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Abstract

Real evapotranspiration (ETR) is a key variable in socio-ecological systems since it is related to the 

food supply, climate regulation, among others. Also, ETR strongly determines the water yield (WY) at

the catchment level (water available for consumption or irrigation). In that sense, quantifying ETR 

and WY fluctuations linked to various human pressures is essential for comprehensive water 

planning. In the last decades, remote sensing ETR estimations have become increasingly performed 

worldwide for hydrological monitoring. In Uruguay, there are several attempts to quantify the ETR 

through different approaches. However, assessments related to the performance of the estimates of

different sources/products, particularly from remote sensing, are still lacking. The main objectives of 

this article were: a) to evaluate the performance of different spatial explicit approaches to estimate 

real ETR and b) to estimate and analyse the variability in water yield derived from the different ETR 

sources/products for three climatically contrasting years. To achieve this, we used four remote 

sensing ETR products (PMLv2, MOD16A2, Jackson et al. 1977 and Di Bella et al. 2000), with different 

spatial and temporal resolutions (from 500 to 1000-m and 8 to 16-d), and two water balance models 

at two scales, national (INIA-GRAS) and micro-watershed level (Silveira et al. 2016). Our results 

suggest that MODIS and PMLv2 remote sensing products demonstrated better performances. Both 

products have high spatial (500-m) and temporal (8-d) resolution, captured seasonal differences 

between land-covers and showed positive and high correlations with the annual precipitation and 

productivity. The differences found between products have direct implications on the WY estimates, 

not only in the quantity but also in its spatial pattern. Future studies should explore MODIS and PML 

ETR estimations for understanding hydrological and ecological processes, global climate change 

research, agricultural drought detection and mitigation, and water resource management.

Keywords: remote sensing, land-cover, water balance, NDVI, precipitation.
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1. Introduction

Real evapotranspiration (ETR) is a key variable in socio-ecological systems since it is related to the 

supply of many ecosystem services such as water availability for consumption or irrigation, food 

supply, climate regulation, among others (Rockström et al. 1999; Paruelo et al. 2016). ETR is defined 

as the sum of the plant canopy transpiration and the soil evaporation. Transpiration is the largest 

component of the terrestrial hydrologic cycle (Jasechko et al. 2013; Schlesinger and Jasechko, 2014) 

and is a critical factor in the water and carbon cycles (Chapin III et al. 2011). Climate (temperature 

and precipitation) and vegetation (i.e., plant functional types) are two of the main controls over the 

ETR (Chapin III et al. 2011). In the actual scenario of climate change (characterized by an increase in 

mean temperature and changes in the variability and seasonality of precipitation) and land-use 

changes (characterized by the replacement of natural ecosystems to anthropic ones), it becomes 

critical to estimate the ETR at different spatial and temporal scales to understand how ecosystems 

respond and feedback, and how the provision of key ecosystem services is affected.

ETR variations (in space and time) are associated with several factors, including vegetation types, soil

water availability, cover and texture, climatic conditions (including extremes), and management 

strategies, among others. Regarding vegetation types, different land-covers differ in the total 

amount of water transpired. For example, Nosetto et al. (2005) found that the replacement of 

grasslands by Pinus and Eucalyptus plantations, in temperate subhumid areas of South America, 

generated a drastic change in evapotranspiration, where forest plantations consumed 80% more 

water than the native grasslands replaced. In terms of management strategies, ETR can vary, for 

example, under different grazing intensities (e.g. Bremer et al. 2001), degree of fertilization (e.g. 

Viets, 1962), botanical composition of the land-use (e.g. Bajgain et al. 2020) or associated with the 

use of irrigation systems (e.g. Bastiaanssen et al. 2000). Furthermore, ETR varies in different climatic 
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conditions, such as dry and wet years. do Santos et al. (2020) reported, for the Caatinga biome of 

Brazil, a reduction of 25% in the mean annual ETR for dry years.

One of the main factors that determine the water yield (WY) at catchment level is the ETR. The WY is

defined as the production of water from the catchments (Salemi et al. 2012). Since it may be readily 

accessed for human consumption, it is also known as "the blue water", in contrast to the “green 

water” which is consumed by plants (Falkenmark and Rockström, 2006). Because it supports wildlife,

stream functioning, agricultural products, drinking water supply, and other ecosystem functions, it is 

obvious that the WY constitutes a critical socio-ecological variable. In such a way, quantifying WY 

fluctuations linked to various human pressures is essential for comprehensive water planning 

(Vörösmarty et al. 2000a, 2000b; Vörösmarty et al. 2015).

In general, different management strategies are increasingly used to minimize the intra- and inter-

annual variability of the ETR. Among the most common management practices is the use of 

irrigation. Uruguay, and the region, have experienced several episodes of drought in the last 5 

decades, with different intensities and extents (e.g. Lessel et al. 2016). Among the main 

consequences of drought are the economic ones. During a drought period, farmers in Uruguay have 

lost animals and sold cattle at a low price (Cruz et al. 2018), and crop yields have been affected 

(Lessel et al. 2016). Some current projections highlight an increase in the frequency and intensity of 

droughts (Dai, 2013; Cook et al. 2014). In Uruguay, this has led to the enactment of the Law Nº. 

