GWN: A FRAMEWORK FOR PACKET RADIO AND MEDIUM ACCESS CONTROL IN GNU
RADIO

Victor Gonzalez-Barbone (vagonbar@fing.edu.uy)!, Pablo Belzarena (belza@fing.edu.uy)', Federico
Larroca (flarroca@fing.edu.uy)!, Martin Randall (mrandall @fing.edu.uy)', Paola Romero
(paolar@fing.edu.uy)', and Mariana Gel6s (mariana.gelos @fing.edu.uy)!

"Facultad de Ingenierfa, Universidad de la Republica, Montevideo , Uruguay

ABSTRACT

Software Defined Radio, and GNU Radio in particular, were
conceived for communication systems such as radio and TV,
where information is conveyed in a continuous flow, called a
stream. Data networks by contrast use small portions of infor-
mation, called messages, frames or packets according to the con-
text. A further important difference is that in data networks sev-
eral nodes share the same medium. In order to operate properly,
a so-called medium access control must be enforced.

GNU Radio was originally stream oriented, but more recently
added support for message communications. A block may thus
comprise two different types of inputs and outputs: stream ports
for continuous flows of data, and message ports for discrete por-
tions of bytes. As a consequence, some projects that strive
at implementing data network standards in GNU Radio have
emerged, but they are oriented towards specific communication
protocols.

In this paper we present GWN (GNU Radio Wireless Net-
work), an open and free extension to GNU Radio specifically
oriented to data networks, but not tied to any specific protocol.
Its aim is to provide a framework for experimentation and de-
velopment, working either on existing protocols or devising en-
tirely new ones. To this purpose, GWN provides a new generic
block (gwnblock) which adds the tools necessary for data net-
work designs, and at the same time decouples all GWN data
network blocks from the GNU Radio generic basic-block. This
means a new GWN block only needs to inherit from gwnblock
and follow GWN design rules to build a data network applica-
tion, while keeping full compatibility and access to GNU Radio
standard blocks.

The GWN generic block adds the following facilities to GNU
Radio: Message orientation, Events, Handling of time, and Fi-
nite State Machines. As a proof of concept, and to illustrate its
usage, we briefly present two examples: an ARQ (Automatic Re-
peat reQuest) protocol with its different flavors and a CSMA/CA
(Carrier Sense Multiple Access with Collision Avoidance) pro-
tocol.

1. INTRODUCTION

The ultimate objective of Software Defined Radio (SDR) is to
implement a complete communication system in software. Cur-
rent SDR implementations allow to sample a portion of several
megahertz of the spectrum and feed them into a programmable
device (such as a personal computer), where a software suite
processes them as required. Transmission is analogous. This al-
lows to implement a cellular base station [1], an FM radio [2], or
a Digital TV receiver [3] by running different programs on the
computer, just to name a few examples.

Instead of using expensive proprietary hardware implemen-
tations, SDR allows to design and implement most of the com-
munication system in software, which may be tailored specifi-
cally for the given application. Several SDR software suites are
free and open, the most popular being GNU Radio [4]. More-
over, SDR hardware implementations also enforce some level
of openness. Open-source technologies transcend geographi-
cal and cultural boundaries, as anyone in any place can con-
tribute and collaborate. This new paradigm offers new oppor-
tunities for research and teaching in telecommunications, pro-
viding a freely available design framework apt for technical ed-
ucation, research, development, and deployment, through a cost-
effective, easily approachable tool with modest infrastructure re-
quirements.

GNU Radio was originally designed to support the process-
ing of continuous data streams from a source to a sink passing
through different blocks, each performing a specific task (e.g. fil-
tering, decision). The stream is a flow of basic types like bytes,
integers or complexes. Each GNU Radio block defines input and
output signatures which specify the number of input and out-
put streams and their respective type. The designer can choose
which blocks are needed and how they are connected to build a
flow graph for a particular physical layer implementation. GNU
Radio has an internal scheduler which invokes sequentially each
block and communication between blocks is performed through
shared memory.

This data stream model works well for samples, bits, etc., but
it is not appropriate to handle control data, metadata, and packet
structures. GNU Radio partially alleviates this problem by in-
troducing two new communication mechanisms. The tag system
is a stream parallel to the data stream that holds metadata and

control information. This mechanism allows to add additional
information to a particular sample or flow, but the paradigm is
still the same. A message passing system was also added, with
two main goals: to allow downstream blocks to communicate
back to upstream blocks, and to provide an easier way to com-
municate between external applications and GNU Radio.

As we discuss with greater detail in the following section, fur-
ther extensions are necessary for GNU Radio to support packet
communication, in particular handling of time and support for
finite state machines (FSM), a preferred way to implement data
network protocols. Thus, the main goal of our research is to pro-
vide a fully functional SDR-based wireless network, developed
on top and integrated with GNU Radio. To date, we have defined
a general framework which allows the implementation and use
of different data link protocols (and as a consequence wireless
networks) integrated to the GNU Radio project, which we have
thus named GNU Radio Wireless Networks (GWN). This frame-
work is being developed as a free, open source software project
under the GNU license, with the explicit intent of disseminat-
ing these ideas, contribute our present achievements, and allow
interested researchers and developers to contribute.

