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Abstract

During the last decade we have seen an explosive development of wireless technologies. Consequently the demand for electro-
magnetic spectrum has been growing dramatically resulting in the spectrum scarcity problem. In spite of this, spectrum utilization
measurements have shown that licensed bands are vastly underutilized while unlicensed bands are too crowded. In this context,
Cognitive Radio Network emerges as an auspicious paradigm in order to solve those problems. The main question that motivates
this work is: what are the possibilities offered by cognitive radio to improve the effectiveness of spectrum utilization? With this
in mind, we propose a methodology, based on configuration models for random graphs, to estimate the medium access probability
of secondary users. We perform simulations to illustrate the accuracy of our results and we also make a performance comparison
between our estimation and one obtained by a stochastic geometry approach.
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1. Introduction

The widely extended use of wireless technologies in our
everyday lives (e.g. mobile phones, sensors, laptops), together
with the prediction that the mobile data traffic will increase 8-
fold between 2015 and 2020 [2], have shifted the attention and
efforts of many researchers all over the world towards the study
of Cognitive Radio Networks (see for example [27, 25, 24, 11]).
This concept is not new, and was first introduced by Mitola [19]
in 1999. Cognitive Radio represents a promising technology
which, based on dynamic spectrum access, strives at solving
two important problems: spectrum underutilization and spec-
trum scarcity.

In this paradigm we can identify two classes of users: pri-
mary and secondary. Primary users (PUs) are those for which
a certain portion of the spectrum has been allocated to (often in
the form of a paid contract). Secondary users (SUs) are devices
which are capable of detecting unused licensed bands and adapt
their transmission parameters for using them.

The fundamental concept behind Cognitive Radio Networks
(CRNs) is to allow SUs to use the licensed resource in the ab-
sence of PUs in order to improve the spectrum utilization. The
key requirement in this context is that the PUs ought to be as
little affected as possible by the presence of SUs. In the ideal
case, PUs would use the network without being affected at all
by SUs, which will in turn make use of whatever resources are
left available.

Let us define the Medium Access Probability (MAP) as the
mean number of concurrent transmissions that take place in a
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network divided by the total number of nodes. Given the net-
work and the PUs utilization, one of the main performance me-
trics of interest here is naturally the MAP of SUs. This value
measures the portion of spectrum “wasted” by PUs and which
may be leveraged by SUs.

Many works like [5, 6, 7, 17, 23] have demonstrated that
mathematical techniques such as stochastic geometry [26] and
random graphs [28, 9] are excellent tools in order to predict
diverse wireless network performance metrics. They are spe-
cially useful to model interactions between nodes in large ran-
dom networks. This randomness may include node positions,
node mobility, fading, or traffic (stochastic arrivals and depar-
ture).

Stochastic geometry allows to study the average behavior
over many spatial realizations of a network whose nodes are
placed according to some spatial probability distribution. Ge-
nerally, the location of the nodes are assumed to be a realiza-
tion of an homogeneous Poisson point process (PPP). More-
over, and for particular cases, these probabilistic models may
include other factors such as propagation models, transmitting
power, receiving sensitive, antenna radiation patterns, signal
polarization, and power/interference thresholds. The articles
[21, 22, 18] are the most representative examples of the use
of stochastic geometry in cognitive radio networks. The au-
thors obtained closed formulas for bounds of some performance
metrics (such as MAP) in different CRNs contexts. However,
in some scenarios the obtained bounds are very conservative.
Moreover, in more general cases (e.g. when the processes in-
volved are not Poisson or when the fading variables are not in-
dependent), determining these bounds is a difficult task, if not
impossible.

On the other hand, since we are interested in the MAP,
many network characteristics (e.g. propagation models, trans-
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mitting power, etc.) can be abstracted into a (random) graph.
Vertices in the graph represent nodes (or links) of the wireless
network, and two nodes (or links) are connected by an edge
when they cannot transmit simultaneously (as a consequence of
the medium access mechanism, or the spectrum sensing capa-
bilities of SUs). Then, the study of these structures provides an
alternative route in order to predict performance metrics such
as the MAP. In particular, recently the authors of [8] proposed a
methodology for very general random graphs (characterized by
the node’s degree distribution), and they proved that some key
properties of the system can be captured by ordinary differen-
tial equations. Authors of [7] applied this method in a wireless
environment (RTS/CTS CSMA network) and obtained accurate
results in the estimation of the MAP, whereas the methodology
was further refined and simplified in [10].

In this paper, we consider two large wireless networks, one
composed by PUs and the other by SUs. We are interested in es-
timating the MAP of SUs. To this end, we choose an approach
based on random graphs and we extend the methodology deve-
loped in [8, 10] to the context of CRNs. In particular, the main
difficulties that arise in this work are related to the interaction
between both networks. However, we show that the methodo-
logy yields differential equations for which explicit solutions
may be obtained. With our proposal, we show that it is possi-
ble to calculate an analytic approximation of the MAP (both for
PUs and, most importantly, SUs) in an arbitrary large heteroge-
neous random network.

As a further contribution of this article, we perform a com-
parison between the approximation presented here, based on
random graphs, with that based on a stochastic geometry ap-
proach. To perform the comparison we will refer to [21], where
the authors studied an analogous problem and they obtained a
bound of the MAP of SUs. We also analyze how conserva-
tive this bound is in some representative scenarios. On the one
hand, these comparisons will be performed on those scenarios
where a stochastic geometry approach is valid and possible. On
the other hand, we will show that the approach presented here
is more general than the one that uses spatial models, analy-
zing their performance in real network scenarios (e.g. when the
involved processes are not necessarily Poisson).

The rest of the paper is structured as follows. In section 2
we introduce our hypotheses and the main characteristics of the
considered MAC protocol. In section 3 we present our main
results, in particular we show the MAP estimation using a ran-
dom graph approach based on [8]. In section 4 we validate our
results presenting numerical examples in several scenarios. In
section 5, we give an introduction of the stochastic geometric
model proposed in [21] and we compare their results with our
MAP approximation in representative cases. Finally, we con-
clude and discuss future work in section 6.

2. Context and Assumptions

This work bears on the analysis of a general scenario where
there is a primary wireless network coexisting with a secondary
one. In this context, SUs try to exploit the unused licensed

spectrum, so the MAC protocol should provide mechanisms to
give SUs a way to detect the primary spectrum holes.

In particular, we work with the Cognitive-CSMA model in-
troduced in [21] where Carrier Sensing (CS) is used for spec-
trum sensing and for interference control. In this mechanism,
the following principles are verified:

• each PU has a protection zone,

• no SU can transmit inside the protection zone of a PU,

• time is slotted,

• each time slot consists of three phases: primary sensing,
secondary sensing and transmission.

During the primary sensing phase, all PUs sample an inde-
pendent and identically distributed random variable that repre-
sents its backoff timer. When the time indicated by its backoff
timer is elapsed, the tagged PU checks whether the channel is
free (by means of the CS mechanism mentioned before), and if
so immediately begins transmitting. In other words, a PU will
transmit during a time-slot if and only if its timer is the smallest
among all its primary contenders.