16.858 (Decreto Nº. 366/018 of November 2018), commonly known as the "Irrigation Law". This law 

aims to increase the country's agricultural production, giving greater stability to crops (mainly 

soybean, corn, and rice) and sown pastures beyond the rainfall regime. However, many decisions 

like irrigation strategies, or subsidies for water allocations are made with partial information of the 

magnitude of change in ETR, due to the spatial and temporal complexity of its estimation.
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ETR can be measured using several in-situ techniques such as weighing lysimeters, Sap-flow systems,

Eddy Covariance systems, Bowen stations, etc. or estimated by satellite remote sensing data or 

calculated from water and energy balances (Wilson et al. 2001; Ford et al. 2007; Kosugi and 

Katsuyama, 2007; Bhattarai and Wagle, 2021). In situ techniques can provide long-term point or 

local scale observations, but they cannot provide ETR data at regional and global scales. The remote 

sensing technology solves this limitation. On one hand, the remote sensing approach provides a 

synoptic view at regular time intervals avoiding extrapolation to large regions, and on the other 

hand, it is relatively inexpensive (e.g. Paruelo, 2008). Consequently, remote sensing ETR estimations 

have become, in the last three decades, the dominant approach both regionally and globally 

(Bastiaanssen et al. 1998; Di Bella et al. 2000, 2019; Cleugh et al. 2007; Mu et al. 2007; Leuning et al. 

2008; Yang and Shang, 2013; Zhang et al. 2019; Bhattarai and Wagle, 2021).

In Uruguay, there are several attempts to quantify the ETR through different approaches (Giménez 

and García Petillo, 2011; Munka et al. 2013; Berger et al. 2015; Otero et al. 2015; Silveira et al. 2016; 

INIA-GRAS, 2022). In general, the studies focused on evaluating the ETR dynamics over time with 

data from a unique source or product. However, assessments related to the performance of the 

estimates of different sources/products, particularly from remote sensing, are still lacking. The only 

reported work compares the ETR derived from the MODIS product (MOD16A2) with three 

techniques:  a water balance model, the Soil & Water Assessment Tool (SWAT) and an Eddy 

Covariance Flux tower (Navas et al. 2021). However, this work doesn’t consider inter-annual 

variations because its only analyse one year (Feb-2011 to May-2012). The main objectives of this 

article were: a) to evaluate the performance of different spatial explicit approaches to estimate real 

evapotranspiration, and b) to estimate and analyse (in a qualitative way) the variability in water yield

derived from the different ETR sources/products for three climatically contrasting years (dry, 

average, and wet). For that, we use four remote sensing ETR products, with different spatial and 
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temporal resolutions, and two water balance models at two scales, national and micro-watershed 

levels.

2. Methods

2.1. Study area

The study area includes the entire territory of Uruguay, which is located in the south-eastern South

America between latitude 30-35 ° S and longitude 53- 58 ° W (Figure 1). The climate is temperate,

with  a  mean-annual  temperature  of  17.5°C  and  a  mean-annual  precipitation  of  1350  mm.y -1

(INUMET, 2022). Temperature is highly seasonal, reaching maximums of 28°C in summer months

(January) and minimums of 6°C in winter months (July). Precipitation is evenly distributed during the

year, but with a high inter-annual variability ranging from 700 mm recorded in the driest year (1989)

to 2000 mm recorded in the wettest  year (2002) (INUMET, 2022).  The country is  dominated by

rolling plains, with very smooth slopes, except in the eastern region (called eastern hills) (Panario et

al. 2014).

Uruguay is entirely included in the “Campos” region of the Rio de la Plata Grasslands (Soriano et al.

1991, Paruelo et al. 2007; Oyarzabal et al. 2020). Grasslands represent the dominant vegetation type

covering approximately 55% of the land surface (Baeza et al. 2022) and are commonly used for cattle

and sheep production, the main economic activity in Uruguay (Gutiérrez et al. 2020). Also, there are

two other important land-uses for the Uruguayan economy: croplands (mainly soybean) and exotic

tree plantations (Eucalyptus and Pinus).

6

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

11
12



Figure 1: Location of the Uruguayan territory in South America. A) Land-cover map for 2012/2013 

(see Baeza and Paruelo, 2020 for more details). PFR: Perennial Forage Resources, SC: Summer Crops,

WC: Winter Crops, DC: Double Crops, A&W: Afforestation’s and Woodland. B) Grassland 

7

144

145

146

147

13
14



communities land-cover map (see Baeza et al. 2019 for more details). SG: Spercely-grasslands, DG: 

Densely-grasslands.

2.2. Evapotranspiration products used in the performance evaluation.

The performance evaluation of remote sensing and water yield based ETR products was carried out 

based on their ability to differentiate land-covers, their spatial and temporal resolution, their degree 

of coupling with NDVI and precipitation, and with ETR estimates based on field data.

2.2.1.Remote Sensing evapotranspiration products

2.2.1.1. PMLv2 product

The Penman–Monteith–Leuning model in its second version (v2) was developed by coupling a 

photosynthesis model (Farquha et al. 1980) and a canopy stomatal conductance model (Yu et al. 

