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Abstract 
In this paper, we provide a method based on quantiles to estimate the para-
meters of a finite mixture of Fréchet distributions, for a large sample of 
strongly dependent data. This is a situation that appears when dealing with 
environmental data and there was a real need of such method. We validate 
our approach by means of estimation and goodness-of-fit testing over simu-
lated data, showing an accurate performance. 
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1. Introduction 

In many applications of Statistics, the finite mixture model had been widely used 
to describe the distribution of data. A finite mixture model is a distribution that 
may be written as a finite, convex linear combination of distributions belonging 
to parametric classes. For instance, a mixture of k normal distributions, each one 
with its mean and variance, is a basic example, where the parameters involved 
are 1−k  non-negative weights (because their sum is one), and the 2k parame-
ters corresponding to each mean and variance, making a total of 3 1−k  para-
meters. In both theoretical developments and specific applications, the use of fi-
nite mixture models and the development of techniques of estimation of the 
unknown parameters have been deeply studied, with developments such as the 
expectation-maximization algorithm (EM) and its variants [1] [2] [3] [4] [5]. 

It should be noticed that the parametric classes of distributions involved in the 
mixture may be different. For instance, one may consider a mixture of a Normal 
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distribution with an exponential one. 
In a general, abstract framework, one of the first questions to answer when 

considering a finite mixture model is if it is identifiable, that is, if there is a 
unique combination of all the involved parameters to express a given distribu-
tion. It is obvious that if the finite mixture model is not identifiable, estimations 
will be affected seriously by the fact that there are different sets of parameters 
leading to the same distribution. 

More recently, both in theoretical and applied developments, the finite mix-
ture of extremal distributions has increased its consideration [6] [7] [8] [9]. In 
Propositions 2.3.3 of [6], it is shown that finite mixtures of extremal distribu-
tions are identifiable, leading to the estimation of weights and parameters of the 
extremal components based on a random, iid, sample. 

In a recent paper [10], another reason to pay attention to finite mixtures of 
extremal distributions is provided, because it is shown in its Theorem 1 that, 
trying to mimic Fisher-Tippet-Gnedenko theory, when studying the asymptotic 
distribution of the maximum of a large sample, if data are non-stationary and 
strongly dependent, under very mild assumptions, the limit distribution is a fi-
nite mixture of extremal distributions, instead of an extremal one. This means 
that, when trying to fit a sample consisting on the list of the maximum values of 
blocks of a large number of continuous measures to a Generalized Extremal 
Value distribution (GEV), if the result of testing or diagnostic analysis is rejec-
tion, it may be related to a non-detected strong dependence and non-stationary 
structure on data. In addition, in many real data sets, in particular in environ-
mental studies, non-stationarity and strong dependence should be expected. 
Consider the case mentioned in [11], when each data of our sample is the max-
imum wind speed registered by an online anemometer in a 10 minutes period, 
that may be well-fitted to a mixture of extremal distributions. If we dispose of 
several years of data, since one year has 52.560 periods of 10 minutes, and wind 
speed is affected by global phenomena that induce dependence trough years, one 
finds a significative correlation between data with lags of the order of 105 (or 
more), and non-stationarity is often evident. 

Therefore, we need to develop a method for the estimation of the components 
of a finite mixture of extremal distributions, for large samples of strong depen-
dent, and non-stationary data. Such a method will be a substantial improvement 
for the statistical analysis of large samples of complex environmental data. 

This is the focus of the paper. More precisely, we will first recall the strong 
dependent and non-stationary models presented in [10] and propose an estima-
tion method for the components of the mixture of 2,3=k  extremal distribu-
tions. We will focus on the mixture of Fréchet distributions, for the sake of sim-
plicity, and because they correspond to the most heavy-tailed data. Further, we 
will prove the consistency of our estimators and expose their performance using 
data simulated following models presented in [10], and checking the quality of 
the fitting of the estimated model to data, using the test for these types of models 
provided in [11]. 
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Therefore, the method introduced here is a new and effective tool for the sta-
tistical analysis of strong-dependent data, as is required in several environmental 
applications. 

2. Preliminary Results 

At first, we will now recall the main result of [10] in a compressed manner. We 
assume that classical Fisher-Tippet-Gnedenko theory, in particular concepts like 
maximal domain of attraction (MDA, in what follows), are well-known for the 
reader. For a reference in the topic as well as some examples of its wide domain 
of application to real data, see [12] [13] [14] [15]. 

Our data will be 1, , nX X  with ( ),ξ=i i iX f Y , where { }1, ,∈ ∀iY k i  and 
we will assume the following hypotheses: 

(H1) { }
. .

