
OLÉ: Orthogonal Low-rank Embedding,

A Plug and Play Geometric Loss for Deep Learning

José Lezama1∗ Qiang Qiu2 Pablo Musé1 Guillermo Sapiro2

1IIE, Universidad de la República, Uruguay 2ECE, Duke University, USA

Abstract

Deep neural networks trained using a softmax layer at

the top and the cross-entropy loss are ubiquitous tools for

image classification. Yet, this does not naturally enforce

intra-class similarity nor inter-class margin of the learned

deep representations. To simultaneously achieve these two

goals, different solutions have been proposed in the litera-

ture, such as the pairwise or triplet losses. However, these

carry the extra task of selecting pairs or triplets, and the

extra computational burden of computing and learning for

many combinations of them. In this paper, we propose a

plug-and-play loss term for deep networks that explicitly

reduces intra-class variance and enforces inter-class mar-

gin simultaneously, in a simple and elegant geometric man-

ner. For each class, the deep features are collapsed into a

learned linear subspace, or union of them, and inter-class

subspaces are pushed to be as orthogonal as possible. Our

proposed Orthogonal Low-rank Embedding (OLÉ) does not

require carefully crafting pairs or triplets of samples for

training, and works standalone as a classification loss, be-

ing the first reported deep metric learning framework of its

kind. Because of the improved margin between features of

different classes, the resulting deep networks generalize bet-

ter, are more discriminative, and more robust. We demon-

strate improved classification performance in general ob-

ject recognition, plugging the proposed loss term into exist-

ing off-the-shelf architectures. In particular, we show the

advantage of the proposed loss in the small data/model sce-

nario, and we significantly advance the state-of-the-art on

the Stanford STL-10 benchmark.

1. Introduction

In the last few years the representational power of Deep

Neural Networks (DNNs) has been thoroughly demon-

strated, with impressive results in learning useful repre-

sentations for difficult tasks such as object classification

∗Corresponding author jlezama@fing.edu.uy

and detection [9, 11, 14, 18, 32] and face identification

and verification [25, 31, 38], to name just a few exam-

ples. DNNs typically consist of a sequence of convolu-

tional and/or fully-connected layers with non-linear acti-

vation functions, which produce a “deep” feature vector,

which is then classified in the last layer with a linear clas-

sifier [11, 14, 18, 32]. This linear classifier typically uses

the softmax function with the cross-entropy loss. The com-

bination of these two will be referred to as softmax loss in

the rest of this article. The layer previous to the last linear

classifier will be referred to as the deep feature layer.

Training a DNN with the standard softmax loss does not

explicitly enforce an embedding of the learned deep fea-

tures where samples of the same class are closer together

and further away from other classes. To improve the dis-

crimination power of deep neural networks, previous ap-

proaches have tried to enforce such an embedding via auxil-

iary supervisory loss functions [19] acting on the Euclidean

distances between the deep features [1, 8, 13, 31, 33, 38].

Such metric learning techniques are particularly popular in

the face identification domain, with its two most represen-

tative examples being the pairwise loss [8] and the triplet

loss [31]. The drawback with these approaches is that they

require the careful selection of pairs or triplets of samples,

as well as extra data processing. More recently, methods

have been proposed to overcome this limitation by enforc-

ing intra-class compactness of the representations inside

each random training minibatch, [20, 21, 38].

In this work we propose to improve the discriminability

of a neural network by a simple and elegant plug-and-play

loss term that, acting on the deep feature layer, encourages

the learned deep features of the same class to lie in a lin-

ear subspace (or union of them), and at the same time that

inter-class subspaces are orthogonal, see Figs. 1, 2. To the

best of our knowledge, this is the first time a deep learning

framework is proposed that simultaneously reduces intra-

class variance and increases inter-class margin, without re-

quiring pair or triplet selection.

Our intuition is based on the following observations.

First, that the decision boundary for the softmax loss is de-

18109

(a) (b) (c) (d)

Figure 1. Barnes-Hut-SNE [35] visualization of the deep feature embedding learned for the validation set of CIFAR10, using VGG-16. (a)

With softmax loss and OLÉ . (b) With softmax loss only. The separation between classes is increased, and a low-rank structure is recovered

for each class. (c) Angle between the features of the 10,000 validation samples, ordered by class, with OLÉ. (d) Without OLÉ. With OLÉ

the angle between features is collapsed inside each class and inter-class features are orthogonal. Best viewed in electronic format.

(a) OLÉ: 78.38% accuracy (b) Softmax: 76.69% accuracy (c) OLÉ: 100.0% accuracy (d) Softmax: 96.47% accuracy

CIFAR 3 classes Facescrub 3 classes

Figure 2. Illustrative comparison between OLÉ loss (standalone) and softmax loss. We show the actual 3D deep feature vectors for the

validation images in two 3-class classification problems with scarce training data. OLÉ produces intra-class compactness and inter-class

orthogonality, and is able to achieve better classification performance than the softmax loss. (a) & (b) 3 classes of CIFAR10, trained with

1,000 images per class. A 4 layer, 100 hidden units MLP was used. (c) & (d) 3 subjects of Facescrub dataset, trained with 110 images per

class on average. A 3 layer, 10 hidden units MLP was used. See text for more details. Best viewed in electronic format.

termined by the angle between the feature vector and the

vectors corresponding to each class in the last linear clas-

sifier [21]. Since the weights are initialized randomly, the

class vectors are, with high probability, orthogonal at initial-

ization, and typically remain so after training. Moreover, if

a rectified linear unit (ReLU) is the last activation function,

the deep features will live in the positive orthant. There-

fore, one way to improve the margin between deep features

is to embed them into orthogonal, low-dimensional linear

subspaces, aligned with the classifier vector of each class.