Once the primary phase is over, and the corresponding PUs
are transmitting, the secondary sensing phase begins. Similarly
to the previous phase, all SUs sample a backoff timer, after
which time they transmit if the channel is free. The difference in
this case is that the CS mechanism has to evaluate the presence
of both SUs and, most importantly, PUs. Note that the protec-
tion zone of the PUs is thus implicitly defined by the ability of
SU’s CS mechanism to detect the presence of PUs. All in all,
a SU will transmit if and only if it is not in the protection zone
of an active primary user and its timer is the smallest among its
secondary contenders. In this context, the MAP is defined as
the probability that a user be granted the right to transmit in a
time slot.

Naturally, the determination of the protection zone and con-
tender transmitters is strongly related with the nodes’ positions
and propagation conditions (i.e. path-loss and fading variables).
In our present context, and similarly to [21], we will assume
that the CS will evaluate the channel as busy if the signal of
any other node is received with an energy above a certain thres-
hold. This threshold may be different for secondary and pri-
mary nodes.

Finally, and regarding traffic, we will assume that all SUs
are saturated, i.e. have a packet ready to be sent in every time
slot. This assumption stems from the fact that we are interested
in estimating the capacity of SUs to exploit the resources left
by the PUs (i.e. the MAP of SUs).

3. Random Graphs and Configuration Algorithm

3.1. Preliminaries and Motivation

As we mentioned above, at any time-slot, and given the
nodes’ position and propagation conditions, we may determine
the protection zone of each PU and all contending nodes. This,
together with the backoff timers, will in turn determine which
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nodes will be allowed to transmit. Note however that what is
actually required to determine which nodes will transmit is pre-
cisely which pairs of nodes are contenders, and which SUs are
in the protection zone of each PU (as opposed to the complete
nodes’ position and detailed propagation conditions).

The discussion above suggests that the network may be abs-
tracted to a graph G (V ,E ) (the so-called interference graph),
where the set of vertices represent the primary and secondary
nodes, and the edges model the interference between any two
nodes. In other words, if a transmission of node s triggers the
CS of node r, then an edge from node s to r will exist. Note that
in the particular case where s is a PU and r a SU, then an edge
will exist if r is in the protection zone of s.

We will further assume a symmetric channel among PUs
and SUs, meaning that the edges between nodes of the same
type of user are bidirectional. Note however that the edges bet-
ween a PU and a SU are directional, since the former are not
affected by the latter (in other words, connections from SUs to
PUs are meaningless in this context). If an edge exists between
two nodes, we say that those nodes are contenders (or neigh-
bors).

Let us now discuss what information we have on G (V ,E ).
For instance, if the network is relatively small and static, we
may know the graph completely. If on the other hand, the net-
work is very big, has varying propagation conditions, and/or
transient or mobile nodes (which is probably the case for SUs),
the most natural modeling tool is a random graph.

This in turn induces the question of what probabilistic model
use in the construction of the graph. We may for instance ex-
pect that on average each PU will have kPP primary neighbors,
that kPS SUs are on average on the protection zone of the typical
PU, and that each SU has kSS secondary neighbors on average.
In this case a reasonable model would be a variation of the well-
known Erdös-Rényi model [15], where for instance a link be-
tween any two primary nodes will exist with probability kPP

NP−1
(with NP the total number of primary nodes).

We may further enrich our model if we have information
regarding the distribution of the nodes’ degree (and not just its
mean as in the previous example). That is to say, we know
the counting measure µ(i, j), representing the number of PUs
which have i PU neighbors and j SUs in its protection zone.
Furthermore, we also know ν(i, j), which will count the num-
ber of SUs that belong to the protection zone of i PUs, and that
have j SUs neighbors (thus ∑i, j jµ(i, j) = ∑i, j iν(i, j)). The
example considered in the last paragraph may be cast to this
context by considering µ(i, j) and ν(i, j) as two-dimensional
binomial distributions. That is,

µ(i, j) = NPFbin(NP−1, pPP, i)Fbin(NS, pPS, j)

ν(i, j) = NSFbin(NP, pPS, i)Fbin(NS−1, pSS, j)

where Fbin(n, p, i) = Cn
i pi (1− p)n−i and the probabilities are

pPP = kPP
NP−1 , pPS =

kPS
NS

and pSS =
kSS

NS−1 .
The analysis to calculate the resulting MAP may then be

as follows: construct a random graph (randomly chosen from
those which comply to the chosen counting measures), ana-
lyze the resulting CSMA algorithm on that particular graph, and

then weight the result over all possible graphs. However, this
naive approach will become impractical as soon as the num-
ber of nodes is relatively big. To circumvent this complication,
the idea proposed in [8] (and refined in [10]) is to construct the
graph at the same time as the nodes transmit. By smartly choos-
ing the variables considered (as we will present in Sec. 3.3), a
Markov Chain may be constructed such that, when the number
of nodes is large, it may be studied by means of a system of
differential equations.

The framework discussed above has two implicit approxi-
mations. The first one, is that the analysis is valid for an in-
finite number of nodes, making it valid for moderate to large
networks. The second one, which will be clearer when we
present with more detail the graph’s construction below, is that
the counting measures used in the abstraction do not include
any spatial information (i.e. the correlation between degree of
nodes). However, we will show by means of simulations that, as
soon as fading is not negligible, the MAP estimated by means of
the set of differential equations constitutes an excellent approxi-
mation (and it is still very good when this is not the case).

3.2. Configuration Model
Let us first focus on the primary sensing phase. As we

mentioned before, each PU chooses a random backoff timer,
at which time they will check whether the channel is free. This
is equivalent to a random ordering of the PU nodes, meaning
that any continuous distribution is equivalent for the backoff
timer (in terms of the resulting order). We will thus choose,
without loss of generality, an exponentially distributed backoff
timer with mean equal to one.

The key to our analysis is the procedure by which the graph
G (V ,E ) is constructed along with the CSMA algorithm: the
so-called configuration model [20]. Please recall that we have
NP and NS primary and secondary users respectively, and that
our a priori information are the counting measures µ(i, j) and
ν(i, j). In this construction, we start with a “disconnected”
graph. By this we mean that we have a set V of NP +NS ver-
tices where, for instance, we have µ(i, j) nodes with i primary
and j secondary neighbors, but precisely which other nodes are
these neighbors is not revealed until the tagged node transmits.
In this sense, we will use the term half-edges to refer to these
unmatched edges. The methodology considered here constructs
G (V ,E ) by pairing the half-edges sequentially as nodes trans-
mit.

Please note that each node has two types of half-edges:
some that should be connected to primary nodes, and others that
should be connected to secondary nodes. The pairing above
should be performed with this in mind. For instance, a half-
edge from a PU to a SU should be paired with a half-edge from
a SU to a PU.