This article is structured as follows. First, we analyze the
Data Link Layer protocols requirements. Based on these re-
quirements we describe the architecture of GWN and we explain
the methodology used to build the GWN framework. Next, we
analyze how to use and how to extend GWN. Finally, we explain
how GWN has been tested and we state the results and conclu-
sions of this work.

2. DATA LINK LAYER REQUIREMENTS

GNU Radio and more generally SDR stem from radio frequency
communications such as radio and TV. In these fields, informa-
tion is conveyed in a continuous flow, called a stream. On the
other hand, data networks use messages, frames or packets ac-
cording to the context. A file transfer is thus carried out by di-
viding the mass of bytes in small packets which travel through
the air on their own. Several distortions may affect their travel:
their delay may be different and arrive out of order, they may
be altered in their content, they may be lost and require retrans-
mission. At the receiving end, these packets must be validated
for errors and either corrected or asked for retransmission, en-
sure all of them have arrived, restore the correct sequencing, and
then be aggregated to rebuild the file exactly as the original.

Moreover, in radio and TV the electromagnetic spectrum is
divided into frequency bands, called channels, to avoid mutual
interference. In bilateral radio communications either transmis-
sion and reception must happen in different bands, or the parts
must take turns to speak. In data networks many actors share the
same communication channel, called a shared medium. Some
discipline must be imposed to avoid “all speaking at the same
time". This discipline is called a channel access method.

All in all, data networks involve multiple users on a shared
medium, use packets, these packets may suffer errors, variable

delays, losses, and sequence alterations. These and other prob-
lems are addressed in a number of standard which regulate net-
work communication, from small local area networks to the In-
ternet.

At data link layer, each protocol control logic is typically
based on a state machine that implements a set of service primi-
tives. State machines are very effective in modeling the behavior
of sequential control operations, and most MAC protocols and
other link layer protocols are formally described in terms of state
machines [5].

The state machine reacts to different actions performing state
changes and/or generating a new set of actions. These actions
may handle control or management data units, but also mod-
ify or reconfigure this block or other blocks. These actions and
service primitives can be implemented as asynchronous events.
This is another main requirement of data link layer protocols:
the communications between blocks must be driven by events.
A block may also require a service primitive from another net-
work layer. For example a CSMA/CA block will need to ask the
physical layer for the channel state (if it is idle or not).

In addition to the above, there is another important type of
event that must be handled at data link layer: timer events. For
example in CSMA/CA or in ARQ protocols each time a packet
is sent, the control logic of the protocol must start a timer. When
the timer ends, it generates an event informing the control logic
of its expiration. If a packet with an acknowledgment arrives
after the timer expiration the packet must be resent, and if it ar-
rives before the timer must be stopped. Therefore, data link layer
protocols require to handle a set of asynchronous timers.

GNU Radio was originally stream oriented, but as we ex-
plained in Sec. 1., it recently added support for message com-
munications. A block may thus comprise two different types of
inputs and outputs: stream ports for continuous flows of data,
and message ports for discrete portions of bytes. This is an im-
portant step to allow data link layer protocols implementation
in GNU Radio. However, as discussed before, it is also neces-
sary to associate a finite state machine to each control block, as
well as the capacity of handling events and (several) timers also
associated to each control block.

Some projects exist to implement data network standards in
GNU Radio (for instance [6]), but they are oriented towards
partial implementations of specific communication protocols.
We developed GWN as an extension of the GNU Radio toolkit
specifically oriented to data networks, but not tied to any spe-
cific protocol; its aim is to provide a framework with the tools
for experimentation and development, working either on exist-
ing protocols or devising entirely new ones.

Summarizing, a framework for implementing data link layer
protocols must be modular, flexible and adaptable, not only to
allow modification or replacement of a certain protocol but also
to seamlessly include new and future network architectures with
a moderate effort. This framework must include the capabilities
to easily implement finite state machines and timers, as well as
the ability to handle different types of events.

GNU Radio
basic block
GWN toolkit RR-ARQ, a Learning and
gwnblock = ch De o
I
| | 1
data_source | virtual_channel | ... | event_sink | | arg rx | arg tx ... | arg rep

Figure 1: GWN blocks.The GWN toolkit provides a generic gunblock
which inherits from GNU Radio basic_block. All GWN toolkit
blocks and blocks developed by students and researchers inherit from
gwnblock. RR-ARQ is an example implementation of Automatic Re-
peat reQuest (ARQ), an error control protocol for data transmission.

In view of the success achieved by GNU Radio, our approach
was to follow its design model and to add functionalities to GNU
Radio blocks. This is discussed in the following section together
with an introductory description of GWN.

3. GWN ARCHITECTURE

GWN extends GNU Radio towards data networks in a toolkit
with its own features. Blocks in GWN and GNU Radio can
be mixed in the same flowgraph. New GWN blocks can be
built alongside the GWN design in the certainty of their com-
patibility with both GWN and GNU Radio. To this purpose,
GWN provides a generic gwnblock which adds the tools nec-
essary for data network designs, and at the same time decou-
ples all GWN data network blocks from the GNU Radio generic
basic-block. This means a new GWN block only needs to in-
herit from gwnblock and follow GWN design rules, shielding
from users most of the complexity of GNU Radio.

