
secondary services (e.g. Internet access provided using White Space frequency
bands [13]), then the natural situation is to model them with different arrival
and service rates as we do in this work. Although in [34] the authors consider
preemptive situations and different service rates, they study a symmetric prob-
lem where all users (of both classes) have to pay for the spectrum utilization
and the service abrupt termination can occur in both classes. Due to these
characteristics, their analysis is not totally applicable to our context. On the
other hand, an important hypothesis used in the cited articles is to consider
that all users (PUs and SUs) request the same amount of bandwidth. Even
more, they assume “one user with one channel” representing a particular sce-
nario of the problem. This hypothesis implies that the preemption only occurs
when the system is full of users. More general, in our scenario the preemption
occurs when there are not enough free resources to satisfy primary demand.
Finally, but not less important, our work differs from [33,34] in the payment
mechanism. In the preceding works, the reward per user accepted in the sys-
tem is collected after the SU leaves the system with successful completion of
service implying that a SU could earn money without paying anything. In our
case, the reward is collected at the moment when the user is accepted in the
system (independent if it successfully completes its service or it is deallocated).
Even though our formulation is more complex, we consider it more realistic.

The rest of the paper is structured as follows. In section 2 we describe our
economic model of dynamic spectrum sharing in CR networks. We introduce
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most of the notation used in the paper, in particular, we define the Markov De-
cision Process. The paper continues in section 3 where we explain our analysis
and characterization of the optimal admission policies. In section 4 we propose
changes to the Modified Policy Iteration algorithm in order to significantly de-
crease its running time. In section 5 we include some numerical examples that
validate our results. Finally, we conclude and discuss future work in section 6.

2 Model Description

Let us begin by describing our working scenario and introducing the notation,
definitions and hypotheses. We assume that the number of resources to be
distributed between PUs and SUs is limited then, let us note as C the total
number of identical channels. Let x(t) and y(t) be the number of PUs and
SUs in the system at time t respectively (in order to simplify the notation, we
indistinctly use x and x(t), as well as y and y(t)). Let λ1 and µ1 be the arrival
and leaving rates for PUs respectively (independent Poisson arrivals and ex-
ponentially distributed service times). In the same way, λ2 and µ2 represent
the arrival and leaving rates for SUs. We assume that each PU demands b1
resources, and analogously each SU requires b2 channel bands to its transmis-
sion. Even more general, we can consider different primary (and/or secondary)
demands. It is important to highlight that our analysis is easily scalable to that
general situation working with more than two classes of users.

We consider a paid spectrum sharing mechanism where SUs pay to the
primary SP for the spectrum utilization. In particular, in order to concentrate
the analysis in the explained hypotheses, we consider static prices. Let R > 0
be the reward collected for each band when a SU is allowed to exploit the
PU’s resource (i.e. b2R is the collected reward when a SU is accepted). We
also consider a preemptive system where PUs have strict priority over SUs.
This means that SUs can be removed from the system if there is insufficient
free capacity when a PU arrives. In this model, these affected SUs will be
reimbursed with b2K (K > 0), implying a punishment for the SP. We take
into account a discount rate α > 0, that is, the rewards and costs at time t are
scaled by a factor e−αt. We work with a discounted model because it is the
most analytically tractable and the most widely studied approach, however,
our results can be extended to average reward problems. It is important to
highlight that similar static pricing models have been used in previous works
like [33,18,17].

We thus have a Continuous Time MDP (CTMDP) with state space S =
{(x, y) : 0 ≤ b1x ≤ C, 0 ≤ b2y ≤ C, 0 ≤ b1x+ b2y ≤ C} where the objective is
to maximize the total expected discounted profit over an infinite time horizon
applying admission control decisions over SUs, i.e. we want to find the optimal
policy π∗ that defines the admission control action in each state s ∈ S maxi-
mizing the SP’s revenue (π∗ : S → As; As is the action space. As = {0, 1} or
As = {0}, depending on s ∈ S, where action 0 corresponds to refusing a SU’s
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arrival and 1 to admitting. It is easy to note that As = {0} is the action space
for all s = (x, y) : b1x+ b2y > C − b2).

Please note the scalability of our model. For instance if we considered differ-
ent primary demands (e.g. b1, b′1), the MDP would have a greater dimensional
state space (e.g. S = {(x, x′, y) : 0 ≤ b1x ≤ C, 0 ≤ b′1x

′ ≤ C, 0 ≤ b2y ≤ C, 0 ≤
b1x + b′1x

′ + b2y ≤ C}, where x and x′ would represent the number of PUs
that use b1 and b′1 bands respectively). The same idea if we considered different
secondary bandwidth requirements. We will not deal with that generalization
here, but our results can be easily extended for this general case.

According to the previous definitions, the transition rates q((x, y), (x′, y′))
of the CTMDP are then:

– q((x, y), (x+ 1, y)) = λ1, if b1x+ b2y ≤ C − b1
– q((x, y), (x− 1, y)) = µ1x
– q((x, y), (x, y + 1)) = a(x, y)λ2, if b1x+ b2y ≤ C − b2
– q((x, y), (x, y − 1)) = µ2y
– q((x, y), (x + 1, y − z)) = λ1, if C − b1 < b1x + b2y ≤ C and b2y ≥ b1

(preemption)

where a(x, y) represents the admission control decision in each state, a(x, y) ∈
As; and z represents the number of preempted SUs:

z =

[
b1x+ b2y − C + b1

b2
+ 1{(b1x+b2y−C+b1)%b2 6=0}

]
. (1)

In Eq. (1) [x] represents the integer part of x, and a%b represents the remainder
of a when divided by b. Please note that if the system is in state s = (x, y)
and a SU arrives, only if a(x, y) = 1 will it enter to the system.

Recapitulating, the objective is to find π∗, that is to say, the rule that maps
each system state s to its optimal action a, in each decision epoch, maximizing
SP’s benefits. Using “uniformization” technique (see [26] and [6] for a survey)
we can develop a model with constant transition rates and thus the algorithms
for discrete time MDP can be used directly. Let Γ + α be the uniformization
constant; Γ is chosen such that Γ > γ(s),∀s ∈ S, where γ(s) represents the
rate out of a state s ∈ S. In this work Γ = λ1+λ2+C(µ1

b1
+µ2

b2
), therefore we can

define λ′i = λi/(Γ + α) as the probability that the next uniformed transition
is an arrival, µ′i = µi/(Γ + α) a service completion and α′ = α/(Γ + α) the
process termination. In Fig. 1 it is represented a generic state s = (x, y) when
the uniformization has already been done, in particular it is a state where the
system has enough free capacity for primary demand (b1x+ b2y ≤ C − b1).

The discrete time MDP (DTMDP) equivalent has the discount factor β =
Γ

Γ+α (0 < β < 1). As we said above, the objective consists in finding π∗, then,
the problem can be written as:

V ∗(s) = max
π∈Π

E

[ ∞∑
n=0

βng(sn, an)|s0 = s

]
,∀s ∈ S; (2)

where:
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Fig. 1: Discrete time model for a generic state (x, y) obtained after the uni-
formization process. Observe that this transformation implies “fictitious” tran-
sitions from a state to itself. The absorbing state (see Sec. 5.3 in [26]) is not
represented.

– V ∗(s) is the maximal expected β-discounted reward for the system starting
in state s,

– Π represents all the possible policies,
– an and sn are a(tn) and s(tn) respectively, and
– g(sn, an) = b2R, g(sn, an) = −zb2K or g(sn, an) = 0 depending on (sn, an).

In the next section, we discuss how to solve our optimization problem. In
particular, we characterize some properties of the optimal admission control
policy to be applied over SUs. Using this characterization we propose some
alternatives to improve the performance of the commonly used dynamic pro-
gramming algorithms.

3 Analysis and Characterization of Optimal Admission Control
Policies

In this section we focus on the characterization of the optimal admission con-
trol policies in the described context. To this end, we formulate the problem
using Dynamic Programming and after that, we prove some properties of the
control policies.