Let us consider a time t during the primary sensing phase.
The set V may be partitioned into the following subsets:

1. Primary nodes that are already transmitting: A P
t (active

nodes).
2. Primary and secondary nodes that have been blocked by

the ongoing primary transmissions: BP
t and BS

t (blocked
nodes). These nodes will not transmit during this slot.
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3. Primary and secondary nodes that are neither transmit-
ting nor blocked: E P

t and E S
t (unexplored nodes). These

are the nodes that may transmit in the future, and will
become either active or blocked as the sensing phase ad-
vances.

When the slot has just begun, we have A P
0 = /0, BS

0 =BP
0 =

/0 and |E P
0 |= ∑i, j µ(i, j) = NP and |E S

0 |= ∑i, j ν(i, j) = NS.
Assume that the backoff timer of a node s in E P

t expires
at time t. The following then occurs (see Figure 1 for a toy
example):

1. s is moved from E P
t to A P

t .
2. Each half-edge of s is in turn paired with another uni-

formly randomly chosen unmatched half-edge. This way,
we construct a graph sampled at random and uniformly
from all graphs that comply to the measures µ(i, j) and
ν(i, j).

3. All vertices whose half-edges were chosen in the previ-
ous step, and which are still unexplored (some may al-
ready be blocked), are moved from E P

t to BP
t and from

E S
t to BS

t respectively.

The primary sensing phase ends when |E P
t |= 0. Half-edges

to and from primary nodes which are yet to be matched may be
safely ignored, since they belong to blocked nodes.

Figure 1: Illustration of primary sensing phase. In this toy example, there are
represented three PUs (big blue circles) and two SUs (small red circles). Please
see their half-edges that are all initially unpaired (solid half-edges will connect
PU-PU or SU-SU, and dashed ones will connect PU-SU). In Step 1, a PUs is
selected and become to be an active node (the hatched circle). This node has
degree (1,1) (one solid and one dashed half-edge respectively). This means
that the node will have two neighbors: one primary and one secondary. In
Step 2, each half-edge of the new active node is in turn paired with another
uniformly randomly chosen unmatched half-edge. In other words, in this step
the neighbors of the hatched node are defined. Finally, the nodes (PUs and SUs)
which are neighbors of the active node (the ones which their half-edges were
chosen in step 2) are moved to the blocked set (black nodes).

The secondary sensing phase thus begins, which is very
similar to what we described before. The most important dif-
ference is that we have to consider only vertices of secondary
users, several of which are already blocked. Let us somewhat
force notation and consider again that time t = 0 refers to the
beginning of the secondary sensing phase. We thus have that
A S

0 = /0, but the other two sets (BS
0 and E S

0 ) are actually the
result of the primary sensing phase described before.

3.3. Markov Process and Fluid Limit

Note that in the configuration model described above, the
process given by (A P

t ,BP
t ,E

P
t ,BS

t ,E
S

t ) constitutes a continuous-
time Markov Process during the primary sensing phase, and

analogously the process given by (A S
t ,BS

t ,E
S

t ) constitutes a
Markov Process during the secondary sensing phase. For ins-
tance, the time between transitions during the primary sensing
phase is exponentially distributed with mean equal to 1/|E P

t |
(since only unexplored nodes may become active at any given
time).

However, since we are interested in the number of active
nodes resulting from the sensing phases, our goal is to calculate
|A S

∞ |, and not precisely which nodes are active. We thus follow
the ideas presented in [8] and particularly [10], which chooses a
set of variables that not only conforms a Markov Process, but is
also amenable to a relatively simple analysis, in particular when
the number of nodes tends to infinity.

Let us then define the following important variables:

• EP
t (i, j) and ES

t (i, j): number of unexplored primary and
secondary nodes of degree (i, j) at time t.

• UPP
t : number of unpaired half-edges at time t belonging

to primary nodes and that should be connected to another
primary node.

• USS
t : same as above but between secondary nodes.

• UPS
t : number of unpaired half-edges at time t that belong

to a primary node and should be connected to a secondary
node or viceveresa.1

• AP
t and AS

t : number of active primary and secondary nodes
at time t

Initially we have the following conditions:

• all the vertices are unexplored: EP
0 (i, j) = µ(i, j) and

ES
0 (i, j) = ν(i, j),

• all the half-edges are unpaired: UPP
0 =∑i, j iµ(i, j), UPS

0 =

∑i, j 2 jµ(i, j) = ∑i, j 2iν(i, j) = ∑i, j jµ(i, j)+∑i, j iν(i, j)
and USS

0 = ∑i ∑ j jν(i, j),

• no transmitter is active: AP
0 = AS

0 = 0.

As we discuss below, during the primary sensing phase the
process Xt =(AP

t ,(E
P
t (i, j))i, j,(ES

t (i, j))i, j,UPP
t ,UPS

t ) also cons-
titutes a continuous-time Markov Process. An analogous pro-
cess will be defined for the secondary phase. Its Markovian
structure allows us to analyze its asymptotic behavior by means
of a simpler deterministic approximation. In a nutshell, we can
say that by choosing a convenient scaling of the process it is
possible to obtain in the limit, a description of the asymptotic
behavior of the process as the solution of an ordinary diffe-
rential equation system (hopefully deterministic) which is de-
nominated “fluid limit”. Whereas the stochastic process is a
microscopic description of the system, the corresponding dif-
ferential equation gives a macroscopic description that captures

1Please note that the number of unmatched half-edges that belong to a se-
condary node and that should be connected to a primary node is at all time equal
to UPS

t /2.
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the main characteristics of the system. See for instance, classi-
cal results on convergence of Markov processes in [16] or [13].
The proof of this approximation result is generally based on a
semi-martingale decomposition of the Markov process, which
shows that the main characteristic of the stochastic process are
captured by the drift part while the stochastic fluctuation of se-
cond order (corresponding to the martingale) vanishes with the
scaling and limit procedure.

More specifically, consider a Markov process XN(t) para-
metric in N and its martingale decomposition:

XN(t) = XN(0)+
∫ t

0
QN(XN(s))ds+MN(t), (1)

where Q(l) is the so-called drift of the process at state l which
may be calculated as ∑m(l−m)q(l,m), being q(l,m) the transi-
tion rate from state l to m and MN(t) is a Martingale. Consider
now the scaled process X̃N(t) = XN(t)

N , then:

X̃N(t) = X̃N(0)+
1
N

∫ t

0
QN(XN(s))ds+

MN(t)
N

. (2)

If there exist a Lipscthitz function Q such that

lim
N→∞
||QN(XN(s))

N
−Q(X̃N(t))||= 0

and MN(t)
N converges to zero in probability, then X̃N(t) con-

verges in probability over compact time intervals to a determi-
nistic process x(t), described by the ODE (ordinary differential
equation):

x′(t) = Q(x(t)). (3)

The drift Q may be interpreted as the expected rate of change
of the process. Even if the resulting deterministic differential
equation is in many cases an intuitive description of the system,
the proof of this kind of convergence or the process Xt is quite
technical. The main issue in this case is that the process Xt is a
measured-valued Markov process [14], which implies a careful
definition of the topologies involved in the convergence result.
Examples of formal proofs of convergence for this kind of pro-
cesses in similar contexts can be found in [7, 8, 10]. In the next
section we focus on the calculus of the drift for our process of
interest XN

t in order to determine the fluid limit (Theorem 1).
Moreover, in this case we can obtain an explicit expression of
x(t) (solution of Eq. (3)).