To this end, we adapt a shallow feature orthogonalization

technique [28] to deep networks. Through novel theoret-

ical insight, we improve the objective formulation in [28]

and its optimization. The outcome is a new loss function

that can be plugged into any existing deep architecture at

the deep feature layer1. We demonstrate via thorough ex-

perimentation that this approach produces orthogonal deep

representations that lead to better generalization, not only

in face identification but also in general object recognition.

We illustrate this on different datasets and using four of the

most popular CNN architectures: VGG [32], ResNets [11],

PreResNets [12] and DenseNets [14].

We demonstrate that our proposed technique is particu-

larly successful in the small data scenario. We significantly

1Source code available at https://github.com/jlezama/

OrthogonalLowrankEmbedding.

advance the state-of-the-art in the STL-10 standard bench-

mark [4] when training with only 500 images per class, and

show that the advantage of OLÉ over the standard softmax

loss increases as fewer training samples are used. We also

show through a face recognition application that because of

the improved discriminability, the network is better at de-

tecting novel classes (outside the training set).

2. Related Work

The first attempts to reduce the intra-class similarity of

deep features and increase their inter-class separation are

metric learning based approaches [1, 8, 13, 31, 33, 38].

Their goal is to minimize the Euclidean distance between

the deep features of the same class, while keeping the other

classes apart. The pioneering contrastive loss [8] imposes

such constraint using a siamese network architecture [3].

This pairwise strategy was particularly popular in the face

identification community [8, 33, 13], and was later extended

to a triplet loss [31, 1]. With the triplet loss, an image rep-

resentation is simultaneously enforced to be close to a posi-

tive example of the same class and far away from a negative

example of a different class. The main drawback of these

approaches is that they require carefully mining for pairs or

triplets that effectively enforce the constraints.

In [38], a centroid for the feature vectors of each class is

updated in each training iteration, and Euclidean distances

8110

https://github.com/jlezama/OrthogonalLowrankEmbedding
https://github.com/jlezama/OrthogonalLowrankEmbedding

to the centroids are penalized. This simple strategy pro-

duces compact clusters for each class, although a large mar-

gin between clusters is not explicitly enforced. Contrary to

our method, the center loss cannot be used standalone as a

classification loss, since all the centroids tend to collapse to

zero [38]. A related approach in [30] estimates a distribu-

tion for the representation of each class and penalizes class

distribution overlap.

Based on the observation that the softmax loss is a func-

tion of the angles between deep features and classifier vec-

tors, [20, 21] operate on such angles instead of Euclidean

distances. These works propose custom versions of the soft-

max loss that encourage the features of one class to have a

smaller angle with their corresponding classification vector

than in the standard softmax loss. The improved margin

produces notorious performance boosting with respect to a

standard network [20, 21].

Other works seek orthogonalization by decorrelating

network activations. [2] uses a covariance loss on parts of

an autoencoder latent code to learn disentangled represen-

tations. [5] decorrelates the network activations to reduce

co-adaptation and improve generalization and [6] aims at

whitening the mini-batches.

In the unsupervised learning domain, [16, 26] enforce a

locally linear structure in the deep representations, such that

Subspace Clustering [36] can be later applied to the deep

representations. These properties will arise naturally in the

deep representations learned with OLÉ, although imposed

in a supervised manner.

Our work is related to [20, 21, 38], in that we enforce

intra-class compactness inside each minibatch. However,

for the first time, our objective function also simultaneously

encourages inter-class orthogonality, without the need to

carefully craft pairs or triplets.

This work stems from an orthogonalization technique

used for shallow learning proposed in [28]. The orthogo-

nalization is achieved via a linear transformation enforcing

a low-rank constraint on the features of the same class, and a

high-rank constraint on the matrix of features of all classes.

More precisely, consider a matrix Y = [y1 | y2 | . . . | yN],
where each column yi ∈ R

d, i = 1, . . . , N is a data point

from one of the C classes, and | denotes horizontal concate-

nation. Let Yc denote the submatrix formed by the columns

of Y that lie in the c-th class. In [28], a linear transform

T : Rd → R
d is learned to minimize

C
∑

c=1

||TYc||∗ − ||TY||∗, s.t.||T||2 = 1, (1)

where ||·||∗ denotes the matrix nuclear norm, i.e., the sum

of the singular values of a matrix. The nuclear norm acts

as a relaxation of the non-differentiable rank function (it

is the convex envelope of the rank function over the unit

ball of matrices [29]). The first term minimizes the rank

of each class feature submatrix (samples of the same class

are pushed to be aligned in a low-rank linear subspace).

The second term maximizes the rank of the matrix of all

features, so the intra-class subspaces are pushed to be lin-

early independent (orthogonal). An additional condition

||T||2 = 1 is originally adopted to prevent the trivial so-

lution T = 0.

Here we adapt the loss in (1) to the deep learning frame-

work and reformulate the loss and its optimization in a man-

ner that is suitable for training by backpropagation.

3. Orthogonalization Loss

3.1. Motivation

Consider a neural network whose last fully connected

layer is W ∈ RC×D, where D is the dimension of the deep

features and C the number of classes. Each row wc ∈ RD

of W represents a linear classifier for class c. If W is ini-

tialized randomly, then such rows are (with high probabil-

ity) orthogonal. Now consider x as the deep representation

of an image (or any other data being classified). If the acti-

vation function in the deep feature layer is the element-wise

maximum between x and 0 (ReLU), then x always lives in

the positive orthant. From these two observations it can be

deduced that at the end of a successful training of the net-

work the classifier vectors xc should remain orthogonal to

have the most separation between classes. Therefore, one

strategy to learn large-margin deep features is to make the

intra-class features fall in a linear subspace aligned with the

corresponding classification vector, while features of differ-

ent classes should be orthogonal to each other. This natu-

ral geometry of learned features is not imposed by standard

last-layer classifiers in today’s leading architectures.