3.1 Dynamic Programming Formulation

Dynamic Programming (DP) [8] is a mathematical technique that rests on the
principle of optimality. It can be used in a variety of contexts and it is usually
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based on a recursive formula and initial states. Before expressing the problem
using this technique, we make some definitions.

Let Vn(x, y) be the maximal expected discounted profit for the system
starting in the state (x, y) when n observation points remain in the horizon.
Vn(x, y) is known as the value function of state (x, y) in n-steps. It can be
proved that V ∗(x, y) = limn→+∞ Vn(x, y), being V ∗(x, y) the maximal ex-
pected β-discounted reward for the system starting in state (x, y) over an
infinite horizon (see Eq. (2)). We refer to [8] for the suitable conditions for
that convergence.

Having defined Vn(x, y) we are now able to formulate the problem using
DP. After the uniformization process is done, thus working with the DTMDP,
the corresponding DP equations are:

For n = 0:
V0(x, y) = 0

For n ≥ 1:

– b1x+ b2y ≤ C − b1
Vn(x, y) = λ′1Vn−1(x+ 1, y) + λ′2 max{Vn−1(x, y), Vn−1(x, y + 1) + b2R}+

µ′1xVn−1(x−1, y)+µ′2yVn−1(x, y−1)+(C(
µ′1
b1

+
µ′2
b2

)−µ′1x−µ′2y)Vn−1(x, y)
– C − b1 < b1x+ b2y ≤ C − b2, b2y ≥ b1
Vn(x, y) = λ′1(Vn−1(x+ 1, y− z)− zb2K) +λ′2 max{Vn−1(x, y), Vn−1(x, y+

1) + b2R}+ µ′1xVn−1(x− 1, y) + µ′2yVn−1(x, y− 1) + (C(
µ′1
b1

+
µ′2
b2

)− µ′1x−
µ′2y)Vn−1(x, y)

– C − b2 < b1x+ b2y ≤ C, b2y ≥ b1
Vn(x, y) = λ′1(Vn−1(x + 1, y − z) − zb2K) + λ′2Vn−1(x, y) + µ′1xVn−1(x −
1, y) + µ′2yVn−1(x, y − 1) + (C(

µ′1
b1

+
µ′2
b2

)− µ′1x− µ′2y)Vn−1(x, y)
– b1x+ b2y = C, b1x = C

Vn(x, y) = λ′1Vn−1(x, y)+λ′2Vn−1(x, y)+
µ′1
b1
CVn−1(x−1, y)+

µ′2
b2
CVn−1(x, y)

Please note that we have considered b1 ≥ b2 in order to simplify the nota-
tion. As we can see, there are four different equations for n ≥ 1. The first one
represents the situation when there are enough idle channels in the system
to satisfy primary demand. The second and the third equations are for the
preemptive situations, and the last one is for the case when all the channels
are used by PUs. Another observation is that the “fictitious” transitions do
not affect the total reward of the system. Finally, it is important to remark
that the process terminates with probability α′ and after that no more profits
will be earned [26].

According to the above formulation, it is possible to define the transfor-
mation T :

Vn(s) = TVn−1(s) = max
a∈As

f(λ′1, λ
′
2, µ
′
1, µ
′
2, b1, b2, R,K, β, π, Vn−1); (3)

where f(.) = E
[∑

j∈S p(j|s, a)(Vn−1(j) + g(s, a))
]

and p(j|s, a) are the tran-

sition probabilities of the DTMDP. It is important to note that the function
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f , that plays a key role in the DP algorithms studied in the next sections, can
be deduced from the DP formulation. Due to the fact that As is finite for each
s ∈ S, the rewards and cost are bounded, and the transition probabilities and
costs are stationary, there exists an optimal stationary deterministic policy π∗

and therefore

V ∗(s) = limn→∞T
nV0(s),∀s ∈ S; (4)

where Tn represents the composition of the mapping T with itself n times.

The best known practical algorithms for solving infinite-horizon MDPs
based on dynamic programing are: Value Iteration (VI) and Policy Iteration
(PI and its several modifications, i.e. Modified Policy Iteration (MPI)) [26]. In
[25], there is a complete analysis of these techniques. The rate of convergence
of both is strongly related with β (discount factor) and also with the total
number of channels considered (C). It is important to highlight that if β < 1,
all the iterative DP algorithms are guaranteed to converge [26].

Following we prove several results to characterize the optimal admission
control policy for SUs that maximize the SP profit. This represents one of
the main contributions of this paper. This analysis is used, as an example of
application, in order to improve the performance of some DP algorithms.

3.2 Optimal control policy analysis and characterization

In this section the structure of the optimal policy is determined. We address
the cases K ≥ R and K < R separately. For K ≥ R, we first prove mono-
tonicity properties, then we prove that the admission control boundary is a
“switching curve” policy, and finally we demonstrate the concavity of the value
function under certain conditions. These properties are analogous to the ones
presented in [33,24,30,34] but based on our specific context. For the other
case, when the SP’s punishment is less than the SU’s payments (K < R), we
prove that the optimal policy is the one that always accepts SUs. This is a
strong conclusion because this implies that when K < R an admission control
mechanism has no sense (independently of the system parameters λi, µi, bi, β
and C). In the demonstrations we use induction and sample-path arguments
[29] [14]. These techniques are used in most of the cited references in Sec. 1 in
order to characterize the value function and the optimal policy in a variety of
scenarios.

Proposition 1 Vn(x, y + 1) ≤ Vn(x, y), ∀(x, y) : b1x+ b2(y + 1) ≤ C, ∀n

See appendix A for the proof of the general case (b1 ≥ 1 and b2 ≥ 1)
using induction arguments on n. For better understanding of this result, we
explain here the proof using sample-path methods [19] of the particular case:
b1 = b2 = 1. Please note that in this case the preemption only occurs when
the system is full of users.
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Proof Suppose that we start two processes on the same probabilistic space.
Process 1 starting in the state (x, y) and process 2 in (x, y+1). We couple this
two systems, in other words, all service and arrival times in one and the other
are the same. Suppose the optimal policy of system 2 (π∗2) is followed in both

systems. Let V
π∗2
n (x, y) and V

π∗2
n (x, y + 1) be the value functions of system 1

and 2 using policy π∗2 respectively, so V
π∗2
n (x, y + 1) = Vn(x, y + 1).

Now since both processes use the same policy, as long as system 1 has

one less user than system 2, then V
π∗2
n (x, y) = Vn(x, y + 1) (they see the

same arrivals and departures, and, therefore the same rewards and costs).
This situation could change only in the following critical case:

– Consider the first time the process 2 enters a state with the number of users
equal to C and system 1 has exactly C − 1 users (this situation will never
occur if the extra SU in system 2 leaves the system before the first time
that system reaches C users). In this case, if a PU arrives, both systems
must accept the new user. System 2 has to remove one of the SUs allocated,
thus system 1 will have K more profit than system 2. This implies that

V
π∗2
n (x, y) > Vn(x, y + 1). After this point, the systems will be in the same

state and therefore that difference will continue unchanged.

Considering that the reward obtained in this way for system 1 will not be

greater than its optimal reward (V
π∗2
n (x, y) ≤ Vn(x, y)), and examining that

the initial state was arbitrary considered, the result follows. ut

As we have explained, we study the behavior of the system for all values
of K and R. Then, Propositions 2, 3 y 4 are for the case where K ≥ R, that
is, when the reimbursement obtained by an affected SU is greater than its
payment. This scenario plays a key role in motivating the SU’s participation in
the spectrum sharing (in particular, it is very important when the SU’s service
interruption causes a big damage affecting the QoS of their communications).
On the other hand, Proposition 5 is for the complementary case (R > K).
In this particular situation, if the objective is to maximize the SP’s profit, we
prove that the optimal policy is the one which defines a(x, y) = 1,∀(x, y)/b1x+
b2y ≤ C − b2.

Proposition 2 if K ≥ R, Vn(x, y + 1) − Vn(x, y) ≥ −b2K, ∀(x, y) : b1x +
b2(y + 1) ≤ C, ∀n

The proof of the general case is located in appendix B. As in the previ-
ous proposition, we present here the proof for the same particular case using
sample-path arguments.