3.3.1. Primary Sensing Phase
In this section we discuss the Markov structure of the pro-

cess Xt =XNP(t)= (AP
t ,(E

P
t (i, j))i, j,(ES

t (i, j))i, j,UPP
t ,UPS

t ) du-
ring the primary sensing phase and we calculate its drift. As we
mentioned before, the drift determines the fluid limit. First of
all, the times between transitions are exponentially distributed
with mean 1/∑i, j EP

t (i, j), since only primary unexplored nodes
are competing for the channel (the rest are either blocked or al-
ready active). Let us then consider that at time t a primary node
starts transmitting, and thus a transition occurs. Then the tran-
sition probabilities may be calculated as follows:

• A random node is uniformly chosen among all unexplored
nodes and becomes active. Thus AP

t increases by one with
probability 1.

• The newly active node’s degree distribution is simply:

αt(i, j) =
EP

t (i, j)
∑k,l EP

t (k, l)
.

Suppose that the new transmitter has degree (I,J). This
implies that it has I half-edges to be paired with other I
unmatched half-edges (belonging to primary nodes), and
J half-edges to be paired with other J ones (from se-
condary nodes). Then the number of unpaired half-edges
UPP

t and USP
t will be reduced by 2I and 2J respectively2

with probability αt(I,J).

• Let us focus on the neighbors of the tagged node, which
should now be blocked. Assume we have to pair an un-
matched half-edge to a primary node (one of the I half-
edges from before). The pairing half-edge may be cho-
sen from all those available (UPP

t ), of which precisely
iEt(i, j) belong to an unexplored node with degree (i, j).
Thus, the probability that any of the I primary neighbors
of the tagged node is unexplored and has a degree (i, j)
is equal to:

β
P
t (i, j) =

iEP
t (i, j)
UPP

t
.

By a similar argument, the probability that any of the J
secondary neighbors of the tagged node has a degree (i, j)
and is unexplored is equal to:

β
S
t (i, j) =

iES
t (i, j)

UPS
t /2

.

With the discussion above we are in conditions of calcu-
lating the drift of the process. For instance, AP

t has a drift equal
to 1×∑i, j EP

t (i, j). Let us then normalize our process by the
number of primary and secondary nodes NP and NS (where we
will assume that NP/NS is a constant) and obtain a result such
as Eq. (3).

Theorem 1. Consider the configuration model discussed in
Sec. 3.2 and the processes defined in Sec. 3.3 during the pri-
mary phase. Let us define the normalized processes, for which
NP/NS is a constant:

• ÃP
t = AP

t /NP

• ẼP
t (i, j) = EP

t (i, j)/NP and ẼS
t (i, j) = ES

t (i, j)/NS

2Please note that the existence of loops or multi-edges are possible with the
configuration model discussed in Sec. 3.2. For instance, actually UPP

t should
be decreased by 2I− 2L (with L the number of self-loops). However, as in-
dicated by intuition, proved in [8, 10], and further discussed in [7], when the
number of nodes goes to infinity, as we will consider next, the probability of
such occurrences may be neglected in the analysis.
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• ŨPP
t =UPP

t /NP and ŨSP
t =USP

t /NP

Let be X̃N
t = (ÃP

t , Ẽ
P
t (i, j), ẼS

t (i, j),ŨPP
t ,ŨSP

t ). Therefore, as
NP → ∞, X̃N

t converges in probability over compact time in-
tervals to xP(t) = (aP

t ,e
P
t (i, j),eS

t (i, j),uPP
t ,uPS

t ) solution of the
following differential equation system:

daP
t

dt
= ∑

k,l∈N
eP

t (k, l); (4)

deP
t (i, j)
dt

=−eP
t (i, j)− ieP

t (i, j)
uPP

t
∑

k,l∈N
keP

t (k, l); ∀i, j ∈ N; (5)

deS
t (i, j)
dt

=−2ieS
t (i, j)
uPS

t
∑

k,l∈N
leP

t (k, l); ∀i, j ∈ N; (6)

duPP
t

dt
=−2 ∑

k,l∈N
keP

t (k, l); (7)

duPS
t

dt
=−2 ∑

k,l∈N
leP

t (k, l); (8)

where

aP
0 = 0;

eP
0 (i, j) =

µ(i, j)
NP

; ∀i, j ∈ N and eS
0(i, j) =

ν(i, j)
Ns

; ∀i, j ∈ N;

uPP
0 =

1
NP

∞

∑
i=0

∞

∑
i=0

iµ(i, j) and uPS
0 =

1
NP

∞

∑
i=0

∞

∑
i=0

2 jµ(i, j).

Some remarks are in order concerning the result above. First-
ly, the original Markov Chain has an absorbing state for which
EP

t (i, j) = 0∀i, j. This is reflected in the set of equations above,
where we have an equilibrium point when eP

t (i, j) = 0∀i, j.
Secondly, and as we mentioned before, primary nodes act

independently of secondary ones. This is again reflected in the
set of equations, where the key is to solve equations (5) and (7)
which are coupled (the rest may be solved once we obtain an
analytical expression for eP

t (i, j), see details in Appendix A),
and refer to the behavior of these nodes.

Thirdly, we can include into our model unsaturated traffic
conditions for primary users. We model this aspect by incorpo-
rating the transmission probability pPU . This parameter defines
the number of primary transmitters that have packets to be sent
in each time slot. In other words, in this phase of the algorithm
only the primary unexplored nodes which have packet to be sent
are competing for the channel. This only affects eP

0 (i, j) value
as eP

0 (i, j) = pPU
µ(i, j)

NP
; ∀i, j ∈ N.

Lastly, we are actually interested in how many secondary
nodes are still unexplored after the primary sensing phase is
over, so as to study the secondary phase. That is to say, we
want to calculate eS

∞(i, j) ∀i, j, which will in turn become the
initial conditions of the secondary sensing phase. This value
may be calculated as follows:

Theorem 2. Consider the processes and variables defined in
Theorem 1. Let τ∞ be the unique value in (0,∞] such that∫

τ∞

0

uPP
0 e−2σ

∑
k,l∈N

keP
0 (k, l)e

−kσ
dσ = 1. (9)

Then, the proportion of unexplored secondary nodes at the
beginning of the secondary phase converges in probability to:

eS
∞(i, j) = eS

0(i, j)

(
uPS

τ∞

uPS
0

)i

∀(i, j), (10)

where

uPS
τ∞

= uPS
0 −2

∫
τ∞

0
∑

k,l∈N
leP

0 (k, l)e
−kσ

uPP
0 e−2σ

∑k,l∈N keP
0 (k, l)e

−kσ
dσ .