2004) with the Penman–Monteith energy balance equation (Monteith, 1965) to jointly estimate 

gross primary productivity and terrestrial ETR (Zhang et al. 2019). This model assumes that total ETR 

is the sum of evaporation from the soil (Es), transpiration from the plant canopy (Ec), and 

evaporation of precipitation intercepted by the vegetation (Ei) (Equation 1). PMLv2 produces an 8-

day composite product at 500-meter for the 2003-2017 period (Table 1).

ETR=E s+Ec+Ei (Eq 1)
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The PMLv2 model was built using Google Earth Engine (Gorelick et al. 2017) and takes MODIS data 

(leaf area index, albedo, and emissivity) together with GLDAS meteorological forcing data as model 

inputs (see more details in Zhang et al. 2019). This product decomposes the ETR values in each 

component (Es, Ec and Ei) separately. In this article, we evaluate two combinations: a) the sum of Ec 

and Ei (hereafter called PMLv2 (Ec+Ei)) and the sum of Ec, Ei, and Es components (hereafter called 

PMLv2).

2.2.1.2. MOD16A2 product

The MOD16A2 (Collection 6, hereafter MODIS) provides global terrestrial ETR using a modified 

Penman‐Monteith method (Mu et al. 2011). This ETR product used remote sensing data from the 

Moderate Resolution Imaging Spectroradiometer (vegetation property dynamics, albedo, and land-

cover) and the global reanalysis from the Modern‐Era Retrospective Analysis for Research and 

Applications (MERRA; Rienecker et al. 2011). This ETR dataset is an 8-day composite product at 500-

meter from 2001 to the present (Table 1; Running et al. 2017).

The total daily ETR corresponds to the sum of the evaporation from the wet canopy surface (EWet), 

the transpiration from the dry canopy surface (TDry), and the evaporation from the soil surface (ESoil) 

(Equation 2). Contrary to the PMLv2 product, MOD16A2 does not provide the ETR components 

separately.

ETR=EWet+TDry+ESoil (Eq. 2)
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2.2.1.3. INTA-SEPA product

The National Institute of Agricultural Technology of Argentina (INTA), through the "Agricultural 

Production Monitoring" initiative (hereafter INTA-SEPA), provides ETR estimations based on a model 

generated by Di Bella et al. (2000) (Equation 3). This model is based on both thermal infrared 

(surface temperature - Ts) and vegetation index (Normalized Difference Vegetation Index, NDVI) data

obtained from the Advanced Very High-Resolution Radiometer (AVHRR) sensor on board the 

National Oceanic and Atmospheric Administration (NOAA) satellite. This product was developed for 

the Argentine Pampas and provides ETR estimations, with a 1x1 km2 spatial and 10-days temporal 

resolutions, for the 2002-2018 period (Table 1; see more details in 

http://sepa.inta.gob.ar/productos/agrometeorologia/et_10d/).

ETR=−88.3439+1.77636∗Ts+286.406∗NDVI (Eq. 3)

2.2.1.4. Landsat product

Jackson et al. (1977) proposed the commonly called “Jackson Simplified Method” to estimate daily 

ETR using surface radiant temperature measurements (Equation 4). This method can be applied for 

Landsat images (30-meter and 16-day; Table 1) and calculates daily ETR considering the net radiation

received by the surface and its temperature difference with the surrounding air mass equation 

(Jackson et al. 1977) 
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ETR=Rn−B (Ts−Ta )
n
−G (Eq. 4)

where ETR (mm day-1) and Rn (mm day-1) are, respectively, the integrated actual ETR and net 

radiation over a 24 h period, Ts (K) is the surface radiant temperature, Ta (K) is the 1.5 m air 

temperature above ground level, G (mm day-1) is the soil surface energy flux, and B (mm day-1 K-1) 

and n are parameters that vary with vegetation activity estimated from the NDVI. 

Although this method is simple, it also has a strong physical basis and has been successfully applied 

for different vegetation types (Caselles et al. 1998; Sanchez and Caselles, 2004; Nosetto et al. 2005; 

2012; Milkovic et al. 2019). In this work, we used 11 Landsat-7 images and 1 Landsat-8 image 

(path/rows: 223/83; 223/84; 224/84; 225/82 and 224/82) for the 2012-2013 period to estimate ETR 

following the Jackson Simplified Method. Images were provided by the USGS 

(https://earthexplorer.usgs.gov/) and cover 65% of the Uruguayan territory. Images were acquired 

between 12:05 and 12:20 hours (local time) on 27/10/2012, 3/11/2012, 5/11/2012, 7/2/2013, 

4/3/2013, 11/3/2013, 13/3/2013, 27/3/2013 and 13/4/2013. Non-thermal bands were corrected 

using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) atmospheric 

correction described by Masek et al. (2012), and the thermal bands were corrected using the mono-

window algorithm proposed by Qin et al. (2001). Also, images were filtered by its quality band 

(“bqa”) generating products free of clouds, shadows, and water. Meteorological data, required to 

estimate ETR, were derived from six meteorological stations (INIA Tacuarembó, INIA Salto Grande, 

INIA Treinta y Tres, INIA Glencoe, INIA La Estanzuela, INIA Las Brujas). For more details about the 

Jackson Simplified Method ETR estimation (hereafter Landsat) see supplementary material 1.
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2.2.2.Water balance evapotranspiration products

2.2.2.1. INIA-GRAS 

The National Institute of Agricultural Research of Uruguay, through the Information Systems and 

