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In order to manually count the antral follicles, veterinarians perform a trans-
rectal ultrasound (TRUS) where they first locate the ovarian region and then
scan the ovary while rotating the probe. The procedure must be done in a few
seconds and requires highly trained experts in order to reliably detect and count
the follicles. Results are accurate when the ovary has few and big follicles, but
accuracy drops when the ovary has a large number of follicles and/or follicles
are small in size.

Automatically counting the number of antral follicles in the ovary remains an
open challenge for state of the art methods [11, 5]. Borders of small follicles are
weak and irregular due to the intrinsic characteristics of ultrasound (US) images.
The presence of follicle-like structures, such as vessels, makes the problem even
harder. However, counting the number of follicles has the advantage that no
precise segmentation of the follicles is required. The problem has been addressed
before in different ways with 2D and 3D US data but no conclusive results have
been achieved in the academy or commercial developments.

A method for fully automated ovary and follicle detection in 3D ultrasound
is presented in [2]. The approach proposes a probabilistic framework to estimate
the size and location of each individual ovarian follicle by fusing the information
from both global and local context.

The commercial product SonoAVC software which is integrated into the Vo-
luson E8 ultrasound machine (GE Medical Systems) performs semiautomatic
follicle segmentation and volume measuring on 3D ultrasound data [16].

Methods that detect follicles in 3D ultrasound are probably the most success-
ful ones. Additional information present in 3D ultrasound can be effectively used
to discriminate between follicles and other common falsely detected structures
[11]. However, veterinarians of our research group, in agreement with observa-
tions made in [11], prefer 2D ultrasound scans because they are easier and faster
to perform. In addition, 3D US machines are still too expensive for veterinarians
in underdeveloped countries. For this reason, our goal is to investigate if it is
possible to count the number of follicles using 2D ultrasound videos.

Regarding the detection of follicles in single US images, a research group
introduced several fully automated approaches to ovarian follicle detection in
single US images based on region-growing [12, 13]. Another group proposed sev-
eral variants based on a feature extraction and classification scheme [5].

To count all the follicles of the ovary, more than one image is required. One
of the possibilities is to segment the images in a frame by frame basis and then
group all the detections corresponding to a single follicle as a unique detection.
This kind of approach with temporal sequences is presented in [14] and improved
in [15] where detected boundaries of the follicles are tracked using a combination
of three mutually dependent Kalman filters.

Unfortunatelly, the lack of publicly-accessible datasets of follicles on ovarian
ultrasound images (2D or 3D) prevents from an objective comparison between
different methods.

The rest of this paper is organized as follows. Next section introduces the
datasets used for developing and evaluating the system. Section 3 presents the
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signal processing techniques applied to the ultrasound videos in order to detect
the follicles. Experiments and results are presented in sections 4. Finally, the
paper ends with some concluding remarks.

2 Dataset

With the purpose of developing and evaluating the approach, two phantoms were
prepared with nine ovaries each immersed in gelatin. The ovaries were collected
from the slaughterhouse and conditioned removing tissue debris. Each phantom
was built by placing the ovaries at an approximate depth of 1 cm in a box filled
with gelatin.

For each ovary three acquisitions with a TRUS probe were performed by
an expert. The acquisitions were made by rotating the probe about its axis.
The videos were acquired at 30 frames per second and 640x480 format with the
following criteria: (a) scan from right to left from end to end of the ovary, (b)
scan from left to right from end to end of the ovary, (c) scan back and forth from
end to end of the ovary while the expert performs a count of the follicles.

Following the US scans, the phantoms were disassembled and the ovaries
dissected. For each ovary, all the follicles and corpora lutea were measured.
Follicle size ranges from 2 to 20 mm.

Figure 1 shows one of the phantoms and the US acquisition procedure.

(a) One of the phantoms. (b) Ultrasound scanning of the phantom

Fig. 1: Phantom with ovaries immersed in gelatin.

3 Signal processing for follicle detection

3.1 Follicle-like regions detection in each frame

The first step in the proposed system is to automatically detect in each frame
of the video the regions that are likely to be a follicle. Follicles are roughly



4 A. Gómez, G. Carbajal, M. Fuentes, C. Viñoles

spherical structures with hard walls and filled with liquid. Echogenicity is high
in the walls while the internal fluid is almost anechoic. This gives in US a typical
circular pattern brighter in the borders and darker in the middle. A cascade of
boosted classifiers [17] based on local binary pattern features is a good and fast
alternative to detect this kind of structure. The classifier was trained with a
set of follicle regions and negative samples (samples were scaled to 24x24 pixels
or equivalently 2.4x2.4 mm for the spatial resolution of the videos) . Figure 2a
shows an example of follicle like detected regions in a frame.

(a) Example of putative follicle re-
gions detected with the cascade
classifier in one of the frames of the
video.
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(b) Detected tracks in red. The blue dots
are the centers of the regions detected with
the cascade classifier.

Fig. 2: Follicle-like regions are detected with a cascade classifier. In order to
impose temporal coherence, the detections are tracked with multiple Kalman
filters.

3.2 Temporal coherence by multiple tracking

The main movement of the probe during an US scan of an ovary is a rotation
but there may also be translations. These translations may be involuntary (e.g.
trembling of the operator or movement of the animal during the procedure) or
due to a necessary panning if the ovary is wider than the size of the US probe.
In any case, if these movements are not too brusque, each follicle is normally
detected during several frames with the 2D positions of the detections describing
a soft movement along the frames. The objective of the tracking step is to group
temporal coherent detections into tracks where each track is presumably related
to a single follicle.