(11)

Proof. See the appendix.

Some interesting insights may be obtained from the result
of equation (10). For instance, and as we mentioned before, the
result of the primary phase is not influenced by the secondary
nodes. This is reflected by the fact that the proportion of se-
condary nodes that are still unexplored after the primary sen-
sing phase only depends on the degree towards primary nodes
(the variable i). More in particular, its form is exponential on i,
generating great differences between secondary nodes regard-
ing their access probability. Since uPS

τ∞
/uPS

0 < 1, those who be-
long to the protection zone of several primary nodes will sel-
domly access the channel.

Please note that uPS
τ∞
/uPS

0 represents the proportion of un-
paired half-edges between primary and secondary users at the
end of the primary sensing phase. These unpaired half edges
correspond to primary users that did not become active. There-
fore, the quotient may be interpreted as the probability of a se-
condary user to be out of the protection zones of active primary
nodes.

3.3.2. Secondary Sensing Phase
Once the primary sensing phase is over, we turn our at-

tention to the secondary sensing phase. The construction of
the Markov Process will be very similar to the previous sec-
tions, but in this case is a little simpler, since we do not have
to take into account primary nodes. In this sense, let us some-
what abuse the notation and define ES

t ( j) as the number of un-
explored secondary nodes during the secondary sensing phase
that have j half-edges to be paired with other secondary nodes.
Then, the initial condition ES

0 ( j) is the result of the primary
sensing phase, and will be estimated from eS

∞(k, j) as defined in
(10). It should be noted that the existence of the limit lim

t→∞
eS

t (k, j)
(stationary regime) should be guaranteed. The existence of this
limit is related to the ergodicity of the process and it can be
proved with similar arguments to the ones included in [4] and
the references therein.

Finally, with arguments very similar to the ones used in the
previous subsection, we reach the following result:
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Theorem 3. Consider the configuration model discussed in
Sec. 3.2, ES

t ( j) as defined above, and the processes defined
in Sec. 3.3 during the secondary sensing phase. Furthermore,
let eS

∞(i, j) be the value defined in (10). Let us define the nor-
malized processes ÃS

t = AS
t /NS, ẼS

t ( j) = ES
t ( j)/NS, and ŨSS

t =
USS

t /NS.
Then, as NS → ∞, they converge in probability to the solu-

tion of the following set of differential equations:

daS
t

dt
= ∑

l∈N
eS

t (l); (12)

deS
t ( j)
dt

=−eS
t ( j)− jeS

t ( j)
uSS

t
∑
l∈N

leS
t (l); ∀ j ∈ N; (13)

duSS
t

dt
=−2 ∑

l∈N
leS

t (l); (14)

where

aS
0 = 0;

eS
0( j) = ∑

k∈N
eS

∞(k, j) ∀ j ∈ N

uSS
0 =

1
NS

∑
l∈N

lν(k, l);

Again, we are interested only on the limit of aS
t as t goes to

infinity (when the secondary sensing phase is over). By similar
manipulations of the differential equations (Eq. (12-14) can be
resolved explicitly, see details in Appendix B) the following
result may be obtained:

Theorem 4. Consider the processes and variables defined in
Theorem 3. Let τ∞ be the unique value in (0,∞] such that∫

τ∞

0

uSS
0 e−2σ

∑
l∈N

leS
0(l)e

−lσ dσ = 1. (15)

Then, the proportion of active secondary transmitters con-
verges in probability to:

aS
∞ =

∫
τ∞

0
∑
j∈N

eS
0( j)e− jτ uSS

0 e−2τ

∑ j∈N jeS
0( j)e− jτ

dτ (16)

Proof. See the appendix.

Analogously, it is possible to demonstrate that the propor-
tion of active secondary transmitters of degree j, converges in
probability to:

aS
∞( j) =

∫
τ∞

0
eS

0( j)e− jτ uSS
0 e−2τ

∑k∈N keS
0(k)e

−kτ
dτ,∀ j. (17)

In this phase of the algorithm, the Markov Chain has an
absorbing state where ES

t ( j) = 0∀ j (it finishes when all se-
condary nodes are active or blocked). This is reflected in the set
of equations above, where we have an equilibrium point when
eS

t ( j) = 0∀ j. In addition, in Eq. (17) we can observe that the
medium access probability is influenced by the node’s degrees.
This is reasonable because the larger j is, the larger the proba-
bility of being blocked by another secondary node is.

4. Simulated Experiments and Results

In order to validate the proposed approximation we will
present an example considering a large but finite number of
nodes. We calculate the MAPSU using our deterministic expres-
sion (Eq. (16)) and we compare it with the results obtained of
several simulations of the stochastic process ÃS

∞. We also show
the accuracy of our methodology analyzing several realizations
of the process ẼS

t (i, j) with its associated deterministic estima-
tion eS

t (i, j) in both phases of the algorithm. In the next section
we compare our results with results for spatial models based
on stochastic geometry techniques. Finally, we complete our
validation by testing the methodology in other representative
scenarios.

Before introducing the particular example, let us now ex-
plain the validation method. First we simulate a graph that satis-
fies certain characteristics (the characteristics are defined ac-
cording to the network we want to simulate). Given the graph,
we can extract the counting measures µ(i, j) and ν(i, j) and
then we apply the results of Theorems 1, 2, 3 and 4 obtain-
ing deterministic approximations of several metrics, in parti-
cular the estimation of the MAPSU . On the other hand, having
the graph we proceed to simulate several realizations of the
stochastic process (its evolution is related with the considered
MAC protocol) and as a result we obtain the simulated metrics
of interest.

In this section, as a first illustration of the accuracy of our
proposal, we choose the variation of the Erdös-Rényi model
that was described in Sec. 3.1. In particular we consider k =
1 . . .10, where k = kPP = kPS = kSS. Consequently, for each k
value, we have that on average, each PU has k primary neigh-
bors and k secondary users in its protection zone. In addition,
each SU has on average k secondary neighbors.
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Figure 2: ∑i ∑ j ẼS
t (i, j) during the Primary Sensing Phase. The deterministic

estimation Eq. (6) is marked with circles. Parameters: NP = 500, NS = 1000,
pPU = 0.5 and k = 10.