In addition to the GWN generic block, the GWN toolkit in-
cludes some common function blocks such as message sources
and sinks, a channel emulator, message converters, and framers.
This allows for the demonstration of basic network data commu-
nications just by interconnecting GWN blocks in a flowgraph.
Figure 1 shows how learning and research developments need
only interact with GWN in their construction. This architec-
tural scheme simplifies access of students to development, both
in coding and in documentation. In this sense, special care has
been taken to provide complete, readable documentation on all
GWN blocks and tutorial material on new block development.

In particular, the GWN generic block adds the following fa-
cilities to GNU Radio.

1. Message orientation. GNU Radio is mainly stream ori-
ented, GWN is message oriented; items interchanged
among GWN blocks are discrete groups of bytes. GWN
makes use of the message mechanism of GNU Radio, but
provides some blocks to interact with stream GR blocks
when necessary, thus relieving users of stream oriented
worries.

2. Events. GWN elaborates on the message interchange
mechanism of GR into a more structured item of inter-
change called an event. GWN blocks interchange events.
The event inner structure reflects the needs of network data
protocols and is closer to their design conception.

3. Handling of time. This is a feature absent in GNU Radio,
and essential in data networking. Answers are waited for
a certain time, keep-alive signals are emitted at regular in-
tervals; timing pervades data communications. GWN pro-
vides two forms of handling time: timeouts and timers. A
timeout just waits for some time and emits a timeout event;
it is a one-shot gun. A timer emits timing events regularly.

4. Finite State Machines. Most data communication protocols
involve a complex logic usually described in a mathemat-
ical model of computation called a Finite State Machine
(FSM). An FSM comprises states and transitions, and re-
acts to events: when the machine is in a certain state and
receives an event, a transition to another state is performed,
optionally with some parallel task. FSMs are a very pow-
erful tool, and the complexity of some protocols makes it
almost impossible to implement them otherwise.

All GWN blocks communicate among themselves by the in-
terchange of events. An event is an instantiation of the GWN
Event class, described by a nickname, and including a type, a
subtype, and optionally other items in dictionary form. The
GWN Event class is intended to be subclassed in a hierarchy of
different event types. This allows to define event classes which
closely reflect the contents of the different types of packets used
in data networks, were they control, management or data. Be-
sides, events can also be used to interchange information among
blocks, such as the timer events used to start a timer, signal a
timeout, or perform some action at regular periods for a number
of times.

The inner structure of a typical GWN block is shown in Fig-
ure 2. Messages are received and sent as PMTs (Polymorphic
Data Type), the standard data type in GNU Radio. From these
messages the encapsulated events are recovered and passed to
the process_data function, the only place where a program-
mer must code the functions of the block. This function also
receives events from timers and timeouts, and from the FSM.
According to the events received, and the logics of the function
to be performed, a new event is generated and sent to the output
ports. Encapsulation and recovery of events from PMT mes-
sages is done in the input and output ports in a way transparent
to the programmer, who may just think in "events".

To create a new block, the user indicates the number of input
and output ports, and codes the logic in process_data. Op-
tionally, the number of timers and timeouts may be indicated,
and an FSM may be loaded with transition rules. This is a
quite straightforward process: inheritance from gwnblock en-
sures ports, timers, timeouts and FSM work as expected. The
use of the PMT data type to interchange among blocks makes
GWN blocks fully compatible with GNU Radio blocks.

PMT. levent
—-—)l in0 event PMT.
| out0
- process data
PMT,I inl B
_— PMT,
— sl o
| |
rl in2
event
man timer0 Finite State
Machine
FSM
o

timeoutd

timeout 1

T

Figure 2: A typical GWN block. Messages (PMT) received on input
ports are decoded into events and served to the process_data func-
tion, which also receives events from timers, timeouts and the FSM.
The process_data function generates and emits events through the
output ports as messages (PMT).

GWN includes a simplified version of an eXtended Finite
State Machine (XFSM) which has been used to implement com-
plex packet processing tasks inside network switches, and is con-
sidered a powerful enough tool to implement any protocol for
data networks [5].

The framework is built on a modular architecture of build-
ing blocks, where each block performs some specific functions.
These blocks communicate with each other according to proto-
cols implemented as asynchronous message events. This con-
cept allows for the integration of several blocks to form a new
block capable or performing a set of related tasks. Thus, it be-
comes relatively simple to integrate functionalities implemented
in different blocks to cover the different requirements of a wire-
less network, such as medium access, neighbors discovering,
etc. The GWN code and documentation may be found in [7].

The next section describes the methodology of research and
design used in this project, where one of the most difficult chal-
lenges is to evolve from sheer prototyping into sound architec-
tural design.

4. METHODOLOGY

In the area of telecommunications, as well as in many other tech-
nical areas, research is based on extensive prototyping, followed
by testing, correcting, and further prototyping. In this way, many
proposals in the area end up with a weak design in software ar-
chitecture. Since considerable work has been done, and positive
results have been obtained, architectural design naturally falls to
a second plane. In many cases, once the desired results have
been obtained, and the final prototype is working as desired,
there is not much motivation to worry about software architec-

ture, so much so that it would imply to almost start all over again.
This is not the case with this project: a far reaching enterprise
as this calls for a reasonable architectural design, well modular-
ized, with clear interfaces, consistent patterns of development,
and quality documentation, so as to make it apt for reuse and
extension.