Proof Considering system 1 starting in (x, y) and system 2 in (x, y + 1). In
this case, we assume that system 1 follows its optimal admission policy (π∗1)
and system 2 imitates all decisions of system 1 whenever it is feasible. We can
identify two critical cases which may alter the difference between the profit of
the systems.

When x+ y + 1 = C, in other words, when system 2 reaches C users:
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– If a SU arrives, system 2 will reject it. System 1 can accept or reject, it
will depend on its optimal policy π∗1 . If the SU is accepted in system 1,
the inequality holds only if K ≥ R. After that, the difference of the profit
of both systems will not change because the systems will be in the same

state. This implies that if K ≥ R, then V
π∗1
n (x, y + 1)− Vn(x, y) ≥ −K

– If a PU arrives, both systems have to accept it. System 2 will remove one
of the secondary users paying K, so the equality holds. After that, the two
will be coupled (they will be in the same state).

Due to the fact that V
π∗1
n (x, y + 1) ≤ Vn(x, y + 1), the result is proved. ut

Proposition 3 if K ≥ R, Vn(x + 1, y + 1) − Vn(x + 1, y) ≤ Vn(x, y + 1) −
Vn(x, y), ∀(x, y) : b1(x+ 1) + b2(y + 1) ≤ C, ∀n

The detailed proof can be found in appendix C and it is based on induction
arguments on n. Intuitively, we can interpret this last result as: we expect
that it should be more difficult to accept SUs when there are more PUs in
the system. This gives us the idea that the admission control boundary that
maximize the SP profit is from a special form, it is a “switching curve”.

Definition 1 Switching curve: For every y, we define a level l(y) such that
when the system is in state (x, y) decision 1 is taken if and only if x ≤ l(y)
and 0 otherwise. The mapping y with l(y) is called a “switching curve”.

In a particular case, if µ1 = µ2 we have Vn(x + 1, y + 1) − Vn(x + 1, y) =
Vn(x, y+ 2)−Vn(x, y+ 1), ∀(x, y) : b1(x+ 1) + b2(y+ 1) ≤ C, ∀n. This means
that the admission control boundary only depends on the number of busy
channels at the system.

Following, we prove the concavity property of the value function. This
would lead to monotony of the thresholds. In addition, the concavity will be
a key in the proposals of the next section.

Proposition 4 if K ≥ R, Vn(x, y)−Vn(x, y+1) ≤ Vn(x, y+1)−Vn(x, y+2),
∀(x, y) : b1x+ b2(y + 2) ≤ C, ∀n

Its proof can be found in appendix D. In the same way as in the previous
case, the proof is based on induction arguments.

It is important to note that sample path analysis might do the last two
demonstrations in the same way as in the first propositions, but would be more
tedious.

Proposition 5 if R ≥ K and let π be an admission control policy which
satisfies that a(x, y) = 1 ∀(x, y)/b1x+ b2y < C and a(x, y) = 0 in other cases,
then π is the optimal one.

Proof Working in the particular case b1 = b2 = 1, using sample-path argu-
ments we prove that V πn (x, y) ≥ V π′n (x, y)∀π′ 6= π (π′ represents a policy that
has at least one state (x, y)/x + y < C where a(x, y) = 0). Considering two
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systems starting in the same state (x, y), system 1 following policy π and sys-
tem 2 policy π′. It is easy to note that the number of PUs will always be the
same in both systems, they could only differ in the number of SUs. If system
2 is in state (x′, y′) then system 1 will be in state (x′, y′ + w), w ≥ 0.

While a preemptive situation does not occur, V πn (x, y) − V π′n (x, y) ≥ wR.
On the other hand, considering the times when the process 1 enters a state
with the number of users equal to C (x′ + y′ + w = C). In this situation
the worst-case is when at least w successive PU arrivals occurs (that implies
wK of punishment for the SP). Then, V πn (x, y) − V π

′

n (x, y) ≥ w(R − K).
Considering that the the initial state was arbitrary considered and R ≥ K,
the desired result is proved. It is possible to prove the general case (b1 6= b2)
using induction arguments in the same way as in previous propositions. ut

The results were proven for all n ≥ 0, in particular they are true for the
limit n→∞. Since the control space and the state space are finite, the results
can also be extended to the average profit case [34,26].

4 Variants of Modified Policy Iteration Algorithm

The characterization presented in the previous section represents one of the
main contributions of the paper. Now, we propose a possible application. In
particular, we use those properties in order to improve the performance of a
specific DP algorithm: the Modified Policy Iteration. The goal in this work
is to present a new version of that algorithm which running time drastically
decreases respect to the original one when it is applied to our problem. We
consider the case when K ≥ R because in the other case the optimal control
is already known.

First of all, we introduce the DP algorithm that we have used and op-
timized. In the rest of the section, we present some alternatives in order to
modify the algorithm using the knowledge of the characterization.

4.1 Modified Policy Iteration algorithm

As aforementioned, Policy Iteration (PI) and Value Iteration (VI) are the most
usual DP mechanisms for solving MDPs. Comparing PI with VI, the first one
is desirable to be used in practice because of its finite-time convergence to the
optimal policy. That is the main reason why in this work we have chosen PI.
Even more, we have worked with Modified Policy Iteration (MPI) algorithm
[26] that is an approximate version of PI.

Policy iteration (PI) mainly consists of two iteration steps: policy evalua-
tion and policy improvement (see Alg. 1). The most tricky part is the Policy
Evaluation (Step 4 showed in the pseudo-code of Alg. 1); it consists in solving
a system of linear equations. The most common method to work it out is the
Gaussian elimination, but when you have a model with q states, this requires
on the order of q3 multiplications and divisions. So, for a large q (in our case
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Algorithm 1 Policy Iteration (PI)

Require: C, λ′1, λ′2, µ′1, µ′2, b1, b2, β, R, K
1: choose an arbitrary policy π′

2: repeat
3: π := π′;
4: compute the value function of the policy π:

Vπ(s) = f(λ′1, λ
′
2, µ
′
1, µ
′
2, b1, b2, R,K, β, π, Vπ(s)), ∀s ∈ S;

5: improve the policy based on V (s) = Vπ(s):
π′ = arg maxπ f(λ′1, λ

′
2, µ
′
1, µ
′
2, b1, b2, R,K, β, π, V (s)), ∀s ∈ S;

6: until π = π′

7: return π

q is related with C, b1 and b2), obtaining an exact value function for a specific
policy might be computationally prohibitive.

There are many proposals of this algorithm implementation. In particular,
in [26,27] the authors proposed the MPI algorithm to improve the efficiency of
PI when there is a large state space involved. In MPI the idea is to implement
the “policy evaluation step” similar to the VI algorithm with the only differ-
ence that the value functions are computing for a fixed policy instead of com-
puting the maximum of the value function for all possible actions in each state.
It is demonstrated that VI finds a stationary policy that is ε-optimal within
a finite number of iterations (ε is related with the stop criterion). Therefore,
due to the fact that this implementation of MPI combines features of policy
iteration and value iteration, the policy obtained is also ε-optimal.

Definition 2 ε-optimal policy: Let V ∗(i) be the maximum expected total
discounted reward over an infinite horizon starting in state i. It is well known
that V ∗ satisfies the Bellman equation. Then, a policy π is ε-optimal for ε > 0
if V π ≥ V ∗ − ε.

Numerical results reported in [25,27] suggest that MPI is more efficient
than either value iteration or policy iteration in practice. In this paper we have
worked with that MPI algorithm definition. Its convergence is demonstrated
in several works like [26,27].

Following we present some alternatives in order to modify the MPI algo-
rithm using the knowledge of the previous sections. One proposal is based on
that it is not necessary to consider all actions in each state while improving
the policy. Another consists in picking a subset of states in order to apply
the “policy evaluation step”. In addition, at the end of this section, we also
present a way to modify the MPI to obtain a linear approximation of the
optimal admission control boundary.