Several realizations of ∑i ∑ j ẼS
t (i, j), where the graphs have

the characteristics explained before, are shown in Figures 2 and
3 along with the solutions of Eq. (6) and Eq. (13) respectively.
As an example we show the performance of a specific k value
(k = 10). Figure 2 represents the evolution of the proportion of
unexplored SUs during the Primary Sensing Phase. We can ob-
serve that in Figure 3 (which represents the same but during the
Secondary Sensing Phase) the initial condition coincides with
the limit value in Figure 2. As expected, the limit value that
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Figure 3: ∑i ∑ j ẼS
t (i, j) during the Secondary Sensing Phase. The deterministic

estimation Eq. (13) is marked with circles. Parameters: NP = 500, NS = 1000,
pPU = 0.5 and k = 10.
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Figure 4: The evaluation of Eq. (16) along with the boxplot of the numerical
results of 10 simulations with parameters: NP = 500, NS = 1000, pPU = 0.5
and k = 1 . . .10.

is shown in Figure 3 is 0 (when the process finishes, no SU
is unexplored). These figures illustrate how eS

t (i, j) effectively
represents the mean of ẼS

t (i, j) in both phases of the algorithm.
Similar results were obtained for the other involved stochastic
processes.

Finally, in Figure 4 we show the performance of the metho-
dology for the different values of the parameter k (k is located in
the abscissa). The larger k is, the larger the connection proba-
bilities are and then, the smaller the medium access probability
of SUs is. We can conclude that Eq. (16) provides an accurate
approximation of the access medium probability.

5. Comparison with spatial models

In this section we compare our proposal with a result based
on stochastic geometry and point processes. This type of ana-
lysis focuses on the random spatial location of users and aim
at estimating the medium access probability (and other metrics)
for a given user configuration. We have chosen to compare the
results of the article [21] which have been extended in [22].
In these articles, the authors proposed a probabilistic model to
analyze the cognitive radio paradigm in large wireless networks
with randomly located users. The authors also used Cognitive-
CSMA as the medium access mechanism.

This section is organized as follows. First, we introduce the
probabilistic model of [21, 22] and their analytical results. We
also propose a modification in their model in order to be in a

“comparable” context to ours. Finally we present two represen-
tative examples to compare both results.

5.1. An approximation of the medium access probability using
a stochastic geometry analysis

Using a stochastic geometry approach, the location of the
nodes of the network is seen as the realization of one or many
point processes. This means that the network can be considered
as a snapshot of a stationary random model in the (Euclidean)
space which is possible to analyze in a probabilistic way. The
time is divided into slots and one slot is needed to transmit a
packet for all users. Then, one snapshot represents the nodes
spatial distribution in one time slot.

In the articles [21, 22] the users of the network are assumed
to be a realization of two independent marked Poisson point
processes (PPP) Φp = {X p

i , t
p
i } and Φs = {X s

i , t
s
i } with intensi-

ties λp and λs on R2 respectively. {X p
i } and {X s

i } denotes the
positions of the potential primary and secondary transmitters,
and t p

i (and ts
i ) models the backoff timers used in the Cognitive-

CSMA protocol ({t p
i } and {ts

i } are i.i.d r.vs. uniformly dis-
tributed in [0,1]). The model also features an infinite symmetric
matrix F = {F(i, j)i, j} which models the fading of the channel
from user i to user j (being i and j two arbitrary transmitters, PU
or SU). A deterministic attenuation α > 2 is also assumed (i.e.
L(d) = d−α , being d the distance between two nodes). Consi-
dering those features we can say that the power received from i
by j is:

P(i, j) = P(i)F(i, j)L(‖X j−Xi‖). (18)

With that in mind, conforming to the medium access mecha-
nism, a primary transmitter will access to the channel if it has
the smallest timer among its primary contenders. For secondary
transmitters, it will access if it has no active primary contender
and it has the smallest timer between its secondary neighbors.
Then, for each primary node i ∈Φp we can define the set of its
primary neighbors (N p

i ) as

N p
i = { j ∈Φp :

F( j, i)
‖X p

i −X p
j ‖α

> ρ, j 6= i}, (19)

where ρ is a threshold that determines how sensitive the CS is.
Please note that in this model, P( j) is assumed constant and
included in F( j, i) which is considered as a virtual power.

On the other hand, for each secondary user i ∈Φs, we need
to know the sets of: its active primary contenders (N ′p

i ) and
its secondary contenders (N ′s

i ). Letting Φ∗p be the process of
active primary transmitters, these sets can be defined as

N ′p
i = { j ∈Φ

∗
p :

F( j, i)
‖X s

i −X p
j ‖α

> ρ
′} and (20)

N ′s
i = { j ∈Φs :

F( j, i)
‖X s

i −X s
j‖α

> ρ
′, j 6= i} (21)

respectively.
According to that, the primary and secondary retain indica-

tors are:

Rp
i = 1{t p

i <t p
j ∀X

p
j ∈N

p
i }

and (22)

Rs
i = 1{ts

i <ts
j ∀X

s
j∈N ′s

i , 1|N ′ pj |=0}
1{|N ′ p

i |=0}. (23)
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This means that the medium access probabilities are MAPPU =
P(Rp

i = 1) and MAPSU = P(Rs
i = 1). The first term of Eq. (23)

corresponds to the case where the timer of the secondary trans-
mitter i is smaller than all the timers of its secondary neighbors
( ts

i < ts
j ∀X s

j ∈N ′s
i ) considering only the ones which are not

in a primary protection zone of an active PU (1|N ′ p
j |=0). The

second term says that the secondary transmitter i is not in a pri-
mary protection zone of an active PU (1|N ′ p

i |=0).
The authors of [21, 22] obtain a conservative approxima-

tion of MAPSU . They simplified the model considering that a
SU will be preempted if it has one or more primary contenders
no matter whether the contenders are active or not. Therefore,
many secondary users, which are in conditions to use the band,
might be silenced. In this context, the MAP probability expres-
sions for PUs and SUs are:

MAPPU =
1− e−λpN̄0

λpN̄0
and (24)

MAPSU ≈
1− e−λsN̄0e−λpN̄0

λsN̄0
, (25)

where N̄0 is the mean number of contenders of a typical user
in a network of intensity 1 and G(t) = P(F ≤ t) is the fading
c.d.f.:

N̄0 =
∫
R2
(1−G(ρ|x|α))dx. (26)

Without loss of generality, we have considered ρ = ρ ′.
The calculus for secondary users MAP is approximated be-

cause the authors of [21, 22] considered the non preempted
secondary users as an independent thinned process from se-
condary users process with thinning probability e−λpN̄0 . For
more details see [21].

Complementing the articles [21, 22] we propose an improve-
ment in the estimation of Eq. (25). The idea is to apply an
analogous assumption of [21] in order to model the active PU
process Φ∗p as a PPP. Taking this into account, the idea is to
approximate the process Φ∗p by an independent thinning of PU
process Φp with thinning probability MAPPU . In this context,
we can apply the retain indicator defined by Eq. (23) obtain-
ing a non conservative estimation of the MAPSU and also more
appropriate to compare to our results:

MAPSU ≈
1− e−λsN̄0e−λpMAPPU N̄0

λsN̄0
. (27)

Please note that the fading variables are assumed to be in-
dependent of the nodes positions.