Digital Transformation Area (hereafter INIA-GRAS), provides ETR estimations based on a water 

balance model for the soils of Uruguay. This model is calculated at the national level and a daily step,

for a grid with cells of approximately 30 x 30 km2 (Table 1; see Figure S1 in supplementary material 

2). The input variables of the model are the water-holding capacity of the soil (it considers the 

maximum amount of water that the soil can store between field capacity and permanent wilting 

point), the effective precipitation and the potential evapotranspiration (Penman method). For each 

grid cell, the water-holding capacity is calculated as a weighted average value of the Potentially 

Available Soil Water Net (APDN) of the Soil Units that are within each cell. For the 

agrometeorological variables (potential evapotranspiration and effective precipitation), a network of

meteorological stations throughout the Uruguayan territory (INIA and INUMET) is used and the 

average daily value is estimated for each cell using the interpolation method (see more details in 

http://www.inia.uy/GRAS). 

2.2.2.2. Silveira et al. (2016)

Silveira et al. (2016) estimated the ETR based on the water balance (Equation 6) of two micro-

watersheds with similar geomorphological and edaphic characteristics: a) Don Tomas (2.12 km2) 

used for active forestry with Eucalyptus globulus since 1998 and b) La Cantera (1.2 km2) used for 

cattle ranching based on native grasslands (see Figure S2 in supplementary material 2). To carry out 

the water balance in the two micro-watersheds, Silveira et al. (2016) used monthly field data 

information (aggregated seasonally and annually) of precipitation, soil moisture and runoff from 

October 2006 to September 2009 (Table 1).
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The ETR, derived from the water balance, was calculated as:

ETR=PPT−Q s± ΔS ± ΔGW (Eq. 5)

where ETR is the actual evapotranspiration, PPT is the incident precipitation, Qs is the stream 

discharge at the watershed outlet, ∆S is the change in soil water storage, and ∆GW is the change in 

groundwater storage. 

Table 1: Characteristics of remote sensing and water yield evapotranspiration (ETR) products

ETR
product

Spatial
resolutio

n (km)

Tempora
l

resolutio
n (days)

Period Scale Reference

Remote
sensing

products

PMLv2 0.5 8 2003-
2017 Global Zhang et al. 2019

MOD16A
2

0.5 8 2001-
present

Global Running et al. 2017

INTA-
SEPA

1 10 2002-
2018

Regional Di Bella et al. 2000

Landsat 0.03 16 1985-
present

Local Jackson et al. 1977

Water
balance
products

INIA-
GRAS 30 1 2003-

present National INIA Uruguay

Silveira et
al. - 30 2006-

2009
Watershe

d Silveira et al. 2016

2.3. Precipitation data

Precipitation data were obtained from the Climate Hazards Group InfraRed Precipitation with 

Station product (CHIRPS; Funk et al. 2015). This dataset is available in Google Earth Engine and 

provides daily precipitation data estimations (mm/day) with a spatial resolution of 0.05° x 0.05° (5 × 
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5 km2, approximately) since 1981. The precipitation values were converted into accumulated 

monthly (mm/month) and annual (mm/year) precipitation for the 2002-2017 period.

2.4. NDVI data

NDVI data were obtained from the Mod13Q1 product (collection 6 of MODIS). These images have a 

spatial resolution of 250 m (~6 ha per pixel) and a temporal resolution of 16 days. Each NDVI image 

was filtered using its associated “per pixel” quality band (Roy et al. 2002). Pixels that did not have 

the highest quality were discarded and their values replaced by simple linear interpolation from the 

previous and the following dates of the same pixel. NDVI values were used at 16-d step and mean 

annual scale for the 2003-2017 period.

2.5. Land-cover maps

To characterize the ETR and NDVI seasonal dynamic, we used two land-cover maps with different 

but complementary conceptual resolutions (Figure 1). The first one, used as the base, corresponds to

the 2012-2013 period, and discriminates between 7 categories: perennial forage resources, summer 

crops, winter crops, double crops, afforestation and woodland, water, and urban. It was built using 

simple but exhaustive classifications based on a time series of MODIS NDVI satellite images (250-

meter) and decision trees classifiers (for more details see Baeza and Paruelo et al., 2020). The 

second one corresponds to the 2016 year and was used to disaggregate the class perennial forage 

resources into two types of native grasslands called “Densely vegetated grasslands” and “Sparsely 

vegetated grasslands”. This map was built using Landsat 8 images and supervised classifications (for 

more details see Baeza et al. 2019).

2.6. Water Yield estimation

We calculated the daily Water Yield (WY, Equation 6) at a micro-watersheds level (n= 1426, 125 km2 

average; Ministerio de Ambiente, 2022; https://www.ambiente.gub.uy/visualizador/index.php?
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vis=sig) for the period 2003-2017). Here, we only show the WY for three climatically contrasting 

years: wet (2014 with an average of 1800 ± 500 mm), average (2010 with an average of 1370 ± 450 

mm), and dry (2008 with an average of 840 ± 415 mm). We used data from all remote sensing ETR 

products (except Landsat and INIA-GRAS due to its temporal and spatial resolution), daily 

precipitation and soil water content for the 0-100 cm profile.

