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ABSTRACT

The application of machine learning models to network security
and anomaly detection problems has largely increased in the last
decade; however, there is still no clear best-practice or silver bullet
approach to address these problems in a general context. While
deep-learning is today a major breakthrough in other domains, it
is di cult to say which is the best model or category of models
to address the detection of anomalous events in operational net-
works. We present a potential solution to �ll this gap, exploring
the application of ensemble learning models to network security
and anomaly detection. We investigate di!erent ensemble-learning
approaches to enhance the detection of attacks and anomalies in
network measurements, following a particularly promising model
known as the Super Learner. The Super Learner performs asympto-
tically as well as the best possible weighted combination of the base
learners, providing a very powerful approach to tackle multiple
problems with the same technique. We test the proposed solution
for two di!erent problems, using the well-known MAWILab data-
set for detection of network attacks, and a semi-synthetic dataset
for detection of tra c anomalies in operational cellular networks.
Results con�rm that the Super Learner provides better results than
any of the single models, opening the door for a generalization of a
best-practice technique for these specific domains.

The research leading to these results has been partially fun-

ded by the Vienna Science and Technology Fund (WWTF)

through project ICT15-129, “BigDAMA”.

1 INTRODUCTION

Network security and anomaly detection represent both a keystone

to ISPs, who need to cope with an increasing number of unex-

pected events that put the network’s performance and integrity at

risk. The high-dimensionality of network data provided by current

network monitoring systems opens the door to the massive appli-

cation of machine learning approaches to improve the detection

and classi�cation of anomalous events. However, selecting the best

machine learning model for a speci�c problem is a complex task -

it is commonly accepted that there is no silver bullet for addressing

di!erent problems simultaneously. Indeed, even if multiple models

could be very well suited for a particular problem, it may be very

di cult to �nd one which performs optimally for di!erent data

distributions and statistical mixes. The ensemble learning theory

permits to combine multiple models to form a (hopefully) better

one. Ensemble methods use multiple learning algorithms to obtain

better predictive performance than could be obtained from any of

the constituent learning algorithms alone. In principle, if no single

model covers the true prediction behind the data, an ensemble can

give a better approximation of that oracle, true prediction model.

In addition, an ensemble of models exhibits higher robustness with

respect to uncertainties in training data, which is highly bene�cial.

Ensemble learning has in principle a higher computational cost

and complexity than single based learning approaches. Neverthe-

less, current big data platforms and o!-the-shelf data processing

technology is mature enough to allow a fast and parallel operation

of multiple algorithms [2], easing this constraint.

In this paper we devise a novel detection technique for network

security and anomaly detection using the Super Learner ensemble

learning model [1]. The Super Learner is a supervised learning

method that �nds the optimal combination of a collection of base

prediction algorithms. The Super Learner performs asymptotically

as well as the best possible weighted combination of the base lear-

ners, providing a very powerful approach to tackle multiple pro-

blems with the same technique. In addition, it de�nes an approach

to minimize over-�tting likelihood during training, using a variant

of cross-validation.

The proposed solution is evaluated on two di!erent scenarios and

using �ve di!erent ensemble combination algorithms for the Super

Learner, using the well-known MAWILab dataset for detection of

network attacks, and a semi-synthetic dataset for detection of tra c

anomalies in operational cellular networks. Evaluations con�rm

that ensemble techniques have the ability to perform as well as the
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best available base learning model, achieving even better results in 
most scenarios and using different combination approaches. To the
best of our knowledge, this paper is the first attempt to apply the
Super Learner approach to network anomaly detection problems,
aiming at discovering a new category of machine learning models
which could be applied in a more systematic fashion to networking
problems. We believe that this study would enable a broader appli-
cation of ensemble learning approaches to network security and
anomaly detection, with very promising results.