The first stage of this project was mainly prototyping, with
a rather flat package and module organization; its purpose was
the development and testing of software modules to implement
a wireless network link in software over a generic piece of hard-
ware (e.g. USRP) using GNU Radio for the physical layer. Once
this goal was achieved, some architectural requirements specific
of the project started to emerge. An analysis and evaluation of
existing architectural designs and patterns was carried out, look-
ing for the best approach towards an architectural design of the
framework. The GNU Radio model was also studied and evalu-
ated.

The convergence of prototyping and architectural design eval-
uations led to a first approach in the architectural design of the
GWN framework. Needless to say, the first draft of a software
architecture, in a far reaching enterprise as this, is most critical.
At the same time, it is very difficult to envision all possible ar-
chitectural requirements at an early stage. For this reason, our
methodological approach was conceived as a balance between
prototyping and design, in which design tries to apply good soft-
ware engineering practices to the needs discovered by prototype
work, and prototypes test the usability of the design, show its
shortcomings, and help improve design.

5. FIRST STEPS USING GWN
5.1. A working example

GWN allows a step by step construction, ideal for showing and
experimenting how each block performs its duty. The simplest
flowgraph is an event source connected to an event sink: events
produced in the first block are displayed by the second. From
this on, gradual addition of blocks may lead to the simulation of
a transmission over air, using a channel emulator block in place
of hardware and air.

Experimenting a communication link with emitter and sender
in the same personal computer, as described above, is a must
task for beginners. Once the simulation works, substituting the
channel emulator by the SDR hardware, one for emission and
the other for reception, should render a working, real communi-
cations link. In this way two computers can be interconnected,
and start a chat session, a file transfer, or a graphical application
in the remote machine. Figure 3 shows the flowgraph to establish
a bilateral link with another node.

Along the former lines, data network protocols can be im-
plemented, tested, and improved, starting from simulation and
ending in real world communications. This brings a hands-on
experience on the many difficulties data network communica-
tions face, and the effectiveness of protocols to achieve reliable

Data source
Interrupt: False
Interval: 1

Variable
1D: samp_rate
Value: 100k

Import
Import: digital

Import
Import: gwnutils

1D: access_code
Value: 10101100...00011111100

Variable Options
1D: ev_tx_rx_usrp

Title: Channel with Events

Retry: 3
Source Addr: 00:00...00:00:00 :l-] L1 _Framer
Dest Addr: 00:00:00:00:00:00 t-— e[| in_type: event [—---— =[]
Event Dict: {} Debug: False
Payload: aaaaaaa...asaaaasaaa
Debug: False

PDU to Tagged Stream
Length tag name: packet_len

Description: Event... to sink
Generate Options: No GUI
Run Options: Prompt for Exit

hier_rx_psk
bw clock syne: 62.8m
bw fil : 1.9625m
bw costas loop : 62.8m

UHD: USRP Sink
Samp Rate (Sps): 100k
‘ChO: Center Freq (Hz): 850M
ChO: Gain Value: 15
Length tag name:

hier_tx_psk
Constellation Points: ...1+1]]
samples per symbel: 5
excess bandwdth : 350m
bits per symbol : 2
length in symbols of srre: 7
multiplicative output constant : 40...0m

length in symbols of srre 2 7
number filters bank : 32
Constellation Object: ..0> >
samples per symbal: 5
excess bandwdth : 350m
bits per symbol : 2

AGC attack rate : 100m
AGC decay rate : 100m

UHD: USRP Source

[Samp Rate (Sps): 100k
ChO: Center Freq (Hz): 851M

Ch0: Gain Value: 15

Correlate Access Code - Tag Stream
Access Code: 10101...11111100
Thresheld: 1

Tag Name: correlate

Tagged Stream to PDU . . Event Sink
SR B el i [T

AGC il
AGCgain:1
alpha_probe : 100m
th_probe : 0

L1 Deframer

Figure 3: A flowgraph to establish a bilateral link with another node. The Data source block produces events at regular intervals. Event objects
are serialized and packed as PDUs (Protocol Data Units) in our block L1_Framer, which are transformed into tagged streams by GNU Radio’s PDU
to Tagged Stream block. These are modulated into a complex signal and sent to the UHD: USRP Sink; this block interacts with the RF device,
which sends the signal over the air. At the same time, this same node is receiving messages through the UHD: USRP Source, which captures the
signal from the air. The received stream of bytes is correlated to detect an access code in Correlate Access Code - Tag Stream, and the
resulting tagged stream is fed into Tagged Stream to PDU, and L1_Deframer recovers the original event produced by the sender. Please note
that all blocks present in the flowgraph are included in GNU Radio or GWN.

data transfer among a group of nodes, i.e. computers with RF
peripherals.