Water yield was calculated as:

WY = ΔSt-1 + PPTt0 – ETRt0 – FCt0 (Eq. 6)

where WY is the water yield (mm/d), ∆S is the available water in the soil, PPT is the precipitation 

(mm/d), ETR is the real evapotranspiration (mm/d) derived from the different data sources, FC is the

field capacity up to 1-meter derived from the Hengl and Gupta (2019) product, and t0 y t-1 represent

the time period estimations. We consider 01/01/2003 as the initial date of FCt0 as it was preceded by

a particularly wet month that allowed us to assume that the soil was at field capacity (230 mm in 

December 2002 representing 140 % more than the historical average). The initial FC value was 

subtracted from the PPT - ET balance and the WY equation was iterated at a daily step for the 2003-

2017 period. All pure pixels within the micro-watersheds were averaged. This analysis, based on a 

qualitative approach, takes a step further in evaluating the performance of ETR products, allowing 

for an applied approach to water management in micro watersheds.

2.7. Data analysis

We analysed the relationship between the different ETR products and the a) annual precipitation 

and b) annual NDVI using linear regressions for the period 2003-2017. For this purpose, and to make 
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the different spatial resolutions of the products compatible, we calculated the average of each 

variable (dependent and independent) for the 30 x 30 km grid (n= 102), on which INIA-GRAS 

provides the ETR estimations. Grids with more than 10 % of water bodies were discarded. To 

characterize the temporal dynamics of NDVI and ETR of each product for different land-covers, we 

selected “pure” pixels from each land-cover (water and urban classes were excluded). We extracted 

the NDVI values from the MOD13Q1 product and the ETR values from PMLv2 (PMLv2 (Ec+Ei) and 

PMLv2 (Ec+Ei+Es)), MODIS and INTA-SEPA products. We excluded for this analysis the INIA-GRAS ETR

dataset due to its spatial resolution (30x30 km). The relationship between the different ETR products

and the Jackson Simplified Method (Landsat) was analysed using linear regressions. We used the 

same pure pixel and selected those that intersected with the Landsat scenes (n= 122.000 for MODIS 

and PMLv2 products, and n= 117.000 for INTA-SEPA product). We considered the median of each 

date and ETR product. Finally, the relationship between the different ETR products (except INIA-

GRAS) and the ETR calculated from the water balance (proposed by Silveira et al. (2016)) was 

analysed using linear regression models. All pure micro-watershed pixels and ETR data accumulated 

every six months were used in the model. Statistical analyses were performed in R Core Team (2021)

For the ETR products comparison (PMLv2, PMLv2 (Ec+Ei), MODIS, INTA-SEPA and INIA-GRAS) we 

considered six criteria: 1) the temporal and 2) spatial resolution, 3) the correlation (expressed as the 

Pearson correlation coefficient) with the annual NDVI and 4) the annual precipitation, 5) the slope of

the linear model with the Silveira et al. (2016) water balance and 6) the slope of the linear model 

with the Jackson Simplified Method (Landsat). Criteria 3 to 6 represent different perspectives to 

evaluate the performance of the database. Each criterion was scaled to the range [0-1] to make 

them comparable, using the equation 7:

16

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

31
32



Xi scaled = (Xi - Xmin)/(Xmax - Xmin) (Eq. 7)

Where Xi  scaled corresponds to the scaled value of criterion X for the ETR product i,  Xi is the value

taken by criterion X for the ETR product i, Xmin is the minimum value taken by criterion X among all

the ETR products and Xmáx is the maximum value taken by criterion X.

3. Results

The fitted models and the Pearson correlation coefficients obtained between the remote sensing 

products (excluding Jackson Simplified Method due to its low temporal resolution) and the annual 

NDVI and precipitation, for the period 2003-2017, showed contrasting results (Figure 2 and Table S1 

in supplementary material 3). There is a significant, positive, and linear correlation for models fitted 

for PMLv2(Ec+Ei), MODIS and INIA-GRAS products. The highest Pearson correlation coefficient, for 

both NDVI and PPT, was observed for the model fitted with MODIS (r=0.84 and r=0.72, respectively), 

followed by INIA-GRAS (r=0.64 and r= 0.59, respectively) and PMLv2(Ec+Ei) (r=0.77 and r= 0.56, 

respectively). On the other hand, the models fitted with INTA-SEPA and PMLv2 products showed a 

non-significant fit (p>0.05).
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Figure 2: Fitted models between the annual evapotranspiration (2003-2017) for each product 

(PMLv2, PMLv2(Ec+Ei), MODIS, INTA-SEPA and INIA-GRAS) and a) (left) the annual precipitation and 

b) (right) the annual normalized difference vegetation index. 

All ETR products evaluated and the NDVI showed, for all land-covers, a strong seasonality with 

maximum values in summer, minimum values in winter and intermediate values in autumn and 

spring months (Figure 3). Also, differences among land-covers were higher in summer and lower in 

winter months. Differences between land-covers were maximum in MODIS and PMLv2(Ec+Ei) 

products and minimum for PMLv2 and INTA-SEPA products (see results for annual estimates in 

Figure S3 in supplementary material 2). Furthermore, the ETR estimates from the INTA-SEPA model 

showed an irregular temporal dynamic with curves exhibiting very pronounced peaks and valleys. 