3.2. Definition

We propose to enforce the aforementioned orthogonal-

ization by adapting (1) to the deep learning setting. Namely,

suppose for a given training minibatch Y of N samples,

X = Φ(Y; θ) is the N ×D deep embedding Φ of the data,

parameterized by θ.

Let Yc, Xc be the data and the sub-matrix of deep fea-

tures belonging to class c, respectively, and X the matrix of

deep features for the entire minibatch Y. We propose the

following OLÉ loss:

Lo(X) :=

C
∑

c=1

max(∆, ||Xc||∗)− ||X||∗ (2)

=
C
∑

c=1

max(∆, ||Φ(Yc; θ)||∗)− ||Φ(Y; θ)||∗ (3)

With respect to (1), we drop the linear transformation T
(the network is already transforming the data) and its nor-

malization restriction, and we add a bound ∆ ∈ R on the

8111

intra-class nuclear loss, so that after a certain point the intra-

class norm reduction is no longer enforced, thus avoiding

the collapse of the features to zero (and therefore no need-

ing the normalization). We will always use ∆ = 1 for the

experiments in this paper.

The global minimum of (2) is reached when each of the

Xc matrices are orthogonal to each other [28]. We next

describe a simple descent direction for optimizing θ (2) via

backpropagation, and show that this direction vanishes only

when the orthogonalization is achieved.

3.3. Optimization

In order to optimize (2) via backpropagation, we need

to compute a subgradient of the nuclear norm of a matrix.

Let A = UΣVT be the SVD decomposition of the m× n
matrix A. Let δ be a small threshold value, and s the num-

ber of singular values of A larger than δ. Let U1 be the

first s columns of U and V1 be the first s columns of V

(corresponding to those larger than δ eigenvalues). Corre-

spondingly, let U2 be the remaining columns of U and V2

the remaining columns of V. Then, a subdifferential of the

nuclear norm is ([29, 37])

∂||A||∗ = U1V
T
1 +U2WVT

2 , (4)

with ||W|| ≤ 1.

Here we propose to use W = 0, obtaining the follow-

ing projected subgradient for the nuclear norm minimiza-

tion problem:

g||A||∗(A) = U1V
T
1 . (5)

Intuitively, to avoid numerical issues, we are dropping

the directions of the subgradient onto which the data matrix

has no or very low energy already (i.e., their corresponding

singular values are already close to 0). This improves upon

the formulation in [28], where all the directions were used.

Suppose X = [X1 | X2 | . . . | XC] is the deep feature

matrix of one minibatch. For Xc, the feature submatrix of

each class c ∈ {1, . . . , C}, let U1c and V1c be its princi-

pal left and right singular vectors. Let U1 and V1 be the

principal left and right singular vectors of X, the deep fea-

ture matrix of all the classes combined. (By principal we

mean those whose corresponding singular value is greater

than the threshold δ.) Then, we propose the following de-

scent direction for (2):

gLo
(X) :=

C
∑

c=1

[

Z(l)
c | Uc1V

T
c1 | Z

(r)
c

]

−U1V
T
1 . (6)

Here, Z
(l)
c and Z

(r)
c are fill matrices of zeros to complete

the dimensions of X. The first term in (6) reduces the vari-

ance of the principal components of the per-class features.

The second term increases the variance of all the features

together, projecting the feature matrix onto its closest or-

thogonal form.

Next we prove that this direction vanishes only when the

objective reaches the global minimum of zero.

Proposition 1. If gLo
(X) = 0 and ||Xc||∗ > ∆, then

Lo(X) = 0.

Proof. We give the proof for two classes, its extension

to multiple classes is straightforward. Let X = [A | B]
with A and B corresponding to the feature matrices of

two classes. Let A = UA1ΣA1VA1 + UA2ΣA2VA2,

B = UB1ΣB1VB1+UB2ΣB2VB2, and X = U1Σ1V1+
U2Σ2V2 be their SVD decomposition, where the subscript

1 corresponds to the singular values larger than the thresh-

old δ and the subscript 2 to the remaining singular values.

Let 0 be a generic matrix of zeroes, whose size is deter-

mined by context, for simplicity. Then,

Lo(X) = ||A||∗ + ||B||∗ − ||[A | B]||∗, (7)

gLo
(X) =

[

UA1V
T
A1 0

]

+
[

0 UB1V
T
B1

]

−U1V
T
1 .

(8)

Then, gLo
(X) = 0 implies

U1V
T
1 =

[

UA1V
T
A1 0

]

+
[

0 UB1V
T
B1

]

(9)

=
[

UA1 UB1

]

[

VT
A1 0

0 VT
B1

]

. (10)

Since U1 and V1 are orthogonal matrices, and the right-

most matrix in (10) is also orthogonal, then [UA1 | UB1]
must be orthogonal. Since UA1 and UB1 are orthogonal

submatrices, this implies that their columns must be orthog-

onal to each other. Then, A and B are orthogonal to each

other and thus Lo(X) = 0 ([28], Theorem 2).

In practice, we observe empirical convergence in all our

experiments. Fig. 3 shows typical convergence curves for

the OLÉ loss when used standalone or in combination with

the softmax loss.