1

1 1 ==
→∑ i

n a s
jY j nj b

n
 where jb  is a positive random variable. More  

precisely, if ( ) { }:σ= ≥iI t Y i t , and ( ) ( )1

∞

>
∞ =
 t

I I t , then, since for any j, jb  
is ( )∞I -measurable, if ( )∞I  is trivial (what means weak dependence on the 
process Y), 1, , kb b  are deterministic, but, if ( )∞I  is not trivial (what means 
strong dependence on the process Y), for some j, jb  may be non-deterministic. 

(H2) For any j, jb  assume a finite numbers of values. 
(H3) The three following conditions are fulfilled.  
1) ( )ξ

∈i i
 is iid  

2) 1, ,nY Y  satisfy (H1) and (H2) 
3) The processes ( )ξ

∈i i
 and ( ) ∈i i

Y  are independent.  
(H4) For any 1, ,= j k  the process ( ),ξ=j

i iX f j  belongs to the MDA of 
the GEV jG , where 1G  is the most heavy-tailed of them, and corresponds to a 
Fréchet distribution of order α  (we will denote αΦ  the standard Fréchet dis-
tribution of order α .  

We are now in conditions to present the main result of [10]. 
Theorem 1 of [10]. 
Under (H3) and (H4) there exists a random variable Z such that 

( )1
1

max , ,
α →∞→
 n w

n

X X
Z

n
  

In addition:  

1) If ( )∞I  is trivial, then the distribution of Z is ( ) 1
1

α α

 
= Φ  

 
z

xF x
b

.  

2) If ( )∞I  is not trivial and 1b  assumes the values 1, , rv v  with probabil-
ities 1, , rp p , then the distribution of Z is 

( ) 11 α α=

 
= Φ  

 
∑ r

z ii
i

xF x p
v

 (Mixture of Fréchet distributions).  

Remark 1  
Part b of Theorem 1 means that finite mixtures of Fréchet distributions of the 

same order, but with different scale parameters, appear when one tries to approx-
imate the distribution of the maximum of a large sample of strongly-dependent 
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data. As mentioned in the introduction, this is a situation that appears when 
dealing in practice with environmental data. Therefore, from now on, we will try 
to provide statistical procedures to estimate the order α , the weights 1, , rp p  
and the scale parameters 1, , rv v  assuming that such a mixture applies to our 
data and validate (or not) its fitting by means of the test provided in [11]. Finally, 
for the sake of simplicity, and taking into account that estimations will be tested, 
in the case of the order α , we will just use an exploratory estimator. Even if the 
results exposed in this paper are auspicious, it is clear that for a deeper approach, 
the estimation of the order α  must be refined.  

We will provide now some classical statistical procedures enabling to prove 
consistency of estimators. 

First, remember that for 1, , , nZ Z  independent, centered and bounded 
we have that 

2 21

1 ε
ε=

 
> ≤ 

 
∑ n

iiP Z
n n

 

Let us also remember that this implies complete convergence of 1

1
=∑n

ii Z
n

 to 

zero for n tending to infinity, i.e., 

1 1

1 ε∞

= =

 
> < ∞ 

 
∑ ∑n

in iP Z
n

  

what in turn implies almost sure convergence, i.e.,  

.
1

1 0→∞=
→∑n a s

i ni Z
n

 

Then we have the following consistency result. 
Theorem 1: If ,ξ Y  satisfy (H3) of [10], and ϕ  is a bounded function, then 

( ) ( ). .
1 1

1 ,ϕ ξ
= =

→∑ ∑n ka s
i i jni jY m j b

n
,  

where  

( ) ( ){ }0 , , 1, ,ϕ ξ= = m j E j j k  

Proof 
First, consider  

( ) ( ) { }
*

1, 1ϕ ξ ==
= −∑ i

k
i i i Y jjZ Y m j   

It is clear that ( )* 0=iE Z  ∀i , and that * *
1 , , , nZ Z  are bounded. Then, 

calling ( ) ∈= i i
Y Y , and ( ) ∈= i i

y y  a fixed element of { }1, , ∞= S k , we have, 
for any 0ε > ,  

( )* *
1 1

1 1 / dε ε
= =

   
> = > =   

   
∑ ∑∫

n n Y
i ii iS

P Z P Z Y y P y
n n

 

But 

*
1 1

1 1 ˆ/ /ε ε
= =

   
> = = > =   

   
∑ ∑n n

i ii iP Z Y y P Z Y y
n n

 

https://doi.org/10.4236/apm.2023.137027


C. Crisci et al. 
 

 

DOI: 10.4236/apm.2023.137027 429 Advances in Pure Mathematics 
 

where ( ) ( )ˆ ,ϕ ξ= −i i iZ y m y , that are clearly independent, centered and 
bounded variables, and therefore  

( )1 1 1 1

2

2 21

1 1ˆ ˆ / d

,

ε ε

ε

∞ ∞

= = = =

∞

=

   
> ≤ > =   

   

≤ < ∞

∑ ∑ ∑ ∑∫

∑ 

n n Y
i in i n iS

n

P Z P Z Y y P y
n n

k
n

 

what implies that .
1

1 ˆ 0→∞=
→∑n a s

i ni Z
n

, what in turn implies that  

.*
1

1 0→∞=
→∑n a s

i ni Z
n

. 