Afforestation and woodland showed the highest ETR values for almost the whole year for the MODIS

and PMLv2(Ec+Ei) products (3 and 2 mm, respectively). This pattern is consistent with the annual 

dynamics of NDVI, where this cover not only showed the highest values throughout the year (an 
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average of 0.8) but was also the class with the lowest intra-annual variability (cv=3.8%). In terms of 

agricultural classes, double crops showed a clear bimodal pattern in the PMLv2(Ec+Ei) and MODIS 

products (this pattern is more clear for the MODIS product). Also, this pattern was observed in the 

NDVI dynamic with maximum peaks in spring and summer, associated with double crop sequences. 

Summer crops showed a unimodal pattern with maximum values of ETR (PMLv2(Ec+Ei) and MODIS) 

and NDVI in summer (3.5 mm and 0.75 approximately, respectively). Winter crops showed two 

peaks (spring and late summer) in the MODIS product and a single peak in summer for the rest of 

the ETR products. NDVI for winter crops was characterised by high values in both spring and autumn.

On the other hand, densely-vegetated grasslands showed, for all months of the year, higher NDVI 

and ETR values than sparsely-vegetated grasslands, particularly for MODIS and PMLv2(Ec+Ei) 

products. In both grassland types, and for all ETR products, the maximum values were reached in 

spring-summer and minimum in winter. This pattern also is consistent with the annual dynamics of 

NDVI.

19

381

382

383

384

385

386

387

388

389

390

391

392

393

394

37
38



Figure 3: Evapotranspiration products and normalized difference vegetation index (NDVI) seasonal 

dynamic for different land-covers classes in the 2012-2013 period. In: 8-d intervals for PMLv2 and 

MODIS products, 10-d intervals for INTA-SEPA product and 16-d intervals for NDVI-MODIS product. 

Different colours represent land-covers: SG: Sparsely-vegetated grassland; DG: Densely-vegetated 

grassland; A&W: Afforestation and Woodland; DC: Double Crops; WC: Winter Crops; SC: Summer 

Crops.

The fitted models between the PMLv2, PMLv2(EC+Ei), MODIS and INTA-SEPA products (INIA-GRAS 

product was excluded due to its spatial resolution) and the Simplified Jackson Method (derived from 

Landsat-7 and 8 images) showed significant, linear, and positive correlations (Figure 4). Fitted 

models differed mainly in terms of the slope and the Pearson correlation coefficient. The model with

the highest Pearson correlation coefficient was PMLv2(Ec+Ei) (r= 0.60, p<0.001), followed by MODIS 

(r= 0.54, p<0.001). INTA-SEPA and PMLv2 showed the lowest Pearson correlation coefficient (r= 0.36,
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p<0.05 and r= 0.34, p<0.05, respectively). The slope of all models showed a value less than 1, with 

extremes of 0.53 and 0.17 for MODIS and INTA-SEPA respectively. In general terms, the different 

land-covers maintained the same distribution pattern for the several fitted models. 

Figure 4: Fitted linear regression models between the evapotranspiration of: A) PMLv2, B) 

PMLv2(Ec+Ei), C) MODIS, D) INTA-SEPA and the evapotranspiration estimated from the Simplified 

Jackson Method (derived from Landsat data). Different colours represent land-covers: SG: Sparsely-

vegetated grassland; DG: Densely-vegetated grassland; A&W: Afforestation and Woodland; DC: 

Double Crops; WC: Winter Crops; SC: Summer Crops.

ETR derived from PMLv2, PMLv2(EC+Ei), MODIS and INTA-SEPA products showed a linear and 

positive correlation (p<0.001) with water balance estimates of ETR in the two experimental 
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watersheds (Figure 5). In general terms, all models showed a high Pearson correlation coefficient, 

surpassing 75 % of the variance explained. In terms of slope, all models presented values greater 

than 1. The model closest to this value was PMLv2 (slope=1.31) while the model furthest away was 

INTA-SEPA (slope=1.78). Additionally, all fitted models showed the same distribution pattern for 

forestations and grasslands.

Figure 5: Fitted linear regression models between ETR products: A) PMLv2, B) PMLv2(Ec+Ei), C) 

MODIS, D) INTA-SEPA and the ETR estimated from the water balance proposed by Silveira et al. 

(2016). Different colours represent land-covers in each watershed: afforestation (Don Tomas 

watershed) and grasslands (La Cantera watershed).
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Radar plots describes the ETR estimation performance of the different products (both based on 

remotely sensed and water balance data) for the 6 criteria (Figure 6). The results show important 

differences between the performances of the different ETR products analysed. On one hand, the 

INTA-SEPA was the product with the lowest relative performance in 5 of the 6 criteria analysed. The 

spatial resolution of this product (1000 m) is the only criterion that was weighted positively. In the 

opposite case, the MODIS and PMLv2(EC+Ei) products showed high relative performances in 4 of the 

6 criteria, including spatial and temporal resolution (500 m and 8-d), correlation with precipitation 

and NDVI (up to 60%) and the ability to discriminate between land-covers (slopes>=0.39). The INIA-

GRAS product showed well results in 3 of the 6 criteria, with temporal resolution (1-d), and 

correlation with NDVI and precipitation (r=0.64 and r= 0.59, respectively). Finally, the PMLv2 product

stood out in 2 of the 6 criteria, its high spatial resolution (500m) and the similarity with the ETR 

estimated from the water balance for the two micro-watersheds (slope=1.31).