5.2. Building a new block

GWN can be extended by creating new blocks to implement new
functionalities. GWN has been coded in Python, and can be ex-
tended using the same language. Though in the future some
GWN blocks are expected to be rewritten in C++ for perfor-
mance reasons, extensions in Python will always be possible,
as in GNU Radio. This section describes how to create a new
GWN block by means of a simple example. In what follows,
we create a block called Virtual Channel, a block we men-
tioned at the beginning of this section. In particular, this block
receives an item, generates a uniform random number in the in-
terval [0, 1], and writes out the item received only if the random
number is greater than a probability of loss set as a parameter of
the block. The block has one input, and one output.

After a new block is created (for which GNU Radio’s
gr_modtool may be used) we first add the following imports
to the code of the block:

from gwnblock import gwnblock
import pmt

Next, we modify the class definition to inherit from
gwnblock, the GWN generic block including implementations
for message ports and internal timers, and write its constructor
according to the functionality described before. That is to say:

class virtual_channel (gwnblock):

def

)

__init__(self, blkname=’virtual_chanel
, blkid="id_virtual_channel ’,
prob_loss=0):
gwnblock. __init__ (self,
blkname, blkid=blkid ,
number_in=1, number_out=1,
number_timers=0)
self . prob_loss =
return

blkname=

prob_loss

Now we write the processing function (i.e. process_data),
which in this case will generate a random number and write
out the received message only if it is greater than the parame-
ter prob_loss:

def process_data(self, ev):
rand_nr = random.random ()
if rand_nr <= self.prob_loss:
pass
else:
self . write_out(ev)
return

GNU Radio provides a graphical interface to build flowgraphs
interconnecting blocks; this is called the GNU Radio Compan-
ion, or GRC for short. To make the new block available in GRC,
an XML file describing the block’s ports and parameters is re-
quired. A template version for the XML file is created by the
gr_modtool script, and must be updated as usual in GNU Ra-
dio.

6. GWN IMPLEMENTATION OF A FSM

This section describes the GWN implementation of a Finite
State Machine (FSM). An instance of the GWN FSM can be
associated to a GWN block to implement its logic.

In addition to the usual states and transitions, GWN’s FSM
includes actions, memory, and conditions:

e An action is a user-written function executed on a transi-
tion, before setting the machine to the next state.

e Memory may be any object capable of recording and re-
trieving information, in whatever access mode the applica-
tion may need (LIFO, FIFO, etc). The memory facility is
not part of the FSM machine, but an independent object.
Memory may be handled in the action functions.

e A condition is another user-written function or expression
which produces True or False when executed or evaluated.
The action function and the transition are only executed if
the condition evaluates to True. If the condition evaluates
to False, no action is executed and the machine remains in
its current state.

The FSM is defined through tables of transitions. For a given
input (termed symbol in this context) the process() method
of the FSM uses these tables to decide which action to call and
which the next state will be, if and only if the condition evaluates
to True, otherwise nothing happens.

The table of transitions defines the associations
(input_symbol, current_state) —> (action,
next_state, condition), where action is a function,
symbol and state can be any object, and condition is a
function or an expression which returns a boolean. This table
is maintained through the FSM methods add_transition()
and add_transition_list().

In the following example we show the definition in the code
of a transition:

fsm.add_transition (’goA’, 'INIT’, fn_goA,
>State A’, "self.where=="A"")

This code adds a transition to the FSM fsm where if the in-
put symbol is goA, the FSM is in state INIT and the variable
self .where is equal to ’A’, then the function fn_goA is in-
voked and the FSM moves to the state State A.

Transitions valid for any input symbol may also be defined.
That is to say, associations of the kind (current_state) —
> (action, next_state, condition). This table is main-
tained through the FSM method add_transition_any().

Finally, the FSM may also have a default transition not as-
sociated with any specific input symbol or state. The default
transition matches any symbol on any state, and may be used as
a catch-all transition. The default transition is set through the
set_default_transition() method. There can be only one
default transition.

Thus, upon receiving a symbol, the FSM will look in the tran-
sition tables in the following order: 1. The transitions table for
(input_symbol, current_state). 2. The transitions table
for (current_state), valid for and any input symbol. 3. The
default transition. 4. If no valid transition is found, the FSM
will raise an exception.

Matched transitions with the former criteria may produce a
list of (action, next_state, condition). The condition
is evaluated for each tuple in the list, and the first tuple on which
the condition is found True is executed. That is to say, the corre-
sponding action function is called, and the next state is set as the
current state. If no transition is defined for an input symbol, the
FSM will raise an exception. This can be prevented by defining a
default transition. The action function receives a reference to the
FSM as a parameter, hence the action function has access to all
attributes in the FSM, such as current_state, input_symbol
or memory. The GWN Finite State Machine implementation is
an extension of Noah Spurrier’s FSM [8].

7. GWN TIMERS

This section describes how to add timing to GWN blocks. GWN
internal timers are objects that can be attached to any block, in
the same way as input or output ports. The number of timers
to create in a block can be indicated as a parameter in the invo-
cation to the gwnblock constructor as shown in Sec. 5.2. with
the Virtual Channel example. Let us recall that all GWN blocks
inherit from GWN’s basic block gwnblock.

In its present version, GWN provides two different mecha-
nisms for timing: GWN Timers and GWN Timeouts. Both
act sending messages to the block to which they are attached.
Messages from timing blocks are made available in the block’s
process_data() function, as if they had been received at an
input port. Timing messages can be recognized by their type,
i.e. a timing message must be in some way different from mes-
sages received at any input port.