3.4. Illustrative Example

In Fig. 2 we show via two simple illustrative examples

the result of applying the OLÉ loss of (2) as the objective

function of a neural network. We compare with the result

of applying the traditional softmax loss.

For the first experiment, we used 3 classes from CI-

FAR10 (0: plane, 1: car, 2: bird) and trained a Multi-

Layer Perceptron (MLP), with 4 hidden layers of 100 neu-

rons each, and a final layer of dimension 3. The network

was trained for 300 epochs on 1,000 images per class and

evaluated in 100 images per class.

8112

For the second experiment, we used 3 randomly chosen

subject identities from the Facescrub dataset [24]: Al Pa-

cino, Helen Hunt, and Sean Bean. Each identity contains,

on average, 110 images for training and 30 for validation.

We used a 3 layer MLP with 10 neurons in each hidden

layer, and trained for 150 epochs. All the MLPs use ReLU

activation functions, batch normalization and weight decay

and were trained with Adam with learning rate 10−4.

For the comparison, the architecture and hyperparame-

ters are shared and only the objective function is changed.

For evaluation, we use 1-Nearest-Neighbor with cosine dis-

tance, (this yielded equivalent or better performance than

using the softmax score). We ran the training 50 times for

each architecture and dataset and kept the model giving the

best classification result in the validation set.

In Fig. 2 we plot the actual 3D deep feature vectors ob-

tained by the networks for the validation set. We observe

a successful orthogonalization of the learned features when

using OLÉ and a better classification performance, in par-

ticular for the Facescrub experiments, where the number of

samples per class is very limited.

In the following section, we will combine the power of

the OLÉ and the softmax loss to achieve significant perfor-

mance gains, in particular in the small data scenario.

3.5. Discussion

The proposed embedding has several advantages with re-

spect to similar embeddings in the literature:

• It does not require carefully crafting pairs or triplets of

samples, and works simply as a plug-and-play loss that

can be appended to any existing network architecture.

• Compared to the Large-Margin Softmax Loss in [21]

or the A-softmax loss in [20], the OLÉ loss is not re-

stricted to be used with a softmax classifier and can be

used standalone or as a complement of any other loss,

or to impose orthogonality at any layer of the network.

• Compared to the Center Loss of [38], our deep objec-

tive function encourages intra-class compactness and

inter-class separation simultaneously, whereas [38]

does only the former. Also, the Center Loss cannot

be used standalone.

• OLÉ collapses the deep features into linear subspaces.

When used in conjunction with the softmax loss, the

linear classifiers of the last layer find a natural form

which is a vector aligned with the linear subspace.

4. Experimental Evaluation

In this section, we demonstrate the improved general-

ization performance obtained when using the OLÉ loss in

combination with the standard softmax loss for several pop-

ular deep network architectures and different standard vi-

sual classification datasets. We will also further analyze the

effect of the proposed embedding.

In all experiments, we seek to minimize the combination

of the softmax classification loss and the OLÉ loss:

min
θ

Ls(X,y, θ) + λ · Lo(X,y, θ∗) + µ · ||θ||2, (11)

where LS is the standard softmax loss (softmax layer plus

cross-entropy loss). The second term Lo is the proposed

OLÉ loss (2). The parameter λ controls the weight of the

OLÉ loss; λ = 0 corresponds to standard network training.

Here θ∗ means every weight in the network except the

weights of the last fully-connected layer, which is the lin-

ear classifier. This is because the OLÉ loss is applied to the

deep features at the penultimate layer. The third term repre-

sents the standard weight decay. The values used for these

parameters are detailed below.

4.1. Datasets

SVHN. The Street View House Numbers (SVHN)

dataset [23] contains 32 × 32 colored images of digits 0 to

9, with 73, 257 images for training and 26,032 for testing.

We did not use the additional unlabeled training images nor

performed any data augmentation.

MNIST. The MNIST database contains 28 × 28
grayscale images of digits from 0 to 9. The training and test-

ing set contain 60,000 and 10,000 examples respectively.

No data augmentation was used.

CIFAR10 and CIFAR100. The two CIFAR datasets

[18] contain 32 × 32 colored images from 10 and 100 ob-

ject classes respectively. Both datasets contain 50,000 im-

ages for training and 10,000 for testing. When using data

augmentation, we append the suffix ’+’ to the dataset name.

We used the standard data augmentation for CIFAR: 4 pixel

padding, 32× 32 random cropping and horizontal flipping.

STL-10. The Self-Taught Learning 10 (STL-10) dataset

[4] contains 96 × 96 colored images from 10 object cat-

egories. Designed for semi-supervised and unsupervised

learning, there are only 500 training images and 800 test

images with labels per class. Data augmentation consisted

of 12 pixel padding, and random 96×96 cropping and hori-

zontal flipping. We add the ’+’ suffix when reporting results

using data augmentation.

Facescrub-500. The Facescrub-500 dataset is obtained

by selecting 500 of the 530 identities of the Facescrub

dataset [24]. The remaining 30 classes were used for evalu-

ating out of sample performance. We split the images of the

first 500 subjects into a training and a testing datasets with

on average 91 images for training and 23 images for testing

per class (80%/20% split). We preprocess the images by

aligning facial landmarks using [17] and crop the resulting

aligned face images to 224× 224, with color.