5.2. Numerical examples
In this section we choose three representative examples in

order to illustrate the accuracy and the applicability of both
approximations (our estimation using random graphs Eq. (16)
and the one presented in Eq. (27)). In particular, in all cases we
have assumed a Rayleigh fading (G(t) = 1− e−θ t ) because in
this situation N̄0 has a closed formula to be used in Eq. (27):

N̄0 =
2πΓ(2/α)

α(ρθ)2/α
, (28)

where Γ(.) is the Euler Gamma function.
We consider different values of fading mean θ . For each θ

value, we run several independent simulations of the access pro-
cess. In order to evaluate the performance of both approaches,
we consider as the true MAP the one provided by the average
of all the simulations.

5.2.1. Example 1: Poisson Point Processes
In this particular case, given a realization of two spatial

PPPs (Φp and Φs with intensities λp and λs) and the fading
variables between any pair of nodes, the conflict graph is built
considering also the path-loss phenomenon according to the
definitions of N p

i , N ′p
i and N ′s

i . Once the graph is obtained,
we extract the values of NS, NP and the measures µ(i, j) and
ν(i, j), and we proceed in the same way as in Sec. 4.

For each θ value, we run 10 independent simulations and in
Figure 5 we present the analytical results (of both estimations)
together with the corresponding simulated values.
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Figure 5: Evaluation of Eq. (16) and Eq. (27) along with the boxplot of the
numerical results of 10 simulations with parameters: λp = 1.6 (pPU = 0.5 and
N̄P = 500), λs = 6.4 (N̄S = 2000), α = 3, considering different values of θ .

Some remarks regarding the obtained results. Firstly, our
random graph estimation of the MAPSU shows a very good per-
formance complementing the results of Sec. 4. Please note
that our method considers a graph which is chosen randomly
among all graphs that comply with the initial measures µ(i, j)
and ν(i, j). This means, that in this example our configuration
model ignores correlations that appear when spatial features are
considered. This explains why the performance results in the
Erdös-Rényi case (Figure 4) are better than in this case. Even
more, this is the reason that justifies the improvement in the
accuracy when θ is large. In other words, the effects of the ig-
nored aspects decrease when the amount of noise in the graph
increases.

Secondly, we observe that the stochastic geometry estima-
tion has a good accuracy too. Eq. (27) was obtained assuming
that active primary (and secondary) users are located accord-
ing to a realization of an homogeneous PPP; consequently the
larger θ is, the more reasonable this assumption is, and then,
the more accurate the MAP approximation is.

Lastly, we can conclude that in this particular scenario both
approaches are suitable despite considering a finite number of
nodes.
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5.2.2. Example 2: Grid Configuration for Primary Users
A natural scenario for cognitive radio networks, corresponds

to a planned primary topology together with a disordered and
random secondary one. Therefore, in this second example, we
choose a particular fixed configuration for the primary nodes.
We consider that PUs are located in a perfect grid configuration
and SUs are located according to a realization of a PPP (see
for instance Figure 6). Please note that this PUs configuration
is not in the hypothesis of none of the analyzed methods. In
particular, the communication graph is not totally random since
the nodes are located in a specific configuration. Despite of this
fact, we are going to test how versatile the two approaches are.
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Figure 6: Example of a primary grid configuration (stars) with random se-
condary nodes (circles).

We apply Eq. (27) as if the primary process was a PPP. In
this case, in order to apply the stochastic geometry expressions,
the natural thing to do is to estimate the process intensities.
Then, the primary intensity can be calculated as λp =

NP
L2 where

L is the dimension of the grid. For instance, in the example
scenario of Figure 6 we can say that λp =

25
202 .
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Figure 7: Evaluation of Eq. (16) and Eq. (27) along with the boxplot of the
numerical results of 10 simulations with parameters: λp = 0.005 (pPU = 1),
λs = 0.007, α = 3, L = 360, considering different values of θ .

In Figure 7 we show the performance of both approaches to-
gether with the simulated results. The obtained result reflects a
poor performance of the spatial model while our random graph
approximation shows a better performance. This represents a
limitation of the spatial model’s application, more specifically
when the involved point processes are not all Poisson. In ad-
dition, in this case is more evident the fact that our proposed
approximation ignores spatial correlation (see Figures 4 and 5
and compare them with Figure 7). Primary users are located in

a specific fixed configuration but thanks to the randomness pro-
vided by the fading, the resulting performance indicators still
give excellent approximations.

It is important to remark that, if the fading variables were
constant, the approximations of Eq. (25) and Eq. (27) would
lack of sense. In addition, in many cases determining closed
analytical expression of performance metrics using stochastic
geometry techniques represents a difficult task.

5.2.3. Example 3: Real configurations for Primary Users
We conduct two more realistic experiments to evaluate sec-

ondary MAP where locations of PUs are provided by the open
source project OpenCellID [1]. This project maintains a com-
plete and open database from which we can easily retrieve lat-
itude and longitude information of the cell-towers of a target
geographic area.

Figure 8: Geographical zones chosen for real scenarios: Case A and B. Case A
is located in the heart of Paris and Case B in its suburbs.

We consider two different scenarios (see Figure 8), one with
a high density of users (Case A: center of Paris) and another
with a medium density (Case B: Paris suburbs). In both cases
PUs are deployed according to data from cell-tower locations
of one LTE-operator and SUs are deployed following a PPP.
Figures 9 and 10 show the PU spatial distributions; please note
that Case A has approximately twice the user intensity of Case
B.

Given the two point process (Φp and Φs with intensities
λp and λs) and the fading variables between any pair of nodes,
the conflict graph (nodes which are neighbors to each other) is
built considering also the path-loss phenomenon according to
the definitions of N p

i , N ′p
i and N ′s

i . We consider different
values of fading mean θ , and for each θ the measures µ(i, j)
and ν(i, j) are obtained. As in Example 2 we apply Eq. (27) as
if the primary processes were distributed as PPPs.

In Figures 11 and 12 we show the performance of both ap-
proaches together with the simulation results. Some remarks
are in order concerning the obtained results. Firstly, our esti-
mation of the MAPSU shows an excellent performance in both
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Figure 9: Case A: Points represent 2412 primary users located in an area of
47km2.

Figure 10: Case B: Points represent primary users (for the sake of presentation
we show a specific zoom area). Scenario B considers a total of 1996 primary
users located in an area of 83km2.
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Figure 11: Case A performance results. Simulation Parameters: NP = 2412,
NS = 1800, pPU = 0.4, α = 3, considering different values of θ .

cases. This demonstrates the versatility of our technique. We
can also see the improvement in the accuracy when θ increases,
due to the spatial correlation becoming weaker. Secondly, we
observe that the stochastic geometry estimation has a good ac-
curacy in Case A but a poor performance in Case B. The bad
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Figure 12: Case B performance results. Simulation Parameters: NP = 1996,
NS = 1237, pPU = 0.6, α = 3, considering different values of θ .

performance can be explained by non-homogeneous and non-
Poisson characteristics of Φp: in Case B there are large areas
without the presence of PUs and it also presents some clusters
(see for example the airport zone). Maybe the stochastic geom-
etry performance could be improved in this scenario if Φp is
represented by a Poisson Cluster Process [12, 3], but this model
is out of the scope of the present paper.