7.1. Using GWN Timers

A GWN Timer sends a first type of message to the block to which
it is attached to at regular intervals, for a given number of times.
Then it sends a single second type of message to indicate the
first series has exhausted. A GWN Timer accepts the following
parameters:

e nicknamel: message to send at regular intervals for retry
times.

e interval: time between messages.

e retry: how many times to send message 1, then send mes-
sage 2 once.

e nickname2: message to send when retries have exhausted.

e interrupt: if True, the timer is interrupted, i.e. it does not
send any messages, but keeps alive, and the retry counter

keeps counting; when set to False, sending of messages is
restored.

A GWN Timer can be controlled through the following func-
tions:

e set_interrupt(True | False): sets interrupt state.
e stop(): stops the timer and no more messages will be sent.

e reset (): sets the counter to 0, interrupt to False, and starts
counting again and sending messages.

The following excerpts of code show the use of internal timers
in a block called Timer Source. This is a simple block which
produces messages regularly as ‘timer events’. These messages
can be used by other blocks to trigger some action.

This block uses an internal timer to produce a certain type of
event regularly with a given interval (the interval parameter),
for a specified number of times (the retry parameter). Events
produced are of the type defined by the parameter nicknamel.
Once the retry number has exhausted, a final event of the type
defined by the parameter nickname?2 is written out.

class timer_source (gwnblock):
>?>’Timer events source, sends Events
produced by an internal timer.

def __init__ (self,

)

blkname="timer_source

, blkid="timer_source_id ’, interrupt=

False , interval=1.0, retry=5,

nicknamel ="TimerTOR1’, nickname2="

TimerTOR2) :

invocation of ancestor constructor

gwnblock. __init__(self, blkname,

blkid ,number_in=0, number_out
=1, number_timers=1)

self .counter = 1 # counts until
retry

self.time_init = time.time () #
retuns current time

self.set_timer (0, interrupt=
interrupt , interval=interval ,
retry=retry , nicknamel=

nicknamel , nickname2=nickname?2
)

self.start_timers ()

return

The timer events produced by this block are received by
this same block as any received event, hence the function
process_data() should be written to handle this type of event,
as any other. The type of event can be determined within the
function to act accordingly.

def process_data(self, ev):
>?’Sends timer events produced by
the internal timer.

@param ev:

59

an Event object.

ev.frmpkt = Timer Event ° + str(
self.counter)

self.counter += 1

self.write_out(ev, port_nr=0)

return

7.2. Using GWN Timeout

A GWN Timeout object sends a message after some specified
interval has elapsed. It can be interrupted before its action starts,
and hence no message will be received. It can also be restarted in
anew cycle. A GWN Timeout accepts the following parameters:

e timeout: the time before message is sent.
e nickname: message to send.

A GWN Timeout can be controlled through the following
functions:

e start(timeout=None, nickname=None): starts time-
out counting.

e cancel(): stops counting. If timeout has not been
reached no message will be sent.

A note on efficiency. A GWN Timeout may be more computer
efficient than a GWN Timer, since a GWN Timer runs in its own
thread, which cannot be destroyed without destroying the GWN
Timer object. On the other hand, the GWN Timeout creates a
Python threading. Timer object, which runs in its own thread,
and is destroyed on invocation of the GWN Timeot cancel ()
function. This is more accurate, since the threading.Timer
object is immediately canceled, without waiting for object de-
struction (creation and destruction of objects may be demanding
in process time).

8. GWN AS TEACHING TOOLS

Our goal in the development of GWN is to build a framework
that can be usable for education, experimentation, and research
in wireless networks. In this section we explain how we have
used GWN as teaching tool. Our integration of GWN into Edu-
cation was carried out along these trends. First, use of GWN as
such, in demonstration of data oriented communication and the
problems involved, e.g. losses and corruption of messages, both
in simulation and real word communications, by implementing
a data link between two personal computers. Second, extension
of GWN, adding blocks for new functionalities. The goal here
was twofold: the implementation per se and the early training of
students in research.

Moreover, documentation of blocks is quite complete, tuto-
rial information is given in the project’s wiki [9], example flow-
graphs can be found in the examples subdirectory after instal-
lation, and also on the project’s homepage [7]. In this version

GWN is coded in Python, and extensions can be also written in
Python. This makes code more accessible to students working
on extension projects. A migration to C++ is expected to occur
in the near future, for performance reasons, but it will only af-
fect gwnblock and associate classes, which are maintained by
the GWN team; student developments will not be affected. As to
the fast renewal of versions in GNU Radio, extensions of GWN
are shielded from them by gwnblock, because all GWN blocks
inherit from it.

Though GWN is used for demonstrations in the classroom, it
excels in the lab, where students can interact freely with it. Ed-
ucational purposes pursued include demonstration and experi-
mentation in data networks, where students can see “in action”
what they learned in introductory courses on data networks. Fur-
thermore, we make use of the toolkit for class assignments and
small projects, using the available blocks or simple adaptations.
The latter requires some basic knowledge of Python, but the
structure of GWN blocks allows to include code only in the
process_data function; the task is easily achieved with some
guidance. Finally, we have used the framework for end of course
projects, graduation projects in telecommunications engineer-
ing, research, and research training, both in undergraduate and
graduate levels.