Figure 6: Radar plots for each evapotranspiration product (PMLv2, PMLv2(Ec+Ei), MODIS, INTA-SEPA,

INIA-GRAS) evaluated on six criterions. All the criterions were scaled from 0 to 1. Criterions: 1. Temp.
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Res. (temporal resolution); 2. PPT (precipitation); 3. NDVI (normalized difference vegetation index); 

4. Water Balance; 5. Land-Cover (land-cover differentiation); 6. Spat. Res. (spatial resolution).

Water yield estimates, derived from the use of the different ETR products (except for INIA-GRAS due 

the low spatial resolution) (Figure 7), showed similar spatial patterns with Pearson correlation 

coefficients ranging from 0.784 to 0.959 (Figure S4 in supplementary material 2). However, the 

magnitude and spatial pattern of WY estimates differed among products. Regarding temporal 

changes, all evapotranspiration products captured changes in water yield among contrasting years in

terms of total precipitation. A clear increasing WY pattern from SW to NE can be observed, with the 

highest values for estimates derived from the PMLv2(Ec+Ei) product. On the other hand, the 

comparison of the water yield for the same year and between evapotranspiration products showed 

important differences. In the case of the dry year (2008), the INTA-SEPA model characterized the 

entire Uruguayan territory within the category with the lowest values (a mean annual of 67 mm). On

the other hand, both MODIS and PMLv2 showed greater heterogeneity and a very similar spatial 

distribution (mean annual of 221 and 196 mm, respectively). PMLv2(Ec+Ei) showed even greater 

heterogeneity, showing a different spatial pattern than the rest of the products (mean annual of 431

mm). For the year with average precipitation (2010), we also found contrasting differences between 

the WY estimates. The estimates derived from the INTA-SEPA product showed a large part of the 

territory (more than 50 %) with values between 300 and 600 mm, and even some SW micro-

watershed showed values between 0 and 300 mm (mean annual of 537 mm). MODIS and PMLv2 

showed a similar pattern, with values between 300 and 600 mm in the SW, NW and E of the 

Uruguayan territory (mean annual of 668 and 739 mm, respectively). PMLv2(EC+Ei) was 

characterized by higher values ranging from 1000 to 1200, in most of the analysed territory. Finally, 

for the wet year (2014), the differences were accentuated, particularly in the mean annual WY 

estimated from PMLv2(Ec+Ei) (1230 mm) which showed between 30 and 50% more WY than the rest

of the estimates.
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Figure 7: Water yield maps estimated from the different remote sensing evapotranspiration 

products at the micro-watershed scale in climatically contrasting years: Dry: 2008 (precipitation: 840 

mm); Average: 2010 (precipitation: 1370 mm); Wet: 2014 (precipitation: 1800 mm).
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4. Discussion

This study describes and compares the inter-annual and seasonal annual dynamic of four remote 

sensing ETR products (PMLv2 with three and two components, MODIS, INTA-SEPA) and analyses 

their performance in terms of 6 criteria (correlation with the annual productivity and precipitation, 

spatial and temporal resolution, land-cover differentiation, and correlation with ETR water balance 

estimates). Also, this study describes the spatial and temporal variability of the WY derived from 

each remote sensing ETR product. It is important to mention that this work represents an 

intercomparison of ETR estimation models in Uruguay. Strictly, this work does not represent a 

validation of the models, except for their comparison with micro-watershed data, which cover a 

small area in the Uruguayan territory. Clearly, our results show important differences between the 

ETR estimation products that resulted in important differences in WY estimation. Among the best 

performing ETR products, based on the 6 criteria analysed, MODIS and PMLv2(Ec+Ei) stand out. Both

products have high spatial (500-m) and temporal (8-d) resolution, capture seasonal differences 

between land-covers and showed positive and high correlations with the annual productivity and 

precipitation. Our results are in line with several global and regional studies that have shown that 

both MODIS and PMLv2 products generate good estimates of actual evapotranspiration 

(Guerschman et al. 2009; Velpuri et al. 2013; Aguilar et al. 2018, Faisol et al. 2019; Xu et al. 2019; 

Chao et al. 2021; Navas et al. 2021).

The absolute value of ETR derived from each product showed profound differences. These 

differences were reflected both in the monthly ETR dynamics of the different land-covers as well as 

in the comparison with the data provided by the simplified Jackson model (based on Landsat data) 

and its correlation with the annual productivity and precipitation. Regarding the comparison with 

the monthly dynamics of the NDVI for 2012/2013, the ETR products showed a marked difference. A 

priori, what we expected was that all models would follow the monthly NDVI dynamics, i.e., copy the

same monthly pattern for the different land-covers. This is because, on the one hand, ETR is closely 
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linked to C dynamics and Leaf Area Index (Cihlar et al. 1991; Chapin III et al. 2011) and on the other 

hand, all products consider, to some extent, vegetation aspects/properties (NDVI in the case of 

INTA-SEPA (Di Bella et al. 2000), or leaf area index in the case of PLMv2 and MODIS (Mu et al. 2011; 

Zhang et al. 2019). Similarly, the correlation with the annual NDVI and precipitation (15 years, 2003-

2017 period), for the whole Uruguay, showed clear differences between models, being in some 

cases, opposite to what was expected. For example, the INTA-SEPA and PMLv2 (with its three 

components; Ec, Ei and Es) products showed no relationship with both variables. 