6. Conclusions and Future Work

We extended the methodology developed in [8] in the par-
ticular case of a cognitive radio network. With our proposal,
we showed that it is possible to calculate an analytic approx-
imation of the medium access probability (both for PUs and,
most importantly, SUs) in an arbitrary large heterogeneous ran-
dom network. This performance metric gives an idea of the
possibilities offered by cognitive radio to improve the spectrum
utilization.

Through extensive simulations, including real scenarios of
primary network deployments, we have verified that the ap-
proximation obtained is accurate. We have also illustrated a
performance comparison between our estimation and the one
obtained by a stochastic geometry approach. As a future line,
we want to characterize which scenarios are more suitable for
the application of our estimation and which are not.

Another interesting future research line is the study of the
degradation of PU’s communications caused by the presence
of SUs. In other words, the question to be answered is: how
many transmission fail in mean? This is strongly related with
the channel model characteristics. This analysis and its inclu-
sion in a random graph model is a challenging task for a future
work.
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Appendix A. A Proof of Theorem 2

According to Theorem 1, we have defined, during the pri-
mary sensing phase, the normalized processes:

• ÃP
t = AP

t /NP,

• ẼP
t (i, j) = EP

t (i, j)/NP and ẼS
t (i, j) = ES

t (i, j)/NS,

• ŨPP
t =UPP

t /NP and ŨSP
t =USP

t /NP,

which converge in probability to (aP
t ,e

P
t (i, j),eS

t (i, j),uPP
t ,uPS

t )
solution of the following differential equation system:

daP
t

dt
= ∑

k,l∈N
eP

t (k, l); (A.1)

deP
t (i, j)
dt

=−eP
t (i, j)− ieP

t (i, j)
uPP

t
∑

k,l∈N
keP

t (k, l); ∀i, j ∈ N;

(A.2)

deS
t (i, j)
dt

=−2ieS
t (i, j)
uPS

t
∑

k,l∈N
leP

t (k, l); ∀i, j ∈ N; (A.3)

duPP
t

dt
=−2 ∑

k,l∈N
keP

t (k, l); (A.4)

duPS
t

dt
=−2 ∑

k,l∈N
leP

t (k, l); (A.5)

where

aP
0 = 0;

eP
0 (i, j) =

µ(i, j)
NP

; ∀i, j ∈ N and eS
0(i, j) =

ν(i, j)
Ns

; ∀i, j ∈ N;

uPP
0 =

1
NP

∞

∑
i=0

∞

∑
i=0

iµ(i, j) and uPS
0 =

1
NP

∞

∑
i=0

∞

∑
i=0

2 jµ(i, j).

Defining ht(i, j) = eteP
t (i, j)∀i, j ∈N and introducing a new

time variable τt such that dτt
dt =

∑i ∑ j ieP
t (i, j)

uPP
t

; it is possible to de-
couple the system of equations (A.2) and (A.4). Please note that
the mapping t → τt is a bijection of [0,∞) onto [0,τ∞) (the de-
tail explanation and justification of this time transformation can
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be found in [10]). In order to simplify the notation, in the fol-
lowing calculus we will drop the time dependence in τt : τt = τ .

Working with the rescaled time variables: uPP
τ = uPP

t(τ) and
hτ(i, j) = ht(τ)(i, j);∀i, j ∈ N, we can obtain the following sys-
tem of differential equations:

duPP
τ

dτ
=−2uPP

τ ; (A.6)

dhτ(i, j)
dτ

=−ihτ(i, j);∀i, j ∈ N; (A.7)

where

uPP
0 =

1
NP

∞

∑
i=0

∞

∑
i=0

iµ(i, j) and h0(i, j) = eP
0 (i, j);∀i, j ∈ N.

The system has the following unique solution:

uPP
τ = uPP

0 e−2τ ; (A.8)
hτ(i, j) = h0(i, j)e−iτ . (A.9)

By hτ(i, j) definition, we have that

eP
τ (i, j) = e−teP

0 (i, j)e−iτ ;∀i, j ∈ N. (A.10)

Substituting Eqs. (A.8), (A.9) and (A.10) in τ definition, we
obtain

dτt

dt
= e−t ∑i ∑ j ie0(i, j)e−iτ

upp
τ

, (A.11)

that represents the transformation between τ and t and vice
versa. τ∞ is obtained from Eq. (A.11) by solving:∫

τ∞

0

uPP
0 e−2σ

∑i ∑ j ieP
0 (i, j)e−iσ dσ = 1. (A.12)

Working with the rescaled time eS
τ(i, j) and once uPS

τ is to-
tally determined with Eq. (A.5) and Eq. (A.10), we have that

eS
τ(i, j) = eS

0(i, j)
(

uPS
τ

uPS
0

)i

;∀i, j ∈ N, (A.13)

where

uPS
τ = uPS

0 +
∫

τ

0
−2∑

i
∑

j
jeP

0 (i, j)e−iσ uPP
0 e−2σ

∑i ∑ j ieP
0 (i, j)e−iσ dσ

(A.14)

Appendix B. A Proof of Theorem 4

Defining the normalized processes ÃS
t = AS

t /NS, ẼS
t ( j) =

ES
t ( j)/NS, and ŨSS

t =USS
t /NS. Then, as NS→∞, they converge

in probability to the solution of the following set of differential
equations:

daS
t

dt
= ∑

l∈N
eS

t (l); (B.1)

deS
t ( j)
dt

=−eS
t ( j)− jeS

t ( j)
uSS

t
∑
l∈N

leS
t (l); ∀ j ∈ N; (B.2)

duSS
t

dt
=−2 ∑

l∈N
leS

t (l); (B.3)

where

aS
0 = 0;

eS
0( j) = ∑

k∈N
eS

∞(k, j) ∀ j ∈ N

uSS
0 =

1
NS

∑
l∈N

lν(k, l);

By similar manipulations of the differential equations, defi-
ning ht( j) = eteS

t ( j)∀ j ∈ N and using the analogous definition
of τt as in Theorem 2, we have:

uSS
τ = uSS

0 e−2τ ; (B.4)
eS

τ( j) = e−teS
0( j)e− jτ ;∀i, j ∈ N; (B.5)

where
dτt

dt
=

∑ j jeS
t ( j)

uSS
t

. (B.6)

We are interested on the limit of aS
t as t goes to infinity

(when the secondary sensing phase is over). Please note that it
is the same as τ goes to τ∞, being τ∞ the solution of:∫

τ∞

0

uSS
0 e−2σ

∑
l∈N

leS
0(l)e

−lσ dσ = 1. (B.7)

Then, working with Eq. (B.1), the proportion of active se-
condary transmitters converges in probability to:

aS
∞ =

∫
τ∞

0
∑
j∈N

eS
0( j)e− jτ uSS

0 e−2τ

∑ j∈N jeS
0( j)e− jτ

dτ (B.8)
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