8113

VGG-11 C64-MP-C128-MP-C256(x2)-MP-C512(x2)-MP-C512(x2)-MP-FC512

VGG-16 C64(x5)-MP-C128(x4)-MP-C256(x4)-MP-FC256

VGG-19 C64(x2)-MP-C128(x2)-MP-C256(x4)-MP-C512(x4)-MP-C512(x4)-MP-FC512

VGG-FACE C64(x2)-MP-C128(x2)-MP-C256(x3)-MP-C512(x3)-MP-C512(x3)-FCD4096(x2)-FC1024

ResNet-110 C16-R64/16(x18)-R128/32(x18)-R256/64(x18)-AP

Pre-ResNet-110 C16-PR64/16(x18)-PR128/32(x18)-PR256/64(x18)-BN-ReLU-AP

DenseNet-40-12 CO24-D168/12-CR168-D312/12-CR312-D456/12-BN456-ReLU

CNN-5 C32-MP-C64-MP-C128-MP-C256-C256-MP

Table 1. Summary of the deep network architectures used in our experiments. The last Fully-Connected layer, whose size depends on the

number of classes used, is not shown. CX: Convolutional block. Kernel size is always is 3x3. MP: Max pooling with kernel size 2x2 and

stride 2. FCX: Fully-Connected layer. RX/Y and PRX/Y: ResNet and PreResNet Blocks Respectively. AP: Global Average Pooling layer.

COX: Plain convolutional layer. DX/G: DenseNet Block. PCX: Pre-BN convolutional block: (BN-conv.-ReLU). Kernel size is 1x1. For

all the modules, X is the number of output channels. Y is the number of inner channels for R and PR blocks and G is the growth rate for

D blocks. See text for detailed block definitions. The OLÉ loss is always applied at the output of the last layer shown in this table.

4.2. Network Architectures

Evaluated architectures are summarized in Table 1.

VGG. The VGG architecture [32] consists of blocks of

convolutional layers with ReLU activation functions and

Batch Normalization (BN), linked by Max-Pooling layers

and with one or more fully-connected (FC) layers at the end.

For VGG-11 and VGG-19 we use a publicly available im-

plementation2. For VGG-16, we used the implementation

from [21] to allow for a more direct comparison3.

VGG-FACE. VGG-FACE is a variant of VGG optimized

for face identification [25]. In VGG-FACE, the convolu-

tional blocks do not have BN and the first two FC layers

use Dropout with rate 0.5. We added an FC layer of size

1024, that was not present in [25]. This layer improves per-

formance for all tested models on Facescrub-500. We used

the Caffe implementation of the authors and fine-tune the

weights provided by them4. The novel 1024 FC layer was

initialized using “Xavier” initialization [7].

ResNet and PreResNet. ResNets [11] are composed

of residual blocks. The concatenation of layers inside a

ResNet block is conv.-BN-conv.-BN-conv.-BN-ReLU. The

intermediate convolution layers typically have one fourth

the number of channels than the input and output convo-

lution layers of a block, see Table 1. The output of each

block is added to its input. The PreResNet architecture [12]

is similar to ResNet except that inside the residual blocks

the order of the layers is inverted: BN-conv.-BN-conv.-BN-

conv.-ReLU. No Dropout is used. For both variants we used

a publicly available implementation2.

DenseNet. DenseNets [14] are composed of three

DenseNet blocks. Each of these blocks is itself composed

of multiple pre-BN convolutional blocks (BN-conv.-ReLU)

with a small number of output channels. Inside a DenseNet

block, the input to each pre-BN convolutional block is the

concatenation of the output of all previous pre-BN convo-

lutional blocks. A transition pre-BN convolutional block

is used between DenseNet blocks. In our experiments, no

2https://github.com/bearpaw/pytorch-classification
3https://github.com/wy1iu/LargeMargin_Softmax_Loss
4http://www.robots.ox.ac.uk/˜vgg/software/vgg_face/

bottleneck layers were used. We used Dropout of 0.2 for

MNIST and SVHN, and no Dropout for CIFAR. We used a

publicly available implementation5.

4.3. Training Details

Except for the Facescrub experiments, we always train

the network from scratch. VGG-16 uses “MSRA” initial-

ization [10]. For the rest of the architectures, “Xavier” ini-

tialization was used [7].

In all the experiments except STL-10 and Facescrub we

used SGD with Nesterov momentum 0.9 for the optimiza-

tion and batch size 64. We started with a learning rate of 0.1

and decreased it ten-fold at 50% and 75% of the total train-

ing epochs. For STL-10/Facescrub experiments, we used

Adam with starting learning rate 10−3/10−5 and batch size

32/26. We used 164 epochs for all architectures except for

DenseNets, for which we used 300 epochs and Facescrub

where the finetuning is done for 12 epochs. The weight

decay parameter was always set to µ = 10−4, except for

STL-10+ and Facescrub, where µ = 10−3. Fig. 3 shows

typical convergence curves.

We implemented the OLÉ loss as a custom layer for

Caffe and PyTorch. The additional computation time is be-

tween 10% and 33% during training, depending on the im-

plementation and hardware, because the SVD runs on the

CPU in the current implementation.

We adjusted the parameter λ in (11) with a held-out val-

idation set of 10% of the training set. Note that the magni-

tude of the OLÉ loss depends on the size and norm of the

features matrices. We selected the value of λ that produced

the best result in the validation set, averaging over 5 runs,

see Fig 4 for an example. We then retrained the network

with the entire training set and we computed the accuracy

on the test set at the end of the training. To account for the

randomness of the training process, we repeated the training

with the full training set 5 times.