In general terms, the intercomparison showed that the worst performing models were PMLv2 and 

INTA-SEPA. Particularly, in the case of PMLv2, our results do not agree with those reported by Chao 

et al. (2021). These authors demonstrated that PMLv2 is one of the best performing models in North

America when compared to in-situ data based on water balance estimations. The differences found 

in this work could be associated with many factors, such as the forcing data (precipitation, air 

temperature, vapor pressure, shortwave downward radiation, longwave downward radiation, and 

wind speed), the parameters of each ETR algorithms or the nature of the algorithms themselves. In 

the case of PMLv2, the model assumes that all net radiation is decomposed into three components: 

Es, Ei and Ec, unfailingly giving values to one of these three fluxes (Zhang et al. 2019). When we 

compare separately PMLv2 with three and two components, the absolute values increase drastically 

relative to PMLv2(Ec+Ei) and the differences, for example, in the intra-annual dynamics of ETR 

decrease between land-covers (all land-covers have a similar seasonal pattern without marked 

differences). We hypothesize that this could be associated with the fact that the Es flux simplifies the

physical processes, contributing energy to the evaporation of soil water that is not part of the 

system (e.g surface and deep drainage). In fact, Zhang et al. (2019) propose that the Ec component is

directly coupled with carbon assimilation and the other components, Es and Ei, may be indirectly 

linked with C as Es decreases and Ei increases associated with C, especially when the vegetation 

cover increases. On the other hand, the INTA-SEPA ETR product has several limitations. Clearly, this 
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is the simplest model of this intercomparison that considers only NDVI and Ts, leaving out key 

variables that determine ETR, e.g., air temperature as a regulator of atmospheric water demand. It 

does not even consider net radiation, which has been shown to be the variable with the greatest 

relative weight, explaining 87% of the monthly variation in ETR (Fisher et al. 2009). Although the 

INTA-SEPA model presented good fits in its validation process (see more details in Di Bella et al. 

2000), the product was validated for Argentina for a period with climatically average years. In the 

recent years that product has been updated and improved, both spatially and temporally, but it is 

only available since 2019 (Di Bella et al. 2019). 

A strict validation of the analysed ETR products, based on two micro-watersheds, showed very good 

results for all models. The Pearson correlation coefficients were between 0.87 and 0.9. However, 

there were significant differences in the slopes. MODIS and PMLv2 overestimated at values below 

400 mm and underestimated at values above 400 mm. This is in agreement with Chang et al. (2018) 

where they found that the MODIS algorithm tended to underestimate ETR at high values and 

overestimate it at low values in the Tibetan Plateau, China. Also, Degano et al. (2021) in the 

Argentinean Pampas concluded that the MODIS product has a better performance in semi-arid areas

than in humid areas. In such regions, the satellite product underestimates in the most stations, 

while, in semi-arid zones, the satellite values are close to ground measurements. Moreover, Navas et

al. (2021) found in Uruguay better performances in wet season (particularly in autumn). In contrast, 

Chao et al. (2021) found in North America that PMLv2 tends to overestimate at low values, adjust 

well at values between 400-600 and underestimate at medium and high values (600-1500). 

Furthermore, Chao et al., (2021) found for MODIS a systematic underestimation of the ETR in all 

ranges. INTA-SEPA and PMLv2(Ec+Ei) showed an underestimation and overestimation, respectively, 

over the whole range of values (0-1000 mm) and there are no studies that allow a comparison of 

these results. Overall, the differences found for the four models could be associated with the nature 

of the different algorithms, which some are based on NDVI and surface temperature such as Di Bella 
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et al., (2000) and others on the Penman-Monteith method such as Mu et al. (2011) and Zhang et al. 

(2019) as well as the accuracy of in-situ observations (Chao et al. 2021).

5. Conclusions

In this study, we generated an intercomparison of four remote sensing ETR products based on 6 

criteria and evaluated the accuracy of its estimations based on data derived from a simple water 

balance in two micro-watersheds. Also, based on the ETR products, we estimated the water yield for 

climatically contrasting years (wet, dry, and average). Our results suggest that MODIS and PMLv2 

(Ec+Ei) remote sensing products demonstrated better performances on the 6 criteria analysed for 

Uruguay. The INIA-GRAS ETR water balance ETR product has shown to be a good reference product 

at the regional level while PMLv2 and INTA-SEPA were the worst-performing models. The differences

found between products have direct implications on the WY estimates, not only in the quantity but 

also in the spatial pattern. Accurate quantification of WY is not a simple matter, and the 

international literature has found, for the same remote sensing product, important differences in its 

performance between years and regions, possibly associated with model parameters, climatic and 

topographic conditions of the areas of interest, and aspects related to scale, among other factors. In 

this work, although two products were the best performing, they leave open questions for future 

improvements. In that sense, future research should address these aspects to expand their 

applications for understanding hydrological and ecological processes, global climate change 

research, agricultural drought detection and mitigation, and water resource management (Allen et 

al. 2005; Trenberth et al. 2009).
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