4.2 Modification of “policy improvement step”

We incorporate the information given in Prop. 3 and 4 in order to reformulate
the Step 5 (policy improvement) of the MPI algorithm. In this Step the idea is
to improve the policy at each state of the system, therefore the original MPI
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algorithm has to evaluate it in the whole state space. Our proposal consists in
evaluating the policy improvement only in few states. In other words, the idea
is to consider a subset of the policies (i.e. the feasible policies). In the original
MPI algorithm, the total number of policies to be considered is ≈ 2q (letting
q the total number of states), in our proposal we only consider the policies
whose boundaries represent a “switching curve” verifying Prop. 3 and 4.

Remembering that a(x, y) ∈ {0, 1} ∀(x, y)/b1x+b2y ≤ C−b2 and a(x, y) =
0 in other cases (where 1 means to accept and 0 to reject). According to Prop.
3, we can infer that if a(x∗, y∗) = 1 for a particular state (x∗, y∗) then ∀x <
x∗, a(x, y∗) = 1. In addition, please note that using Prop. 4, if a(x∗, y∗) = 0
then ∀y > y∗, a(x∗, y) = 0.

We present in Alg. 2 an alternative way to implement the Step 5 of the
MPI using the above explanation.

Algorithm 2 New version of Policy improvement step
1: for y := 0 : [C/b2]− 1 do
2: if (y = 0) then
3: x := [C/b1]− 1;
4: else
5: x := xb;
6: end if
7: out:=false;
8: while not out do
9: a(x, y) := arg maxA(x,y)

f(λ′1, λ
′
2, µ
′
1, µ
′
2, b1, b2, R,K, β, π, V (x, y));

10: if (a(x, y) = 1) then
11: out:=true
12: ∀x′ < x SET a(x′, y) := 1 (all the states (x′, y) : x′ < x have the same admission

control decision as state (x, y));
13: else
14: x := x− 1;
15: end if
16: end while
17: xb := x;
18: end for
19: π′ := {a(x, y),∀(x, y)};
20: return π′

4.3 Modification of “policy evaluation step”

In [26] there is a detailed demonstration of the non-necessity of determining the
exact value function (Vn(s)) to identify an improved policy. The fundamental
concept behind is to make a finite number of iterations in order to obtain an
approximation of Vn(s)∀s ∈ S. It represents the essential part of the MPI
algorithm which differentiates it from PI. The convergence in this scenario is
also proven in [26]. For a better understanding, a pseudo code of the “policy
evaluation step” (from original MPI) is presented in Alg. 3. We have used it
as a pattern to compare with our new versions.
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Algorithm 3 Original Policy evaluation Step (from MPI Algorithm)

Require: ε > 0, mn, Vn, π (n represents one iteration of Alg. 1);
1: k := 0;
2: ukn(s) := maxπ f(λ′1, λ

′
2, µ
′
1, µ
′
2, b1, b2, R,K, β, π, Vn(s)), ∀s ∈ S;

3: if (
∥∥ukn − Vn∥∥ < ε) then

4: MPI finishes and the result is π;
5: else
6: if (k = mn) then
7: go to step 13;
8: else
9: uk+1

n (s) := f(λ′1, λ
′
2, µ
′
1, µ
′
2, b1, b2, R,K, β, π, u

k
n(s)), ∀s ∈ S;

10: k := k + 1;
11: go to step 6;
12: end if
13: Vn+1 := umn

n ;
14: return Vn+1

15: end if

Please note that the existence of the parameter mn in Alg. 3 represents
the main characteristic of the original “policy evaluation step” from MPI. It is
demonstrated that the algorithm converges for any order sequence {mn} and
the rate of its convergence is related with {mn}. Optimal choice of the sequence
{mn} remains an open question. In this paper we have chosen mn = m, ∀n
and its value has remained unchanged in all the simulations we did for a
performance comparison (both in the original MPI and in the new proposals).

In this subsection (and also in Subsec. 4.5) we propose heuristic modi-
fications to this step of the algorithm. These alternatives are concentrated
in reducing the number of system states that participate directly in “policy
evaluation step”. With that in mind, we introduce into the algorithm the in-
formation that the value function is concave for a fixed value of PU (Prop. 4:
Vn(x, y)−Vn(x, y+1) ≤ Vn(x, y+1)−Vn(x, y+2), ∀(x, y)/b1x+b2(y+2) ≤ C,
∀n). This property allows us to apply linear interpolation (when the difference
Vn(x, y)−Vn(x, y+ 1) is small) reducing the computational complexity of the
algorithm. The idea is to sacrifice the precision of the value determination
without affecting the result of the algorithm. In other words, the new value
determination will be applied only on certain states (S′ ⊆ S, including in S′

the states where the difference Vn(x, y) − Vn(x, y + 1) is higher) and for the
others, it will be estimated using piecewise linear interpolation.

It is important to highlight that the computational complexity of linear
interpolation is one multiplication and two additions per sample of output.
On the other hand, uk+1

n = f(λ′1, λ
′
2, µ
′
1, µ
′
2, b1, b2, R,K, β, π, u

k
n(s)), in most

of the states, implies: ten multiplications and seven additions.

The question is how to chose the subset S′ and how many elements to in-
clude. Observing the DP formulation, it is easy to note that the value function
of each state only depends on the value function (in the previous iteration) of
its “neighbor states”. However, it is a recursive dependency because the value
function of the neighbors of an specific state also depends on their neighbors’
functions and so on. In this context, we propose that the subset S′ must in-
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Algorithm 4 New version of Policy Evaluation Step
Require: ε > 0, mn, Vn, π
1: k := 0;
2: ukn(s) := maxπ f(λ′1, λ

′
2, µ
′
1, µ
′
2, b1, b2, R,K, β, π, Vn(s)), ∀s ∈ S;

3: if (
∥∥ukn − Vn∥∥ < ε) then

4: MPI finishes and the result is π;
5: else
6: if (k = mn) then
7: go to step 14;
8: else
9: uk+1

n (s) := f(λ′1, λ
′
2, µ
′
1, µ
′
2, b1, b2, R,K, β, π, u

k
n(s)), ∀s ∈ S′;

10: With the results of the previous step, use linear interpolation to estimate
uk+1
n (s)∀s ∈ S \ S′;

11: k := k + 1;
12: go to step 6;
13: end if
14: Vn+1 := umn

n ;
15: return Vn+1

16: end if

clude the states that are located near the admission control (AC) boundary
and also their nearest neighbors. We do not know a priori where is going to
be located the AC boundary, but, we can infer it by using the results of the
next two subsections. In Alg. 4 a pseudo code of the explained alternative is
presented. Please note that the policy evaluation is executed only in s ∈ S′.

How do we choose the states to be considered in S′?. To this end, we define
two new parameters (K∗ and L) and we proceed in the following way:

– choose the parameters K∗ ∈ N and L ∈ N.
– randomly choose a set of states I = {(x, y)} such that b1x+ b2y < K∗ and

the number of elements of I is L.
– finally S′ = {I

⋃
{(x, y) : K∗ ≤ b1x+ b2y ≤ C}}

The result of this proposal is a sub-optimal and its performance will be as-

sociated with the parametersK∗ (0 ≤ K∗ ≤ C) and L (0 ≤ L ≤ K∗/b2(K
∗/b1+1)

2 ).
In particular, because of the concavity of Vnx

(y)1, its piecewise linear estima-
tion (the segments) will be always under the corresponding MPI’s value func-
tion. As a consequence, the admission boundary obtained by this modification
will be more conservative than the original MPI’s solution (this characteristic
might be important when the goal is to guarantee certain level of QoS to SUs:
a smaller interruption probability). It is important to remark that choosing
appropriate values of K∗ and L, the interpolation error could be as small as
you want, therefore the results could be optimal (or nearly optimal).