The remainder of this paper is organized as follows: Sec. 2 briefly
reviews the related work. Sec. 3 describes the main concepts behind
the Super Learner ensemble approach, and presents the different
learning models used in the study, both at the individual level and
at the ensemble level. Sec. 4 reports benchmarking results for the
proposed ensemble learning approaches, comparing their perfor-
mance to that achieved by the individual models in the detection of
both network attacks and network traffic anomalies in two distinct
datasets. Finally, Sec. 5 concludes this work.

2 RELATED WORK

There are a couple of extensive surveys on general domain anomaly
detection techniques [11] as well as network anomaly detection [12,
13], including machine learning-based approaches. The application
of learning techniques to the problems of network security and
anomaly detection is largely extended in the literature. There is
a particularly extensive literature in the application of learning-
based approaches for automatic traffic analysis and classification.
We refer the interested reader to [10] for a detailed survey on the
different ML techniques applied to automatic traffic classification.
The specific application of ensemble learning approaches to
network security and anomaly detection is by far more limited, and
even if it is generally observed in the practice that ensembles tend
to yield better results when there is a significant diversity among
the models, only few papers have applied them to network security
[15] and network anomaly detection [14].

3 ENSEMBLE LEARNING
In the context of supervised learning there are several methods
to train algorithms with available data to use them for prediction
purposes. The performance of a particular algorithm or predictor
depends on how well it can assimilate the existing information to
approximate the oracle predictor, i.e. the ideal optimal predictor
defined by the true data distribution. However, knowing a priori
which algorithm will be the best suited for a given problem is almost
impossible in practice. One could say that each algorithm learns a
different set of aspects of reality from the training datasets, and then
their respective prediction capability also differs between problems.

According to [7], single hypothesis algorithms or simple lear-
ning models may suffer from three different bottlenecks: statistical
problem - arises when the space of hypothesis is too large for the
amount of available training data, resulting in several algorithms
with similar accuracy and risk of choosing one that will not predict
future data points well; computational problem - several algo-
rithms are not guaranteed to find the global optimum; representa-
tion problem - results from the hypothesis space not containing
any model that is a good approximations of the true distribution.

Rather than �nding the best model to explain the data, ensemble

methods construct a set of models and then decide between them

with some combinatorial approach, seeking complementarity in the

sense that the learning limitations of each predictor compensates

for the others. Thus, the execution of several of these algorithms

in parallel provides diversity of predictions. Several papers have

studied methods exploiting this diversity to enhance the overall

prediction capability by combining the outputs of multiple algo-

rithms [5, 7]. Essentially, this is made by using a scheme known

as Ensemble Learning that uses the output of the predictors as in-

puts for a new algorithm that receives the name of second level or

meta learner. A notable example of this approach is the well known

Random Forest algorithm. Classical ensemble learning approaches

include bagging, boosting, and stacking [7].

General ensemble learning approaches might be prone to over-

�tting the data. In [1] a simple ensemble learning algorithm named

Super Learner is proposed as a possible solution for this over-�tting

limitation. It proposes a method to minimize the over-�tting like-

lihood using a variant of cross-validation. In addition, the Super

Learner provides performance bounds, as it performs asymptoti-

cally as good as the best available single hypothesis predictor.

The Super Learner algorithm makes aggressive use of cross vali-

dation: the available labeled dataset consisting of n samples is split

in K approximately equal sets. As usual, each of these sets is used

as a validation set, while its complement, K − 1 sets are used as the

training set. For each split, the J �rst level learners are �tted with

the training dataset and then do predictions for the samples of the

validation set. By merging the predictions done for every fold we

obtain a new dataset Z of size n× J , containing the predictions done

by each �rst level learner for every sample in the disjoint validation

sets. This new dataset Z is used as design input matrix to train the

meta learner algorithm, which will then be used to perform the

�nal predictions. In the original paper [1], the meta learner can be

arbitrarily complex, yet a simple linear regression model is used

for the presented regression scenario. The paper presents a formal

proof showing that this Super Learner is optimal in the sense that

it can perform at least asymptotically as well as the best �rst level

learner available.