5https://github.com/andreasveit/densenet-pytorch

8114

https://github.com/bearpaw/pytorch-classification
https://github.com/wy1iu/LargeMargin_Softmax_Loss
http://www.robots.ox.ac.uk/~vgg/software/vgg_face/
https://github.com/andreasveit/densenet-pytorch

Dataset Architecture λ % Error (Lo + λ · Ls) % Error (Ls only) Ref. Error (%)

SVHN DenseNet-40-12 [14] 1/2 3.62 ± 0.04 3.93 ± 0.08 1.79 [14]

MNIST DenseNet-40-12 1/2 0.78 ± 0.04 0.88 ± 0.03 -

CIFAR10+ DenseNet-40-12 1/8 5.30 ± 0.26 5.54 ± 0.13 5.24 [14]

CIFAR10+ ResNet-110 [11] 1/4 5.39 ± 0.25 6.05 ± 0.8 6.43 [11]

CIFAR10+ VGG-19 [32] 1/4 7.13 ± 0.2 7.37 ± 0.11 -

CIFAR10+ VGG-11 1/2 7.73 ± 0.14 8.06 ± 0.22 -

CIFAR10 VGG-16 [21] 1/2 7.22 ± 0.14 8.23 ± 0.13 7.58 [21]

CIFAR100+ PreResNet-110 [12] 1/20 22.8 ± 0.34 23.01 ± 0.19 22.68 ± 0.22 [12]

CIFAR100+ VGG-19 1/10 27.54 ± 0.11 28.04 ± 0.42 -

CIFAR100 VGG-19 1/10 37.25 ± 0.33 38.15 ± 0.28 -

FaceScrub-500 VGG-FACE [25] 250 1.55 ± 0.02 2.49 ± 0.01 -

STL-10 CNN-5 1/16 25.42 ± 0.20 28.68 ± 0.67 -

STL-10+ CNN-5 1/4 16.68 ± 0.24 18.22 ± 0.27 21.34 [34]

Table 2. Visual classification results. Lo is the proposed OLÉ loss, Ls is the standard softmax loss. The rightmost column shows published

performance for the corresponding architecture and dataset. Note that the implementations we used were not the same as the referenced

papers (except for [21]), so variations in the results can occur. When using OLÉ, networks generalize better than with softmax loss alone.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

Epoch

O
L

E
 l
o

s
s

training

validation

0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Epoch

O
L

E
 l
o

s
s

training

validation

0 50 100 150
0

20

40

60

80

100

Epoch

A
c
c
u

ra
c
y

training

validation

(a) (b) (c)

Figure 3. Learning curves. (a) OLÉ loss when used standalone.

Data and model from Fig 2c. (b) & (c) OLÉ loss and accuracy

when used in combination with softmax loss for a ResNet-110 on

CIFAR10+. Learning rate drops by 0.1 at 81 and 122 epochs.

Figure 4. Validation of λ (11) for the STL-10+ experiment. Based

on this graph, we chose λ = 0.25 for the final training. The dotted

line is the average score obtained with the standard softmax loss.

4.4. Visual Classification Results

Table 2 shows the resulting classification performance,

with and without OLÉ. In all the experiments, we found a

value of λ through validation such that the generalization of

the network is improved. For reference, we include in the

last column the performance published in articles present-

ing the corresponding architecture for the same datasets.

Note that there could be implementation differences.

Compared to a state-of-the-art intra-class compactness

method [21] using VGG-16 on CIFAR10, the lowest classi-

fication error we obtained was 7.08%, compared to 7.58%
reported in [21]. Compared to the same network with only

the standard softmax loss, a relative reduction in the error

of more than 12% is obtained when adding the OLÉ loss.

The improvement in generalization performance is more

important when only scarce training data is available. In the

Facescrub-500 experiment, where less than 100 samples are

available per class on average, the error is reduced by 40%.

Fig. 5 illustrates how the advantage of using OLÉ is more

significant when fewer training data is available. We fixed

λ = 0.25 and trained a CNN-5 (Table 1) on STL-10 without

data augmentation. We varied the number of samples from

just 50 to 500 training samples per class, repeating each

experiment 5 times.

In the STL-10+ experiment, the lowest classification

error rate on the test set we obtain is 16.43%, signifi-

cantly outperforming the reported state-of-the-art error rate

of 21.34% in [34]. Note that [34] uses the same training

data and data augmentation procedure.

4.5. Novelty Detection

In this subsection we further analyze the Facescrub-500

experiment and show that the OLÉ loss improves the nov-

elty detection capability of the network. The goal of novelty

detection [22, 27] is to identify images in the test set that do

not belong to any of the categories in the training set.

Of the 530 identities in the Facescrub dataset, we took

500 identities to form the Facescrub-500 dataset, and we

left the remaining 30 identities as the novel classes used to

assess novelty detection performance. We use all the images

from the novel classes for testing (3,220 in total).

Ideally, since the novel identities are none of the known

50 100 200 300 400 500

Number of training samples per class

50

55

60

65

70

75

A
c
c
u

ra
c
y
 (

%
)

Softmax + OLE

Softmax

Figure 5. Accuracy versus number of samples. The improved gen-

eralization when using OLÉ is more significant when fewer train-

ing samples are available. For this experiment we used STL-10

without data augmentation and we average over 5 runs.

8115

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

False Positive Ratio

A
c
c
u
ra

c
y
 (

o
n
 k

n
o
w

n
 c

la
s
s
e
s
)

Softmax + O.L.E. (AUC: 97.97%)
Softmax (AUC: 95.85%)

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

200

400

600

800

1000

1200

Softmax+O.L.E unknown classes scores

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

250

Softmax unknown classes scores

(a) (b) (c)

Figure 6. Application to novelty detection. (a) Accuracy on 500

known identities versus ratio of the images of the 30 novel classes

that are wrongly classified as one of the known 500, when varying

a threshold on the class scores. When using the OLÉ loss, more

false positives can be avoided without losing classification perfor-

mance on the known classes. (b) & (c) Histogram of the maximum

class scores for samples from the novel classes, with and without

OLÉ, respectively. In (b), scores are concentrated towards 1/500,

whereas in (c), false high confidence scores are generally obtained.