Which are good options of these parameters? This is an open question
but following we list some important considerations. The smaller is K∗, more
accurate will be the value determination, but the running time will have a
smaller impact in its reduction. On the other hand, for larger values of K∗, al-
though the algorithm running time will decrease, the admission control bound-

1 Vnx (y) is Vn(x, y) for fixed x.
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ary might be not optimal. The opposite effect occurs with L: the larger value
of L is considered, the more precision will be reached, but the less impact
we will have in the running time. As a conclusion, the values of these new
parameters are related with the system parameters (λ′1, λ′2, µ′1, µ′2, b1, b2, R,
K and β). In the next section we propose a heuristic method for K∗; once K∗

is chosen, a boundary to L is implicitly determined.

Using the proposals of Subsec. 4.2 and 4.3 we have developed a new version
of MPI called newMPI. In Sec. 5 we present some simulation experiments and
a performance comparison between MPI and newMPI.

4.4 Heuristic method for choosing K∗

Based on [33], in this subsection we propose a heuristic method for choosing
the parameter K∗ defined before. We want to know which area (i.e. which set
of states) is most likely to contain the optimal AC border. The authors in [33]
studied a similar problem (preemption with reimbursement in a cognitive sce-
nario) with different hypotheses: call durations are exponentially distributed
with identical means (µ1 = µ2 = µ), the reward per SU accepted is collected
after the SU leaves the system with successful completion of its service, and
each user demand is one channel, independently of the class (b1 = b2 = 1).

According to the first hypothesis, that strongly simplifies the problem with-
out representing a realistic scenario, they demonstrated that the optimal ad-
mission control decision only depends on the total number of occupied chan-
nels, in other words the admission control boundary is a line with equation
x+ y − T ∗ = 0. More general, we demonstrated in Prop. 3 that this result is
still valid when b1 6= b2, then, the admission control boundary when µ1 = µ2

is b1x+ b2y − T ∗ = 0.

As a consequence, it is possible to use a birth-death 1D MDP with state
space S1d = {i ∈ N|0 ≤ i ≤ C} to determine the optimal threshold (T ∗).
Adapting their model in order to satisfy our assumptions (in particular the
difference with their second and third hypothesis) the problem is reduced to
solve the next optimization problem:

max
T

b2Rλ2

1−
∑

T≤i≤C
πT (i)

−Kλ1 ∑
C−b1+1≤j≤C

(j − C + b1)πT (j) +Kb1λ1E

(
λ1

µ1
, j

)
(5)

where πT (i), 0 ≤ i ≤ C is the steady state probability with threshold T
(T ≤ C − b2) and E(λ1

µ1
, C) corresponds to Erlang-B formula.

Due to the fact that the above formulation can be used only when the
mean service time of both classes are identical, using the idea of [30] we can
transform our general system to be in that particular context. Our proposal
consists of obtaining a µ-scaled system with parameters λs1, λs2, µ, b1, b2, K,
and R, and after solving Eq. (5) an idea of the location of the admission control
boundary is possible to obtain.
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(a) parameters: λ1 = 20, λ2 = 5, µ1 = 1, µ2 = 4, µ = 1,
b1 = b2 = 1, C = 20, R = 1, K = 10.
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(b) parameters: λ1 = 20, λ2 = 5, µ1 = 3, µ2 = 4,
µ = 3, b1 = b2 = 1, C = 20, R = 1, K = 10.

Fig. 2: Performance comparison in order to find the area that is most likely to
contain the optimal AC boundary.

The µ-scaled system has the following parameters: µs1 = µs2 = µ, λs1 = λ1µ
µ1

and λs2 = λ2µ
µ2

. Observe that
λs
1

µ = λ1

µ1
and

λs
2

µ = λ2

µ2
.

In Fig. 2a and Fig. 2b there are two simulated examples that show the
optimal admission control boundary obtained using MPI and the line obtained
applying the results of our adaptation of the model of [33] (Eq. (5)) to the
scaled system. In both examples, the threshold T ∗ gives an estimation of the
location of the optimal boundary, therefore this result can be used in order to
choose an appropriate value of K∗ in our proposal of newMPI. For instance,
in the example of Fig. 2a being conservative a possible value of K∗ is 10, while
in the other one K∗ = 15 can be a reasonable option.

4.5 Linear approximation of MPI

In order to continue improving the computational efficiency, we use the results
of Prop. 3 and 4 to obtain another alternative version of Modified Policy
Iteration algorithm (linMPI ). It returns a linear approximation of the optimal
admission boundary. Because of its characteristics, the optimal AC boundary
achieved by MPI could be approximated by a line with equation y = ax + b
(see for example Figs. 2a and 2b). In this new proposal, the idea is to reach
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a policy that its reward is nearly optimal implying less computational effort
than newMPI and MPI.

Prop. 3 is used in order to optimize Step 5 of MPI in a similar way as we
described before and Prop. 4 to optimize the running time of Step 4 of MPI. In
this new proposal, the policy evaluation defined in the original MPI is executed
only in a set of the system states: S∗ = {(x, y) : x ≤ k∗ or y ≤ k∗}

⋃
{I} where

I represents a group of randomly chosen states of S\{(x, y) : x ≤ k∗ or y ≤ k∗}.
Using the concavity property, the value functions of the not considered states
are obtained by linear interpolation based on the value of s ∈ S∗. Note that
the parameters to be defined are k∗ and L (as in the previous explanation, L
represents the number of states chosen randomly). Advantage: we do not need
to know the possible location of the optimal policy.

Due to the fact that we are looking for a line as an approximation of the AC
boundary, in this case the Step 5 is only evaluated over the states that satisfy
x = 0 or y = 0 (we only need two points to determine the line y = ax + b).
That is the reason of the parameter k∗. After having done many simulations,

we conclude that using the pair (k∗ = C
10 , L = C/b1C/b2

4 ) the results obtained
are nearly optimal (see Sec. 5).

In this alternative, the policy π is translated as a pair of parameters π =
(a, b). Therefore, the stop criterion of the linMPI is when a = a′ and b =
b′, letting π = (a, b) and π′ = (a′, b′) be two policies en two different and
consecutive iterations of the algorithm (see Alg. 5 where it is explained the
policy improvement proposed).

Algorithm 5 New version of Policy improvement step - linMPI
1: y := 0; x := [C/b1]− 1 (or x := 0; y := [C/b2]− 1);
2: out:=false;
3: while not out do
4: compute a(x, y) improving the policy at state (x, y); (evaluate Step 5 of PI)
5: if (a(x, y) = 1) then
6: out:=true;
7: −b/a := x (or b := y)
8: else
9: x := x− 1 (or y := y − 1);

10: end if
11: end while
12: π′ := (a, b);
13: return π′

On the other hand, “policy evaluation step” is implemented in a similar
way to newMPI but considering the defined set S∗. In Sec. 5 we show some
examples of the performance of linMPI.
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5 Simulated Experiments and Results

In order to test the proposed algorithms we consider different simulation ex-
periments. In the first case we evaluate the newMPI algorithm and finally, the
last experiments corresponds to linMPI proposal.

5.1 Performance tests of newMPI

As we explained before, we developed a new version of MPI called newMPI
using the proposals of Subsec. 4.2 and 4.3. We expect to get the optimal admis-
sion control boundary reducing the total CPU-time consumed in comparison
to the MPI pattern.

After having tested the algorithm with both proposed modification versus
the original MPI, we have identified that in most cases the number of states
evaluated in “Policy Improvement Step” in the newMPI represents less than
5% of the whole space.

For instance, in Fig. 3 it is shown an example where newMPI is applied.
In this example, we have tested the new version of the algorithm for different

values of parameters K∗ and L, and only when K∗ = 95 (and L = K∗(K∗+1)
4 )

there is a minimal difference between the optimal AC boundary and the AC
obtained in the newMPI (for K∗ < 95 the resulted boundaries are the same as
the optimal one). In particular in Fig. 3b there is a performance comparison
showing TnewMPI

TMPI
for different values of K∗ and L. TMPI and TnewMPI repre-

sent the running times of the original MPI algorithm and of our new version
respectively. It is clear that the running time has a big impact as bigger is K∗.
For example for K∗ = 85 (and L = 1827) the running time of the new version
is less than 0.5TMPI and the AC boundary obtained is the optimal.