3.1 Binary Classi cation

The logic expressed in [1] can be adapted for use on binary classi�-

cation problems such as the one we tackle in this paper. Essentially,

suppose there aren i.i.d. observations (Xi ,yi ) ∼ P0 with i = 1, . . . ,n

that generate empirical probability distributions Pn , and that the

goal is to estimate the classi�cation functionψ0 such that:

ψ0(X ) = argmin
ψ ∈Ψ

E [L (y,ψ (X ))] (1)

where L (y,ψ (X )) is a given loss function that measures the dis-

crepancy between prediction and real value - e.g., square loss in [1],

for all possible feature vector X ∈ X and its corresponding label

y ∈ Y.ψ0 is then a mapping function from the feature space into

the label space and Ψ the parameter space of all possible functions

such that X → Y. Now let {ψ̂j } j = 1, . . . , J be the collection of

�rst level learners, which represent mappings from the empirical

distribution Pn into parameter space Ψ.
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When using K-fold cross-validation let k ∈ {1, . . . ,K} be the

index of a split of the data into a validation set V (k) and its com-

plement, the training set T (k). Let then k(i) be the split index in

which sample i belongs to the validation set, i.e. i ∈ V (k(i)) and

fj,T (k ) the realization of the j
th - rst level learner ψ̂j after being

trained in T (k) - assuming the training has as target the minimi-

zation of the expected risk E[L(y,ψ̂j (X ))]. Then, a new observati-

ons dataset Z = {(Zi ,yi )} is constructed such that the i
th -sample

zi =
{

fj,T (k (i)) : j = 1, . . . , J
}

is the vector of the predictions of the

J  rst level learners for sample i when sample i is not in the training

dataset.

The last input for the Super Learner algorithm is another user

de ned algorithm ϕ : {Y} J → Y, that shall be used as a predictor

for labels y ∈ Y from data points z ∈ {Y} J . This algorithm must

also be trained to minimize the expected risk in a similar fashion

to the  rst level learners, that is to become similar to the optimal

mapping:

ϕ∗(Z ) = argmin
ϕ ∈Φ

E [L (Y ,ϕ(Z ))] (2)

over the set Φ of functions {Y} J → Y. Although not the case

presented in [1], this  tting can be made using penalization or cross-

validation to further avoid over- tting. Let then д : {Y} J → Y be

the function obtained from  tting algorithm ϕ with training dataset

{Zi } and label set {yi }.

Onceд has been determined, the  rst level learners are re-trained

on thewhole available training dataset to obtain the  tted predictors

{ fj : j = 1, . . . , J }. Thus, the Super Learner algorithm becomes a

new algorithm S such that:

S(Xi ) = д
(

f1(Xi ), . . . , f J (Xi )
)

(3)

As a  nal note, the outputs of the  rst level learners and the

Super Learner can be categorical in case of a hard decision or a

score in a soft decision case. The latter is more expressive, as it

provides an extra degree of freedom in the selection of the decision

threshold and allows for performance descriptions such as Receiver

Operation Characteristic (ROC) curves. Thus, we decided to use as

output from each algorithm the probability of the evaluated sample

belonging to the “positive” class (i.e., detection of an anomaly); as

such, the elements of matrix Z represent probabilities and, similar

to the most generic case for X , are also continuous values.

3.2 First Level Learners

Ensembles of machine learning models tend to yield better results

when there is a signi cant diversity among the individual base mo-

dels. Therefore, we select an assorted group of base learning models

with very di!erent underlying data assumptions. In particular, we

select the following  ve standard, fully-supervised models [10]:

(i) SVM with linear kernel, (ii) decision trees (CART); K-NN with

direct majority voting, using K = 10, (iv) multi layer perceptron

neural network, and (v) naive Bayes. Most of these models have

already shown good performance in previous work on anomaly de-

tection and classi cation [3, 4]. The hyper-parameter con guration

values for each model are selected on a manual basis, both by trial

and error as well as by following default recommended settings

for the python scikit-learn library used in all the implementations.