500 subjects, their 500 class scores should all be low. We

observe that this is the case when using OLÉ, whereas when

using only the softmax loss, there is typically one class out

of the known 500 that will have a confident softmax score

(close to 1), see Fig. 6. To show this, we varied a thresh-

old t ∈ [0, 1] over the softmax scores and defined the False

Positive Ratio (FPR), as the number of images of the novel

classes whose softmax score is higher than t. In Fig. 6(a) we

plot the model accuracy in the 500 known subjects against

the FPR. When using the OLÉ loss, the model is able to

reject most unknown classes without significant loss of ac-

curacy on the known 500. Fig. 6(b) shows the histogram of

softmax scores for images of the novel classes when using

OLÉ. Most of the scores are concentrated around 1/500,

reflecting the low confidence the OLÉ network gives to the

novel classes. On the other hand, the network trained with

only the softmax loss gives high confidence scores to im-

ages of the novel classes, see Fig. 6(c).

We verified that the OLÉ deep network did not lose face

representation power in the novel classes by running the

standard verification benchmark on the Labeled Faces in the

Wild (LFW) [15]. We observed similar AUC (99.04% vs

99.12%) and verification performance (96.57% vs 96.64%)

for the models with and without the OLÉ loss, respectively.

4.6. Visualization of the Obtained Features

We illustrate the geometry of the learned deep features

using OLÉ in Fig. 1. In (a) and (b) we show a Barnes-Hut-

SNE visualization [35] of the obtained embedding for the

validation set of CIFAR10. The intra-class low-rank mini-

mization reduces the intra-class variance to only one dimen-

sion. The overall rank maximization produces more margin

(orthogonality) between classes.

In Fig. 1 (c) and (d), we show the angle between the deep

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(validation set)

Softmax+O.L.E.

Softmax

Figure 7. Spectral analysis of the deep feature matrix obtained for

CIFAR10 validation data using VGG-16. We plot the normalized

singular values of the feature matrix with and without OLÉ. When

using OLÉ, the deep features are concentrated along 10 strong di-

mensions in the embedding space, corresponding to the linear sub-

spaces where the features are compacted. For the standard soft-

max, the energy is distributed more evenly.

features of (a) and (b). The 10,000 validation images are

ordered by class. With OLÉ, the relative angle is mostly 0

for images of the same class, and 90 for images of different

class. On the other hand, for the standard softmax loss, the

learned deep features have a larger intra-class spread, and

inter-class angles are not always orthogonal.

Finally, we show the spectral decomposition of the deep

feature matrices for CIFAR10 validation set in Fig. 7. With

OLÉ, the deep features are concentrated along 10 principal

dimensions, corresponding to the learned orthogonal linear

subspaces. For the softmax loss, the deep feature matrix has

its energy distributed along many directions, reflecting the

more spreading of the deep features vectors.

5. Conclusions

We proposed OLÉ, a novel objective function for deep

networks that simultaneously encourages intra-class com-

pactness and inter-class separation of the deep features. The

former is imposed as a low-rank constraint and the latter

as an orthogonalization constraint. The proposed OLÉ loss

can be used standalone as a classification loss or in combi-

nation with the standard softmax loss for improved perfor-

mance. We showed that OLÉ produces more discriminative

deep networks and deep representations whose energy in

the embedding space is concentrated in a few dimensions.

For classification, OLÉ is particularly effective when train-

ing data is scarce: using OLÉ, we significantly advance the

state-of-the-art classification performance in the standard

STL-10 benchmark. The proposed loss introduces a new

paradigm to deep metric learning and we believe it will be a

valuable tool in applications where a linear subspace struc-

ture or orthogonality in the deep representations is required.

Acknowledgments

José Lezama was supported by ANII (Uruguay) grant

PD NAC 2015 1 108550. Work partially supported by

NSF, NIH, ONR, NGA, ARO, AFOSR, and Google.

8116

References

[1] De Cheng, Yihong Gong, Sanping Zhou, Jinjun Wang,

and Nanning Zheng. Person re-identification by multi-

channel parts-based CNN with improved triplet loss

function. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages

1335–1344, 2016. 1, 2

[2] Brian Cheung, Jesse A Livezey, Arjun K Bansal,

and Bruno A Olshausen. Discovering hidden fac-

tors of variation in deep networks. arXiv preprint

arXiv:1412.6583, 2014. 3

[3] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learn-

ing a similarity metric discriminatively, with applica-

tion to face verification. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recogni-

tion, volume 1, pages 539–546. IEEE, 2005. 2

[4] Adam Coates, Andrew Ng, and Honglak Lee. An anal-

ysis of single-layer networks in unsupervised feature

learning. In Proceedings of the fourteenth Interna-

tional Conference on Artificial Intelligence and Statis-

tics, pages 215–223, 2011. 2, 5

[5] Michael Cogswell, Faruk Ahmed, Ross Girshick,

Larry Zitnick, and Dhruv Batra. Reducing overfit-

ting in deep networks by decorrelating representa-

tions. arXiv preprint arXiv:1511.06068, 2015. 3

[6] Guillaume Desjardins, Karen Simonyan, Razvan Pas-

canu, et al. Natural neural networks. In Advances in

Neural Information Processing Systems, pages 2071–

2079, 2015. 3

[7] Xavier Glorot and Yoshua Bengio. Understanding

the difficulty of training deep feedforward neural net-

works. In Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics,

pages 249–256, 2010. 6

[8] Raia Hadsell, Sumit Chopra, and Yann LeCun. Di-

mensionality reduction by learning an invariant map-

ping. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, volume 2, pages

1735–1742. IEEE, 2006. 1, 2

[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross

Girshick. Mask R-CNN. 2017. 1

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Delving deep into rectifiers: Surpassing human-

level performance on imagenet classification. In Pro-

ceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1026–1034, 2015. 6

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 770–778, 2016.