It is important to remark that a practical determination of K∗ value can
be done using the results of Subsec. 4.4 or Subsec. 4.5. The proposed meth-
ods in these subsections give us “instantaneously” the knowledge of where is
going to be located the optimal admission control boundary. Knowing that, a
reasonable value of K∗ will be if the boundary is totally located in the area
b1x + b2y − K∗ ≥ 0. The parameter L is related with K∗ because it repre-
sents the number of states to be evaluated that are not considered when K∗ is
chosen. In the experiments we have chosen L = K∗(K∗+1)

4 , this value could be
chosen in a different way but note that it plays an important role in minimizing
the interpolation error (or minimizing the algorithm running time).

5.2 Performance tests of linMPI

In Fig. 4 we present some numerical examples of two different systems. TlinMPI

and TMPI represent the algorithm’s running time of linMPI and MPI respec-
tively. It is showed that the linear AC boundaries are good approximations to
the optimal ones in both cases. Using k∗ = C/10 and L = C2/4, we can see
that the running time of the new version decreases by 75%.
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(a) Parameters: λ1 = 200, λ2 = 300, µ1 = 3, µ2 = 1, b1 = b2 = 1,
C = 100, R = 1, K = 3, β = 0.9474. The circles show the differences
between the AC boundary obtained with newMPI using K∗ = 95 and
L = 2280 and the optimal boundary. In terms of SP’s profit that difference
is insignificant. As we explained before, the AC boundary obtained by
newMPI is the optimal or is more conservative.
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(b) Relation between running time of newMPI and MPI algorithm for
different values of K∗ and L. For each value of (K∗, L) we have made a
hundred of experiments. The mean values of each group of parameters is
the one that is showed in the graphic

Fig. 3: Comparison between MPI and newMPI (improving Steps 4 and 5). L

is chosen proportional to K∗: L = K∗(K∗+1)
4 .

In order to test how closely to the optimal are the approximations of the
admission control boundary, we have made several experiments (n) with both
boundaries (the optimal and its approximation using linMPI ) and compute the
profit of the SP. Each experiment consists in one realization of the continuous
time markov chain using the appropriate AC boundary. In each transition the
discount profit of the SP is computed. In Table 1 the results are summarized
for both cases. Based on these results we can conclude that the reward of the
approximated boundary has a good accuracy.
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(a) Case 1. parameters: λ1 = 200, λ2 = 300, µ1 = 3, µ2 = 1, b1 = b2 = 1,

C = 100, R = 1, K = 3, β = 0.9474. TlinMPI
TMPI

= 0.25.
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(b) Case 2. parameters: λ1 = 200, λ2 = 500, µ1 = 3, µ2 = 0.5, b1 = b2 =

1, C = 100, R = 1, K = 3, β = 0.9953. TlinMPI
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Fig. 4: Optimal Boundaries MPI vs linMPI. Parameters: k∗ = C/10, L = C2/4

Table 1: Examples considering cases of Fig. 4. Confidence Interval: n = 30,
confidence level= 0.95.

Case Method Reward Confidence Interval

1 MPI [ 5.75, 6.90]
linMPI [ 5.77, 6.92]

2 MPI [ 39.90 43.06]
linMPI [ 39.95 43.14]

6 Conclusions and Future Work

We have studied a general asymmetric queueing system and we have applied
the results to the cognitive radio network context. In particular we have char-
acterized a paid-sharing approach as a spectrum allocation mechanism where
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SUs pay for the spectrum utilization and preemptive situations are also con-
templated. In this model when a PU arrives to the system and the free capacity
is insufficient, at least one SU will be deallocated and reimbursed for its service
interruption implying some cost for the primary SP.

We have proposed different ways to obtain the admission control policy for
SUs that maximize the long-run discount profit of the SP. Different techniques
have been used implying a wholeness in the analysis of the problem. We have
considered a general model with different demands and different service rates
between PUs and SUs. We have modeled the optimal revenue problem as a
MDP. As one of the main contribution, we have characterized many prop-
erties of the structure of the optimal admission control policy. These results
can be used for different purposes. As an example of application, we have
proposed different alternatives to change the Modified Policy Iteration algo-
rithm incorporating the knowledge of the characterization. The new versions
show drastically shorter running-times than the original MPI algorithm. It is
important to remark that all the contributions have been evaluated through
extensive sets of simulations.

This paper presents a specific application of the problem centered in wire-
less cognitive network area. It would be interesting to look for other possible
problems that could be modeled in a similar way, in the same or other ap-
plication areas, to analyze how the same analysis could be applied and what
would be the results we could obtain.

Finally, the next stage in our line of research would be to incorporate to
our problem: dynamic pricing features like for example the ones defined in [32]
and QoS requirements to SU’s communications.

A Proof of Proposition 1

Inequality holds for n = 0 by definition. Assuming the inequality holds for n − 1, we show
that it holds for n. We divide the problem in two cases: preempted and non-preempted
situations.

Proof – case 1: b1x+ b2(y + 1) ≤ C − b1;

Vn(x, y + 1) = λ′1Vn−1(x+ 1, y + 1) + (6)

λ′2 max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R}+ (7)

µ′1xVn−1(x− 1, y + 1) + (8)

µ′2yVn−1(x, y) + (9)

µ′2Vn−1(x, y) + (10)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1x− µ′2(y + 1)

)
Vn−1(x, y + 1) (11)
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Vn(x, y) = λ′1Vn−1(x+ 1, y) + (12)

λ′2 max{Vn−1(x, y), Vn−1(x, y + 1) + b2R}+ (13)

µ′1xVn−1(x− 1, y) + (14)

µ′2yVn−1(x, y − 1) + (15)

µ′2Vn−1(x, y) + (16)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1x− µ′2(y + 1)

)
Vn−1(x, y) (17)

Please note that (6) ≤ (12), (8) ≤ (14), (9) ≤ (15), (11) ≤ (17) are proved directly by
induction assumption. On the other hand (10) = (16).

Following we show the justification of (7) ≤ (13):
1. If (max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} = Vn−1(x, y + 1) and

max{Vn−1(x, y), Vn−1(x, y + 1) + b2R} = Vn−1(x, y)) or
(max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} = Vn−1(x, y + 2) + b2R and
max{Vn−1(x, y), Vn−1(x, y+ 1) + b2R} = Vn−1(x, y+ 1) + b2R), the inequality is a
direct consequence of induction hypothesis.

2. If (max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} = Vn−1(x, y + 1) and
max{Vn−1(x, y), Vn−1(x, y+ 1) + b2R} = Vn−1(x, y+ 1) + b2R), it is simple to note
the validity of the demonstration because R > 0.

3. If (max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} = Vn−1(x, y + 2) + b2R and
max{Vn−1(x, y), Vn−1(x, y+1)+b2R} = Vn−1(x, y)), then we have that Vn−1(x, y) >
Vn−1(x, y + 1) + b2R ≥ Vn−1(x, y + 2) + b2R.

– case 2: C − b1 < b1x+ b2(y + 1) ≤ C;
According to Eq. (1), we define the number of preempted SUs (z and z′) as

z =
[
b1x+b2(y+1)−C+b1

b2
+ 1{(b1x+b2(y+1)−C+b1)%b2 6=0}

]
and

z′ = max
{[

b1x+b2y−C+b1
b2

+ 1{(b1x+b2y−C+b1)%b2 6=0}

]
, 0
}

; we have:

Vn(x, y + 1) = λ′1(Vn−1(x+ 1, y + 1− z)− zb2K) + (18)

λ′2 max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R}+ (19)

µ′1xVn−1(x− 1, y + 1) + (20)

µ′2yVn−1(x, y) + (21)

µ′2Vn−1(x, y) + (22)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1x− µ′2(y + 1)

)
Vn−1(x, y + 1) (23)

Vn(x, y) = λ′1(Vn−1(x+ 1, y − z′)− z′b2K) + (24)

λ′2 max{Vn−1(x, y), Vn−1(x, y + 1) + b2R}+ (25)

µ′1xVn−1(x− 1, y) + (26)

µ′2yVn−1(x, y − 1) + (27)

µ′2Vn−1(x, y) + (28)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1x− µ′2(y + 1)

)
Vn−1(x, y) (29)

On one hand, we have (22) = (28); and (20) ≤ (26), (21) ≤ (27), (23) ≤ (29) are proved
directly with the hypothesis of induction. On the other hand, the proof of (19) ≤ (25)
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is analogous to the previous case2. Finally, please note that z′ = z− 1 and K > 0, then
the inequality (18) ≤ (24) is proved.