These models are trained according to the previously described

procedure,  rst to create the matrix Z , and then re-trained on the

whole available training dataset to make predictions on the testing

dataset. In the evaluations, we compare the individual performance

of each of these base models to the performance achieved by the

devised super learners algorithms, described next.

3.3 Super Learner Algorithms

The original work [1] uses a simple minimum square linear regres-

sion as the example Super Learner. Following the Super Learner

logic for binary classi cation described in Sec. 3.1, we conceived

 ve di!erent Super Learner algorithms. As we are dealing with

binary classi cation problems, a  rst natural choice is the usage of

logistic regression, which shall be the  rst evaluated Super Learner.

In [7], a linear weighted algorithm is suggested as meta-learner

for ensemble learning, by taking predictions from each  rst-level

learner and weighting them to get a weighted-majority-voting-like

classi er; more concrete, let H (X ) =
∑J
j=1w jhj (X ) be the weigh-

ted sum of the individual  rst-level learner predictions hh (X ), the

algorithm decides for the positive class if H (X ) > β , being β the

decision threshold, or the negative class otherwise. The weightsw j

can be de ned in di!erent ways; in this work we use three di!erent

types of weights:

MVuniform: gives the same weight (1/J ) to each learner, imple-

menting simple majority voting.

MVaccuracy: assigns weights w j =
α j

∑J
i=1 αi

to the prediction of

learner j, being αi the accuracy of the learner - i.e., the fraction of

true classi cations achieved on the whole available training dataset.

MVexp: computes weights with an exponential classi cation accu-

racy,w j =
eλα j

∑J
i=1 e

λαi
, where λ is selected to reduce the in"uence

of low accuracy predictors - we take λ = 10 for such an e!ect.

Finally, [1] mentions that there is no need to restrict the Super

Learner algorithm to parametric regression or classi cation  ts.

For example, one could de ne it in terms of a particular machine

learning algorithm. To also test this direction, we devise another

Super Learner based on a simple decision tree model, using the well

known CART decision tree algorithm.

4 EVALUATION AND DISCUSSION

In this section we show that the Super Learner approach can en-

hance the results obtained on the binary classi cation problems

studied in [3] and [4] for detection of network attacks and anomalies

respectively. In those studies, di!erent standard  rst-level learning

models are used. An exception to this is the usage of Random Forests

(RF) [10], which actually represent an ensemble learning approach,

by combining the output of multiple decision trees through plain

majority voting. In a nutshell, each decision tree of a RF is built

on di!erent subsets of input features, randomly selected. The RF

algorithm is more sophisticated than the Super Learner itself, in

the sense that it already performs feature selection during training.
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Table 1: ROC AUC on MAWI dataset.

DDoS mptp-la netscan-ACK netscan-UDP ping-�ood

Decision Tree 0.731 0.865 0.920 0.930 0.929

Naive Bayes 0.760 0.657 0.881 0.938 0.901

Neural Net 0.911 0.994 0.967 0.986 0.988

SVM 0.898 0.997 0.943 0.995 0.968

kNN 0.840 0.919 0.951 0.954 0.951

Random Forest 0.821 0.914 0.945 0.918 0.930

logreg 0.924 0.998 0.965 0.996 0.991

MVaccuracy 0.928 0.994 0.967 0.993 0.992

MVexp 0.928 0.997 0.970 0.996 0.992

MVuniforme 0.927 0.994 0.966 0.992 0.991

CART 0.879 0.984 0.946 0.983 0.977

(a) DDoS. (b) HTTP Flashcrowd (MPTP-la). (c) Ping Flood.

(d) Netscan UDP. (e) Netscan TCP-ACK.

Figure 1: Detection performance per type of attack on the MAWI dataset. Except for the CART-based Super Learner, all Super

Learners generally outperform base predictors.

We therefore compare the performance achieved by each single,

 rst-level detector against that achieved by the proposed Super

Learners. To have comparable results to [3] and [4], we additionally

add a RF-based detector, trained on the same training set as the

rest of the models, and having as many internal decision trees

as  rst level learners has the Super Learner; i.e., 5 in this paper.