In the following section we describe two application projects:
students implemented ARQ and a CSMA/CA protocol, as an ex-
tension to GWN. This projects required the use of timing and the
implementation of Finite State Machines. The following section
illustrates the use of these two features of GWN.

9. TESTING THE FRAMEWORK

Automatic Repeat reQuest protocols are layer 2 control proto-
cols for ensuring packet exchange. Even though there are differ-
ent versions ranging from simplicity to efficiency, they all share
some common premises: packets are to be acknowledged (and
otherwise considered lost), and packets are to be delivered in
proper order to their destination.

In order to test GWN as a simple but complete framework for
communications protocols, the task of developing the ARQ pro-
tocols was conveyed to undergraduate students. With no prior
knowledge of GNU Radio programming, and using the tutorial
provided by the GWN team, three variants were implemented
and tested (Stop and Wait, Go Back N and Selective Repeat),
both in GRC simulation flowgraphs and real wireless communi-
cation. A second programming of the protocols was done using
FSM, with their respective tests.

Finally, as part of a graduate project in telecommunications
engineering, a CSMA/CA protocol was implemented using
FSM. It was also tested in both simulation and real life com-
munications, implementing a simple chat application.

These protocols were implemented in two GWN blocks: one
in the transmission node with the logic of the protocol, and the
other in reception mainly for acknowledgement. In the next sec-
tions we discus the Selective Repeat and CSMA/CA protocols

as we believe them to be the most illustrative.

9.1. ARQ: Selective Repeat in FSM

The Selective Repeat protocol is the most complex ARQ proto-
col as it implies some data processing at reception. The trans-
mitter uses a sliding window for sending packets and each packet
has a timeout of its own, which starts when the packet is sent.
When an acknowledge (Ack) for this packet is received, the
packet is removed from the window, freeing a slot for a new
packet. If the timeout of a sent packet expires and no Ack has
been received, the packet is retransmitted. If the transmission
window is full, new packets to send are stored in a buffer un-
til a free slot appears in the transmission window. In the recep-
tion node, received packets are placed in order by their sequence
number in a reception window, while their respective Acks are
sent back to the transmitter. Would there be a missing packet in
the reception window, a “not acknowledged” message (Nak) is
sent back to the transmitter. Fig. 4 shows the implemented FSM
diagram.

For this implementation, the following considerations were
made:

e Packets to be transmitted turn up in sequence number order;
reception of these packets in their correct order is ensured
by the protocol.

e There is one transmitter and one receiver at each node, and
communication is limited to two nodes.

The assignment of timeouts to packets were implemented as
dictionaries. The event types used were Timeout, Ack, Nak
or Data. Simulation tests were carried out using a Virtual
Channel block. Data source and Event Sink blocks were
used at the ends. Real wireless tests were carried out using the
same physical layer as in in Fig. 3. This is basically a discrete
digital communication system using QPSK at 850 MHz, includ-
ing CRC checking, with gain, frequency, phase, and time correc-
tions in reception. For this experiment, two USRPs B100 were
used. Both simulated tests and real communication using ARQ
proved successful as all data sent was received in the correct or-
der.

Besides the specific implementation of the protocol, this in-
stance proved the GWN framework to be within easy reach of
new users, who successfully added new functionalities by creat-
ing new blocks, in a seamless extension to GWN.

9.2. CSMA/CA

The Carrier-Sense Multiple Access with Collision Avoidance
(CSMA/CA) is a data communications protocol used as a part
of the Medium Access Control sublayer (MAC). As a part of a
graduation project in telecommunications engineering, a simple
CSMA/CA protocol was implemented using GWN.

The proposal was to implement CSMA/CA over a Stop And
Wait ARQ protocol. Before sending a packet, the channel is

‘Data’

Timeout'
‘Data’

Input symbol

‘Data’

‘Data’

‘Data’

i Condition

Figure 4: FSM implementations of transmitter (left) and receiver (right) for selective repeat protocol.

measured for activity. If the medium is busy, a exponential back-
off algorithm starts a (random) timer. If the medium is free, the
packet is sent. When the channel is busy and a timeout arrives,
a new measure of activity in the medium is made. In case of
activity, the process is restarted (random timer, with times pos-
sibly incremented). There is no RTS (Request To Send) nor CTS
(Clear To Send) exchange in this simple version of a CSMA/CA,
and the times of real wireless communications are not consid-
ered, as the goal of the project was not to fulfill the many re-
quirements and efficiency of established protocols (such as IEEE
802.11) but to build a simple MAC with shared medium access
control using the GWN and GNU Radio toolkit.

Activity in the medium is determined by a measurement of
signal power at the USRP source block, by means of GNU Radio
block Probe Avg Mag~2. The CSMA block included an FSM,
importing the value of the Probe block as a condition to be read
at transitions. The import was done through the usage of cheetah
embedded in the XML code of the CSMA block, leading to a
pretty straight way to read data into the CSMA’s code.