In order to impose temporal coherence, the detections are tracked with mul-
tiple Kalman filters [7] across the video frames with independent constant ac-
celeration models. Detections are assigned to tracks in each frame based on the
Hungarian Algorithm [8] using as cost matrix the distance between predicted



Detection of follicles in ultrasound videos of bovine ovaries 5

positions of each track and actual detections (a maximum distance of 1mm is
tolerated in the current implementation). When a detection cannot be assigned
to any active track, a new track is created.

Figure 2b shows an example of detected tracks.

3.3 Identification of the ovarian region

In the phantoms, the ovary is surrounded by gelatin and that may ease the iden-
tification of the ovarian region. In vivo, the ovary is surrounded by other tissues
and the boundary of the ovary is usually not easily discernible. Moreover, the
surrounding tissues may lead to spurious detections showing follicle-like regions.
According to expert veterinarians, the boundary of the ovary is usually hard to
identify and the ovarian region is recognized by the grouping of follicles that can
be more easily identified in the US video. With this in mind, the approach in this
work is to identify the ovarian region as the most important cluster of detected
tracks. To cluster the tracks, a probability map is constructed by convolving
the track position (weighted by track length) with a Gaussian kernel. The ovary
region is detected as the main mode of the probability map using the Mean Shift
algorithm [3] considering a typical ovary size. Figure 3 shows the identification
of the region of an ovary.

Detected tracks

(a) Scatter plot of the xy positions of
the tracks weighted by track length on
sample frame.
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(b) Probability map based on the de-
tected tracks.

Fig. 3: Ovary identification as the main cluster of detected tracks. The white
rectangle depicts the main mode.

3.4 Follicle identification and measurement

To identify a detected track as a follicle, the track must be active for at least
a minimum number of frames. This can allow to differentiate a follicle that is
consistently detected across several frames from tracks originated by short term
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spurious detections of the cascade classifier. With this approach, it is necessary
to determine as operating point the best threshold for the minimum number of
frames. In this work, the threshold is selected as the one to give the best results
in terms of mean square error against the ground truth given by dissection.

Upon detection, the diameter of a follicle can be estimated as the largest
detection in the track which corresponds to the frame when the US plane cuts
the follicle (roughly a sphere) in its great circle.

4 Experiments and Results

The phantom dataset was used to evaluate the approach. As mentioned in section
2, in the phantom dataset there are two US scans (right to left and left to right)
where each ovary is scanned from end to end. In the experiments, a 50 times
6-fold cross validation was performed on the right-to-left sweep to determine the
operating point (the threshold for the minimum number of frames to consider a
track as a follicle detection). Figure 4 presents the results for the cross validation.

The computed operating point concentrates around a minimum track length
of 17 frames (figure 4b). Since the videos have 30 frames per second, this means
that the tracks must be active for more than half a second to be considered a
follicle. Around the operating point, results against dissection can be considered
comparable to the expert with a lower correlation factor but better centering
(figure 4 a,c). It is known to experts that the accuracy of follicle count drops when
the number of follicles in the ovary is high (the experts tend to underestimate
the count). The results on this dataset are consistent with this issue . The expert
outperforms the automatic counting in the ovaries with few follicles (eg. less that
18 in this dataset). For the ovaries with more follicles, the automatic approach
also underestimates the counts but is in general closer to the ground truth than
the expert count.

5 Concluding remarks

An automatic algorithm for the problem of detecting follicles in ovarian US
videos of bovine cattle ovaries is presented. The proposed approach can work
directly on the 2D US videos generated in the typical procedures done by the
veterinarians with the only restriction that the US scan must be done in a single
sweep from end to end of the ovary. The lightweight processing enables to have
the results immediately after the US scan. The method can give also the size of
the detected follicles which is an information usually disregarded in the routine
follicle count procedure.

Although the phantoms constitute a small dataset, results can be considered
promising with count results comparable to an expert in a controlled environ-
ment. This encourages future work to robustly extend the approach to in-vivo
scans. Future work should include for example the evaluation of other strategies
to identify the true follicles from the detections, as well as alternative forms to
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(a) Results of the cross validation on the right-to-left
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(b) Histogram of the operating
points determined by the cross val-
idation

Count results around the operating point (minimum length of track between 15 and 19 frames)

Expert Right-to-left scan Left-to-right scan

15 16 17 18 19 15 16 17 18 19

Pearson correlation 0.90 0.82 0.83 0.85 0.85 0.86 0.81 0.78 0.81 0.84 0.85

Max. overestimation 2 11 8 6 5 3 9 8 8 5 3

Min. underestimation -11 -5 -5 -6 -8 -11 -8 -9 -9 -9 -9

Average of differences -3.33 2.22 0.78 -0.56 -1.33 -2.78 1.22 -0.33 -1.50 -2.56 -3.44

Median of differences -2 1.50 0.50 0.00 -0.50 -3.00 1.00 -0.50 -1.50 -2.50 -2.50

Differences std 3.93 4.37 4.18 3.97 3.93 4.05 4.44 4.70 4.37 4.10 4.10

(c) Results for the expert and around the computed operating point for the right-to-left
and left-to-right scans

Fig. 4: Results for the 50 times 6-fold cross validation on the right-to-left scan.

identify the ovarian region on the video. Also, a method to detect the corpora
lutea in the ovary may help to differentiate cavities from real follicles.
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15. Božidar Potočnik and Damjan Zazula. Improved prediction-based ovarian follicle
detection from a sequence of ultrasound images. Computer methods and programs
in biomedicine, 70(3):199–213, 2003.

16. Nick Raine-Fenning, Kannamannadiar Jayaprakasan, J Clewes, I Joergner, S De-
hghani Bonaki, S Chamberlain, L Devlin, H Priddle, and I Johnson. Sonoavc: a
novel method of automatic volume calculation. Ultrasound in Obstetrics & Gyne-
cology, 31(6):691–696, 2008.

17. Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of
simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages
I–511. IEEE, 2001.