B Proof of Proposition 2

Proof Inequality holds for n = 0 by definition. Assuming the inequality holds for n− 1, we
show that it holds for n. We divide the problem in two cases: preempted and non-preempted
situations.

– case 1: b1x+ b2(y + 1) ≤ C − b1;

Vn(x, y + 1)− Vn(x, y) = λ′1(Vn−1(x+ 1, y + 1)− Vn−1(x+ 1, y)) +

λ′2 max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} −
λ′2 max{Vn−1(x, y), Vn−1(x, y + 1) + b2R}+

µ′1x(Vn−1(x− 1, y + 1)− Vn−1(x− 1, y)) +

µ′2y(Vn−1(x, y)− Vn−1(x, y − 1)) +

µ′2Vn−1(x, y)− µ′2Vn−1(x, y) +(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1x− µ′2(y + 1)

)
(Vn−1(x, y + 1)− Vn−1(x, y))

≥ −b2K

Using induction hypothesis we have Vn(x, y + 1) − Vn(x, y) ≥ (1 − λ′2 − α′)(−b2K) −
µ′2(Vn−1(x, y + 1) − Vn−1(x, y)) + λ′2(max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} −
max{Vn−1(x, y), Vn−1(x, y + 1) + b2R}). We can observe that the second term is al-
ways positive or zero (being zero the worst case). Then, if K ≥ R we can prove that
λ′2(max{Vn−1(x, y+1), Vn−1(x, y+2)+b2R}−max{Vn−1(x, y), Vn−1(x, y+1)+b2R}) ≥
−λ′2b2K. This proves the result ∀α.

– case 2: C − b1 < b1x+ b2(y + 1) ≤ C;
In the same way as in the previous case, we define z and z′ as

z =
[
b1x+b2(y+1)−C+b1

b2
+ 1{(b1x+b2(y+1)−C+b1)%b2 6=0}

]
and

z′ = max
{[

b1x+b2y−C+b1
b2

+ 1{(b1x+b2y−C+b1)%b2 6=0}

]
, 0
}

; we have:

Vn(x, y + 1)− Vn(x, y) = λ′1(Vn−1(x+ 1, y + 1− z)− zb2K − Vn−1(x+ 1, y − z′) + z′b2K) +

λ′2 max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} −
λ′2 max{Vn−1(x, y), Vn−1(x, y + 1) + b2R}+

µ′1x(Vn−1(x− 1, y + 1)− Vn−1(x− 1, y)) +

µ′2y(Vn−1(x, y)− Vn−1(x, y − 1)) +

µ′2Vn−1(x, y)− µ′2Vn−1(x, y) +(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1x− µ′2(y + 1)

)
(Vn−1(x, y + 1)− Vn−1(x, y))

≥ −b2K

We can observe that z′ = z − 1 and using the same arguments as in case 1, the proof
is completed. When we have to evaluate the terms that implies the decision (the maxi-
mization), we have used that K ≥ R.

2 If the number of busy channels is greater than C − b2, the admission control decision is
known, then the number of combinations to evaluate is fewer than in case 1
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C Proof of Proposition 3

Proof Inequality holds for n = 0 by definition. Assuming the inequality holds for n− 1, we
show that it holds for n. We divide the problem in two cases: preempted and non-preempted
situations.

– case 1: b1(x+ 1) + b2(y + 1) ≤ C − b1;

Vn(x+ 1, y + 1)− Vn(x+ 1, y) = λ′1(Vn−1(x+ 2, y + 1)− Vn−1(x+ 2, y)) + (30)

λ′2(max{Vn−1(x+ 1, y + 1), Vn−1(x+ 1, y + 2) + b2R} −
max{Vn−1(x+ 1, y), Vn−1(x+ 1, y + 1) + b2R}) + (31)

µ′1x(Vn−1(x, y + 1)− Vn−1(x, y)) + (32)

µ′2y(Vn−1(x+ 1, y)− Vn−1(x+ 1, y − 1)) + (33)

µ′1(Vn−1(x, y + 1)− Vn−1(x, y)) + (34)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1(x+ 1)− µ′2(y + 1)

)
(Vn−1(x+ 1, y + 1)− Vn−1(x+ 1, y)) (35)

Vn(x, y + 1)− Vn(x, y) = λ′1(Vn−1(x+ 1, y + 1)− Vn−1(x+ 1, y)) + (36)

λ′2(max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} −
max{Vn−1(x, y), Vn−1(x, y + 1) + b2R}) + (37)

µ′1x(Vn−1(x− 1, y + 1)− Vn−1(x− 1, y)) + (38)

µ′2y(Vn−1(x, y)− Vn−1(x, y − 1)) + (39)

µ′1(Vn−1(x, y + 1)− Vn−1(x, y)) + (40)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1(x+ 1)− µ′2(y + 1)

)
(Vn−1(x, y + 1)− Vn−1(x, y)) (41)

(30) ≤ (36), (32) ≤ (38), (33) ≤ (39), (35) ≤ (41) are proved directly by induction
hypothesis. In addition, we have (34) = (40).

The last inequality requires a degree of algebraic manipulation:
λ′2(max{Vn−1(x, y+1), Vn−1(x, y+2)+b2R}−max{Vn−1(x, y), Vn−1(x, y+1)+b2R}) =
λ′2(max{Vn−1(x, y + 2) − Vn−1(x, y + 1) + b2R, 0} − max{Vn−1(x, y) − Vn−1(x, y +
1), b2R}) =
λ′2(max{Vn−1(x, y + 2) − Vn−1(x, y + 1) + b2R, 0} + min{−Vn−1(x, y) + Vn−1(x, y +
1),−b2R})
≥
λ′2(max{Vn−1(x + 1, y + 2) − Vn−1(x + 1, y + 1) + b2R, 0} + min{−Vn−1(x + 1, y) +
Vn−1(x+ 1, y + 1),−b2R}) =
λ′2(max{Vn−1(x+ 1, y+ 1), Vn−1(x+ 1, y+ 2) + b2R} −max{Vn−1(x+ 1, y), Vn−1(x+
1, y + 1) + b2R})

– case 2: C − b1 < b1(x+ 1) + b2(y + 1) ≤ C;
Defining z, z′, z+ and z∗ according to Eq. (1):

z =
[
b1(x+1)+b2(y+1)−C+b1

b2
+ 1{(b1(x+1)+b2(y+1)−C+b1)%b2 6=0}

]
,

z′ = max
{[

b1(x+1)+b2y−C+b1
b2

+ 1{(b1(x+1)+b2y−C+b1)%b2 6=0}

]
, 0
}

,

z+ = max
{[

b1x+b2(y+1)−C+b1
b2

+ 1{(b1x+b2(y+1)−C+b1)%b2 6=0}

]
, 0
}

and
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z∗ = max
{[

b1x+b2y−C+b1
b2

+ 1{(b1x+b2y−C+b1)%b2 6=0}

]
, 0
}

,

Vn(x+ 1, y + 1)− Vn(x+ 1, y) = λ′1(Vn−1(x+ 2, y + 1− z)− zb2K)−
λ′1(Vn−1(x+ 2, y − z′)− z′b2K) + (42)

λ′2(max{Vn−1(x+ 1, y + 1), Vn−1(x+ 1, y + 2) + b2R} −
max{Vn−1(x+ 1, y), Vn−1(x+ 1, y + 1) + b2R}) + (43)

µ′1x(Vn−1(x, y + 1)− Vn−1(x, y)) + (44)

µ′2y(Vn−1(x+ 1, y)− Vn−1(x+ 1, y − 1)) + (45)

µ′1(Vn−1(x, y + 1)− Vn−1(x, y)) + (46)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1(x+ 1)− µ′2(y + 1)

)
(47)

(Vn−1(x+ 1, y + 1)− Vn−1(x+ 1, y))

Vn(x, y + 1)− Vn(x, y) = λ′1(Vn−1(x+ 1, y + 1− z+)− z+b2K)−
λ1(Vn−1(x+ 1, y − z∗)− z∗b2K) + (48)

λ′2(max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} (49)

−max{Vn−1(x, y), Vn−1(x, y + 1) + b2R}) +

µ′1x(Vn−1(x− 1, y + 1)− Vn−1(x− 1, y)) + (50)

µ′2y(Vn−1(x, y)− Vn−1(x, y − 1)) + (51)

µ′1(Vn−1(x, y + 1)− Vn−1(x, y)) + (52)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1(x+ 1)− µ′2(y + 1)

)
(53)

(Vn−1(x, y + 1)− Vn−1(x, y))

(42) ≤ (48) is valid according to Prop. 2 and observing that z′ = z−1 and z∗ = z+−1.
The other inequalities can be demonstrated in the same way as in the previous case. In
particular, we have to be careful in the proof of (43) ≤ (49) in the scenarios where the
number of allocated channels is greater C − b2.