Comparison is performed on the basis of true positive vs false alarm

rates (TPR/FPR respectively) through ROC curves, as well as by

computing the area under these ROC curves (AUC).

4.1 Data Description

Two di!erent datasets are used to test the performance of the pro-

posed approaches: the MAWI dataset for network security [9], and

a semi-synthetic dataset for tra"c anomalies in cellular networks,

conceived in [4]. Each dataset is split in two sets: a training set,

with approximately 20% of the samples, and a testing set with the

remainder 80%. We perform the learning procedures on the trai-

ning set and then evaluate the performance of the predictors on

the testing set using ROC curves and AUC values.
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4.1.1 MAWI Dataset. MAWI is a public collection of 15-minute

real network tra�c traces captured every day on a backbone link

between Japan and the US since 2001. Building on this repository,

the MAWILab project uses a combination of four traditional anom-

aly detectors to partially label the collected tra�c [9]. From the

labeled anomalies and attacks, we focus on a speci�c group which

are detected simultaneously as “anomalous” by the four MAWILab

detectors to achieve a high quality on the obtained labels. We con-

sider �ve types of attacks/anomalies in particular: (i) DDoS attacks

(DDoS), (ii) HTTP �ashcrowds (mptp-la), (iii) Flooding Attacks

(Ping Flood), (iv) UDP and (v) TCP probing tra�c. The considered

algorithms were trained to detect each of these attack types inde-

pendently and in parallel, in the same fashion and using the same

features as [3]. As a result, each detection approach can detect the

occurrence of an attack and also classify its nature. The dataset

spans a full week of MAWILab tra�c traces collected in late 2015;

traces are split in consecutive time slots of one second each, and a

high-dimensional set of 245 features describing the tra�c in each

of these slots is used, see [3] for more details.

4.1.2 Semi-Synthetic Anomalies Dataset. We also use a semi-

synthetic dataset of network anomalies observed in cellular net-

works, conceived in [4] by using real DNS tra�c measurements.

After collecting DNS traces for longer than six months in 2014

at a cellular network of a large-scale European operator, the aut-

hors used a technique to generate new tra�c traces by carefully

recombining real tra�c traces. Basically, they considered samples

of manually labeled one-minute intervals from the original data,

characterized by a vector of features containing the distribution

of DNS query counts by device Manufacturer, device OS, APN,

FQDN and DNS transaction �ag. With the anomaly-free intervals

they generate new synthetic background tra�c, simply by shu ing

the data samples of the same time of the day and same day class

(working or festivity). Then, three di!erent types of anomalies are

introduced into the synthetic data, derived from real anomalies

observed in this operational network. These anomalies mimic dif-

ferent types of service outages, and are represented by impacting

a di!erent number of end-users requesting particular services on

speci�c domain names. The di!erent anomalies considered are E1:

short lived (hours) high intensity anomalies (e.g., 10% of devices

repeating a request every few seconds), where the involved devices

share the same manufacturer and OS; E2: several days lasting low

intensity anomalies (e.g., 2% of devices repeating requests every few

minutes) and E3: short-lived variable intensity anomalies a!ecting

all devices of a speci�c APN. The used dataset consists of a full

month of synthetically generated measurements, reported with a

time granularity of 10 minutes time bins. Each time bin is assigned

a class, either normal (label 0) or anomalous (label 1, 2 or 3 for the

three anomaly types respectively). The dataset includes 16 di!erent

variations of E1, E2 and E3 anomalies, impacting a di!erent fraction

of end-users - going from 0.5% to 20%. Full details on the synthetic

tra�c generation are available in [4].

4.2 Detection of Network Attacks

Fig. 1 depicts the ROC curves obtained by each detector and for

each attack type, and Tab. 1 reports the corresponding AUC values.

Table 2: ROC AUC on semi-synthetic dataset.