1, 2, 6, 7

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Identity mappings in deep residual networks.

In European Conference on Computer Vision, pages

630–645. Springer, 2016. 2, 6, 7

[13] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discrimi-

native deep metric learning for face verification in the

wild. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1875–

1882, 2014. 1, 2

[14] Gao Huang, Zhuang Liu, Kilian Q Weinberger, and

Laurens van der Maaten. Densely connected convo-

lutional networks. arXiv preprint arXiv:1608.06993,

2016. 1, 2, 6, 7

[15] Gary B Huang, Manu Ramesh, Tamara Berg, and Erik

Learned-Miller. Labeled faces in the wild: A database

for studying face recognition in unconstrained envi-

ronments. Technical report, Technical Report 07-49,

University of Massachusetts, Amherst, 2007. 8

[16] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann,

and Ian Reid. Deep subspace clustering networks.

arXiv preprint arXiv:1709.02508, 2017. 3

[17] Vahid Kazemi and Josephine Sullivan. One millisec-

ond face alignment with an ensemble of regression

trees. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2014. 5

[18] Alex Krizhevsky and Geoffrey Hinton. Learning mul-

tiple layers of features from tiny images. 2009. 1, 5

[19] Chen-Yu Lee, Saining Xie, Patrick Gallagher,

Zhengyou Zhang, and Zhuowen Tu. Deeply-

supervised nets. In Artificial Intelligence and Statis-

tics, pages 562–570, 2015. 1

[20] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li,

Bhiksha Raj, and Le Song. Sphereface: Deep hyper-

sphere embedding for face recognition. arXiv preprint

arXiv:1704.08063, 2017. 1, 3, 5

[21] Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng

Yang. Large-margin softmax loss for convolutional

neural networks. In International Conference on Ma-

chine Learning, pages 507–516, 2016. 1, 2, 3, 5, 6,

7

8117

[22] Amit Mandelbaum and Daphna Weinshall. Distance-

based confidence score for neural network classifiers.

arXiv preprint arXiv:1709.09844, 2017. 7

[23] Yuval Netzer, Tao Wang, Adam Coates, Alessandro

Bissacco, Bo Wu, and Andrew Y Ng. Reading digits

in natural images with unsupervised feature learning.

In NIPS workshop on deep learning and unsupervised

feature learning, volume 2011, page 5, 2011. 5

[24] Hong-Wei Ng and Stefan Winkler. A data-driven ap-

proach to cleaning large face datasets. In Image Pro-

cessing (ICIP), 2014 IEEE International Conference

on, pages 343–347. IEEE, 2014. 5

[25] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep

face recognition. In British Machine Vision Confer-

ence, 2015. 1, 6, 7

[26] Xi Peng, Jiashi Feng, Shijie Xiao, Jiwen Lu, Zhang Yi,

and Shuicheng Yan. Deep sparse subspace clustering.

arXiv preprint arXiv:1709.08374, 2017. 3

[27] Marco AF Pimentel, David A Clifton, Lei Clifton, and

Lionel Tarassenko. A review of novelty detection. Sig-

nal Processing, 99:215–249, 2014. 7

[28] Qiang Qiu and Guillermo Sapiro. Learning transfor-

mations for clustering and classification. Journal of

Machine Learning Research, 16(187-225):2, 2015. 2,

3, 4

[29] Benjamin Recht, Maryam Fazel, and Pablo A Parrilo.

Guaranteed minimum-rank solutions of linear matrix

equations via nuclear norm minimization. SIAM re-

view, 52(3):471–501, 2010. 3, 4

[30] Oren Rippel, Manohar Paluri, Piotr Dollar, and

Lubomir Bourdev. Metric learning with adaptive den-

sity discrimination. arXiv preprint arXiv:1511.05939,

2015. 3

[31] Florian Schroff, Dmitry Kalenichenko, and James

Philbin. Facenet: A unified embedding for face recog-

nition and clustering. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition,

pages 815–823, 2015. 1, 2

[32] Karen Simonyan and Andrew Zisserman. Very deep

convolutional networks for large-scale image recogni-

tion. arXiv preprint arXiv:1409.1556, 2014. 1, 2, 6,

7

[33] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou

Tang. Deep learning face representation by joint

identification-verification. In Advances in Neural

Information Processing Systems, pages 1988–1996,

2014. 1, 2

[34] Martin Thoma. Analysis and optimization of convo-

lutional neural network architectures. arXiv preprint

arXiv:1707.09725, 2017. 7

[35] Laurens Van Der Maaten. Barnes-Hut-SNE. arXiv

preprint arXiv:1301.3342, 2013. 2, 8

[36] Rene Vidal, Yi Ma, and Shankar Sastry. Generalized

principal component analysis (GPCA). IEEE Trans-

actions on Pattern Analysis and Machine Intelligence,

27(12):1945–1959, 2005. 3

[37] G Alistair Watson. Characterization of the subdiffer-

ential of some matrix norms. Linear algebra and its

applications, 170:33–45, 1992. 4

[38] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and

Yu Qiao. A discriminative feature learning approach

for deep face recognition. In European Conference on

Computer Vision, pages 499–515. Springer, 2016. 1,

2, 3, 5

8118