The first test was a simulation with a self-generated noisy sig-
nal. The protocol was tested in real wireless communication by
carrying out a three-people chat between USRPs. This imple-
mentation of the CSMA protocol was then used to communi-
cate three autonomous mobile robots in a graduation project; to
this purpose, it can optionally send debugging information to the
chat client for measuring QoS (Quality of Service). Modulation

was the same shown in 3 although adjustments had to be made
for different USRP models, distances, and personal computers.
Tests used combinations of USRP B100, B200, B200mini, and
different kinds of personal computers.

This experience involved mainly by two undergraduate stu-
dents, one of them with some prior work related to GWN, and
the other without any experience in GWN / GNU Radio pro-
gramming. The time and effort dedicated to the project was quite
reasonable in view of the results obtained. This can be traced to
the modularity and extensibility of design, as well as to the care
given to documentation and tutorial material in GWN.

10. RESULTS AND CONCLUSIONS

The initial motivation for this project sprang from two different
areas: research and education. While addressing questions on
wireless data networks, such as cognitive networks and protocol
efficiency, we felt the need of experimenting some ideas in real
communication. In education, we carry on several courses on
data networks and wireless communications, and were in search
of a hands-on way for the students to appreciate the internals of
data networking protocols, experiment their pros and cons, and
attempt some improvements on their own ideas.

GNU Radio and the GNU Radio Companion seemed the ideal
tool to face both needs, for several reasons: separation of func-
tions in specific blocks, a graphical presentation, a practica-

ble extension mechanism, simulation, open and free availabil-
ity, low cost wireless hardware, and accessibility on a low bud-
get. Hence, the question became: how can GNU Radio be ex-
tended so as to allow real world communications demonstration
and experimentation, while at the same time follow the design
patterns of data networks protocols as closely as possible? The
new framework should be friendly to data network specialists,
or at least close to their expectations. After trying several ap-
proaches, the notion of an Event object for inter block communi-
cation, their conversion to and from GNU Radio PMTs, and the
integration of Event inputs and outputs in a generic GWN block,
proved to bridge the gap between wireless communication and
data networks quite successfully. Handling of time and FSM
machines were added and made accessible through the GWN
block, thus completing the picture.

After some years of development, the GWN framework is
now considered to be mature enough to be used both in research
and education. It has been used in several editions of data net-
work courses, both for demonstration and experimentation, and
some undergraduate and graduate projects have used it for vali-
dation and measurement. Though the set of data network ori-
ented blocks provided by GWN is still modest, it has proved
to be enough for simple projects, and easily enhanced to pro-
vide new functions. Extensions are expected to come in a nat-
ural way as the use of GWN becomes more extended. To date,
its main limitation is performance. Though this is a drawback
of all SDR based projects, GWN blocks are nowadays coded
in Python; rewriting gwnblock and some other essential GWN
blocks in C++ is expected to improve on performance, even if
other new blocks are coded in Python, a must for fast prototyp-
ing and wide accessibility.

In our experience, GWN has proved a valuable tool in edu-
cation and research, and its use in industrial prototyping is not
to be discarded. It has proved to be accessible to students and
to network specialists as well, and extensions through the cre-
ation of new GWN blocks came to be quite straightforward. All
these tools are open and free; they can not only be obtained im-
mediately and at no cost, but can also be explored in its inter-
nals, modified, extended, or applied to new developments with
no limitations. This opened a universe of potential realizations
never seen before, and within reach of even very small budgets.
This is very good news for underdeveloped countries.

REFERENCES

[1] Range Networks, “OpenBTS.” [Online]. Available: http://openbts.
org/

[2] Ettus Research, “How to build an FM receiver with the USRP in
less than 10 minutes.” [Online]. Available: https://kb.ettus.com/
Implementation_of_a_Simple_FM_Receiver_in_GNU_Radio

[3] F. Larroca, P. Flores Guridi, G. Gémez Sena, V. Gonzilez Bar-
bone, and P. Belzarena, “An open and free ISDB-T full_seg receiver
implemented in GNU Radio,” in Wireless Innovation Forum Con-
ference on Wireless Communications Technologies and Software
Defined Radio (WInnComm ’16), 2016.

(4]

(5]

(6]

(7]

(8]

(9]

GNU Radio, “GNU Radio webpage.” [Online]. Available: https:
/lwww.gnuradio.org/

I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and
F. Gringoli, “Wireless mac processors: Programming mac proto-
cols on commodity hardware,” in INFOCOM, 2012 Proceedings
IEEE. 1EEE, 2012, pp. 1269-1277.

B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “An IEEE
802.11a/g/p OFDM receiver for GNU Radio,” in Proceedings of
the Second Workshop on Software Radio Implementation Forum,
ser. SRIF "13. New York, NY, USA: ACM, 2013, pp. 9-16.

ARTES, “GWN, the GNU Radio Wireless Network project,
homepage.” [Online]. Available: https://github.com/vagonbar/
gr-gwn/

N. Spurrier, “Noah Spurrier’s FSM.” [Online]. Available: http:
/Iwww.noah.org/python/FSM

ARTES, “GWN, the GNU Radio Wireless Network project wiki.”
[Online]. Available: https://github.com/vagonbar/gr- gwn/wiki