E1 E2 E3

Decision Tree 0.993 0.873 0.991

Naive Bayes 0.996 0.861 0.989

Neural Net 0.999 0.944 0.996

SVM 0.999 0.944 0.995

kNN 0.995 0.859 0.963

Random Forest 0.999 0.876 0.998

logreg 0.999 0.956 0.996

MVaccuracy 0.999 0.948 0.996

MVexp 0.999 0.954 0.996

MVuniforme 0.999 0.945 0.996

CART 0.997 0.924 0.994

Besides few exceptions, most Super Learner strategies achieve bet-

ter TPRs at the same FPR than both most �rst level learners and

the Random Forest algorithm. Indeed, except for the CART-based

Super Learner, all Super Learners generally outperform base pre-

dictors. Majority Voting with both exponential or direct accuracy

based weights and the Logistic regression Super Learner strategies

actually achieve the best results in all attack types; in particular,

the MVexp Super Learner performs the best for all attack types,

calling for a plausible generalizable and particularly �t model for

this testing scenario. Still, it is worth mentioning that, similar to

[3], performance is rather poor on the detection of DDoS attacks;

the best algorithms detect about 80% of the attacks with a FPR of

10%. Exactly the opposite happens with the HTTP �ashcrowds,

where all Super Learners and some of the base predictors are above

95% detection rate with a FPR below 5%. The bene�ts of the Super

Learner approach are less evident in this case, as there is not much

room left for improvement, It is worth mentioning that the Random

Forest detector never achieves an AUC score higher than any of

the Super Learner strategies.

4.3 Detection of Network Anomalies

Fig. 2 depicts the ROC curves obtained by each detector for each

anomaly type, and Tab. 2 reports the corresponding AUC values.

Results are split by First Level Learners and Super Learners in

di!erent �gures. Similar to [4], achieved results for anomalies of

type E1 and E3 di!ers completely from E2. Every predictor achieves

an AUC over 99% and detection rates above 97% at a FPR of 5% for

E1 anomalies. Thus, there is little room for improvement, which

leads to only very subtle di!erences between the performances

of Super Learners and base learners. Similar observations can be

drawn from the detection of E3 anomalies.

The attempt to detect E2 anomalies shows quite di!erent results.

Not only all predictors performed relatively poor - the best ones

achieve almost 80% TPR at a FPR of 5%, but also many of them

achieve very low performance; e.g. the ensemble algorithm Random

Forest gets a TPR just above 60% for a 5% FPR and only 80% TPR for

a high FPR of 20%, clearly worse than any other ensemble technique.

Still, this scenario is the one that better highlights the advantages of

the Super Learner approach for anomaly detection, as all the Super

Learners - expect from CART, outperform the �rst level learners.
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(a) First Level Learners on E1. (b) First Level Learners on E2. (c) First Level Learners on E3.

(d) Super Learners on E1. (e) Super Learners on E2. (f) Super Learners on E3.

Figure 2: Detection Performance per type of anomaly on the semi-synthetic dataset

5 CONCLUDING REMARKS

The advantages of ensemble learning techniques for detection of

attacks and anomalies, and particularly of the Super Learner ap-

proach, could be con rmed through evaluation. Not only we found

that Super Learner based predictors have the ability to perform as

well as the best available  rst level learner, but often achieve better

results. The performance improvements are higher in scenarios

where the performance of the  rst level predictors were relatively

low; when  rst learners performance is already high, there is not

enough room for improvement and the additional computational

cost of the Super Learner may not be justi ed. The di!erent evalu-

ated Super Learner schemes achieved very similar performances.

However, the MVexp Super Learner performs the best for all attack

and anomaly types in both datasets, suggesting a potentially good

approach to go for by default in similar binary classi cation pro-

blems. The simplicity and very low computational costs of MVExp

majority voting makes also a very nice case for such type of models.

We believe that this study would enable a broader application of

ensemble learning approaches to network security and anomaly

detection, with very promising results.
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