D Proof of Proposition 4

Proof Inequality holds for n = 0 by definition. Assuming the inequality holds for n− 1, we
show that it holds for n. We divide the problem in two cases: preempted and non-preempted
situations.

– case 1: b1x+ b2(y + 2) ≤ C − b1;

Vn(x, y)− Vn(x, y + 1) = λ′1(Vn−1(x+ 1, y)− Vn−1(x+ 1, y + 1)) + (54)

λ′2(max{Vn−1(x, y), Vn−1(x, y + 1) + b2R} (55)

−max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R}) +

µ′1x(Vn−1(x− 1, y)− Vn−1(x− 1, y + 1)) + (56)

µ′2y(Vn−1(x, y − 1)− Vn−1(x, y)) + (57)

µ′2Vn−1(x, y)− µ′2Vn−1(x, y + 1) + (58)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1x− µ′2(y + 2)

)
(59)

(Vn−1(x, y)− Vn−1(x, y + 1))
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Vn(x, y + 1)− Vn(x, y + 2) = λ′1(Vn−1(x+ 1, y + 1)− Vn−1(x+ 1, y + 2)) + (60)

λ′2(max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} (61)

−max{Vn−1(x, y + 2), Vn−1(x, y + 3) + b2R}) +

µ′1x(Vn−1(x− 1, y + 1)− Vn−1(x− 1, y + 2)) + (62)

µ′2y(Vn−1(x, y)− Vn−1(x, y + 1)) + (63)

µ′2Vn−1(x, y)− µ′2Vn−1(x, y + 1) + (64)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1x− µ′2(y + 2)

)
(65)

(Vn−1(x, y + 1)− Vn−1(x, y + 2))

The relations (54) ≤ (60), (56) ≤ (62), (57) ≤ (63) and (59) ≤ (65) are direct conse-
quences of the induction hypothesis. The (58) and (64) terms cancel out each other.

Next we show that (61) ≥ (55):
λ′2(max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} −max{Vn−1(x, y + 2), Vn−1(x, y + 3) +
b2R}) = λ′2(max{Vn−1(x, y + 1) − Vn−1(x, y + 2), b2R} − max{0, Vn−1(x, y + 3) −
Vn−1(x, y+2)+b2R}) = λ′2(max{Vn−1(x, y+1)−Vn−1(x, y+2), b2R}+min{0,−Vn−1(x, y+
3)+Vn−1(x, y+2)−b2R}) ≥ λ′2(max{Vn−1(x, y)−Vn−1(x, y+1), b2R}+min{0,−Vn−1(x, y+
2)+Vn−1(x, y+1)−b2R}) = λ′2(max{Vn−1(x, y)−Vn−1(x, y+1), b2R}−max{0, Vn−1(x, y+
2)−Vn−1(x, y+1)+b2R}) = λ′2(max{Vn−1(x, y), Vn−1(x, y+1)+b2R}−max{Vn−1(x, y+
1), Vn−1(x, y + 2) + b2R})

– case 2: C − b1 < b1x+ b2(y + 2) ≤ C;
Defining z, z′ and z∗ according to Eq. (1):

z =
[
b1x+b2(y+2)−C+b1

b2
+ 1{(b1x+b2(y+2)−C+b1)%b2 6=0}

]
,

z′ = max
{[

b1x+b2(y+1)−C+b1
b2

+ 1{(b1x+b2(y+1)y−C+b1)%b2 6=0}

]
, 0
}

and

z∗ = max
{[

b1x+b2y−C+b1
b2

+ 1{(b1x+b2y−C+b1)%b2 6=0}

]
, 0
}

,

Vn(x, y)− Vn(x, y + 1) = λ′1(Vn−1(x+ 1, y − z∗)− z∗b2K)− (66)

λ′1(Vn−1(x+ 1, y + 1− z′)− z′b2K)

λ′2(max{Vn−1(x, y), Vn−1(x, y + 1) + b2R} (67)

−max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R}) +

µ′1x(Vn−1(x− 1, y)− Vn−1(x− 1, y + 1)) + (68)

µ′2y(Vn−1(x, y − 1)− Vn−1(x, y)) + (69)

µ′2Vn−1(x, y)− µ′2Vn−1(x, y + 1) + (70)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1x− µ′2(y + 2)

)
(71)

(Vn−1(x, y)− Vn−1(x, y + 1))
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Vn(x, y + 1)− Vn(x, y + 2) = λ′1(Vn−1(x+ 1, y + 1− z′)− z′b2K)− (72)

λ′1(Vn−1(x+ 1, y + 2− z)− zb2K) +

λ′2(max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} −(73)

max{Vn−1(x, y + 2), Vn−1(x, y + 3) + b2R}) +

µ′1x(Vn−1(x− 1, y + 1)− Vn−1(x− 1, y + 2)) + (74)

µ′2y(Vn−1(x, y)− Vn−1(x, y + 1)) + (75)

µ′2Vn−1(x, y)− µ′2Vn−1(x, y + 1) + (76)(
C

(
µ′1
b1

+
µ′2
b2

)
− µ′1x− µ′2(y + 2)

)
(77)

(Vn−1(x, y + 1)− Vn−1(x, y + 2))

(66) ≤ (72) is true according to Prop. 2 (in particular, the result of Prop. 2 is used in the
limit case: z′ = z∗ = 0 ). The relations (68) ≤ (74), (69) ≤ (75) and (71) ≤ (77) are direct
consequences of the induction hypothesis, and (70) = (76) is trivial. In order to analyze
the inequality (67) ≤ (73) the same arguments as case 1 can be applied. It is important
to highlight that if the number of busy resources in the system is greater than C − b2,
the admission control decision has no sense (no SU will be accepted). So, if for example
b1x+b2(y+2) > C−b2 (and b1x+b2(y+1) ≤ C−b2), we can demonstrate the inequality
in the following way: λ′2(max{Vn−1(x, y+ 1), Vn−1(x, y+ 2) + b2R}−Vn−1(x, y+ 2)) =
λ′2(max{Vn−1(x, y + 1) − Vn−1(x, y + 2), b2R}) ≥ λ′2(max{Vn−1(x, y) − Vn−1(x, y +
1), b2R}) = λ′2(max{Vn−1(x, y), Vn−1(x, y + 1) + b2R} − Vn−1(x, y + 1)), then
– if max{Vn−1(x, y+1), Vn−1(x, y+2)+b2R} = Vn−1(x, y+1) the proof is completed.
– if max{Vn−1(x, y + 1), Vn−1(x, y + 2) + b2R} = Vn−1(x, y + 2) + b2R, then
λ2(max{Vn−1(x, y), Vn−1(x, y + 1) + b2R} − Vn−1(x, y + 1)) ≥
λ2(max{Vn−1(x, y), Vn−1(x, y+ 1) + b2R}− Vn−1(x, y+ 2)− b2R) and the proof is
over.
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