Therefore  

( ) ( ) { }
.

01 1 1

1 1, 1 0ϕ ξ = →∞= = =
− →∑ ∑ ∑ i

n n k a s
i Y j ni i jY m j

n n
 

But  

( ) { } ( ) { } ( ).
1 1 1 1 1

1 11 1= = →∞= = = = =
= →∑ ∑ ∑ ∑ ∑i i

n k k n ka s
jY j Y j ni j j i jm j m j m j b

n n
 

and hence, we conclude that  

( ) ( ).
1 1

1 ,ϕ ξ →∞= =
→∑ ∑n ka s

i i jni jY m j b
n

 

Remark 2  
As a clear consequence of Theorem 1 the empirical distribution of a large 

sample satisfying (H3), and where data are equally distributed, converges to the 
theoretical distribution at any given point. That is, the empirical distribution is a 
consistent estimator of the theoretical one at any given point. Calling F to the 
theoretical distribution and nF  to the empirical one, when F is continuous, 
since nF  is monotonous, by well-known elementary arguments, consistency is 
uniform, that is  

( ) ( ) .sup 0∈ →∞− →
a s

t n n nF t F t
 

This result is consistent with (slightly more general, in fact) Theorem 1 of 
[11]. 

3. Mixture of Two Components - Simulation of Data 

We will consider now the case of a mixture of 2=k  extremal distributions. 
The procedure to simulate our data follows very closely the one proposed in [10], 
but we will explain it here, for a better reading and comprehension. 

Example I:  
Let U be a random variable such that ( )1= =P U p , ( )2 1= = −P U p . Let 

1, ,σ σ n , …an iid sequence of random variables on 1,2  independent of U 
such that ( )( )1 1σ δ= =iP , ( )( )1 2 1σ δ= = −iP , ( )( )2 1σ η= =iP ,  

( )( )2 2 1σ η= = −iP , with ( )1σ i , ( )2σ i  independent among them for any i, 
0 1δ< < , 0 1η< < , δ η≠ . Set ( )σ=i iY U .  

Thus, { }11

1 1 / 1==
=∑ i

n
Yi U

n
 has the same distribution as  
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( ){ } ( )( ).
1 11

1 1 1 1σ σ δ→∞==
→ = =∑ i

n a s
ini P

n
 (by the Strong Law of Large Numbers).  

On the other hand ( ){ }1 11

1 1 / 2==
=∑ i

n
Yi U

n
 has the same distribution as  

( ){ } ( )( ).
2 11

1 1 2 1σ σ η→∞==
→ = =∑ i

n a s
ini P

n
. Therefore, we have that  

1

if 1
if 2

δ
η

=
=  =

U
b

U
 

Hence, 1b  is not-deterministic and ( )∞I  is not trivial. Similar treatment 
applies to 2b . 

Example II:  
Now, if ( )σ=i iY U , we have that 1, , , nY Y  fulfills (H1), (H2) of section 

0.2, with 1b , 2b  random variables such that 

2

1 if 1
1 if 2

δ
η

− =
=  − =

U
b

U
 

Thus, if we asume 1 20 α α< <  and consider two independent sequences 
( ) ( ) ( )1 1 1

1 , , , , ~ nV V iid F , ( ) ( ) ( )2 2 2
1 , , , , ~ nV V iid F , with ( ) ( )α∈ Φ

i

iF MDA , 
1,2=i  and we set:  

1) If ( ) ( )11,σ = =i i iU X V   
2) If ( ) ( )22,σ = =i i iU X V   
Then, 1, , , nX X  fulfills (H3), (H4) of section 0.2 and therefore, Theorem 

1 of [10] applies and, 
( )

1

1
1

max , ,
α →∞→
 n w

n

X X
MF

n
, with  

( ) ( )
1 11 11 11α αα αδ η

  = Φ + − Φ   
   

x xMF x p p  0∀ >x , a mixture of Fréchet distri-

butions of order 1α .We use this algorithm to simulate our data for evaluation of 
estimation methods in the case of 2=k .  

4. A Method for Estimation of Parameters 

As explained in Remark 1 we will just provide a very rough estimation proce-
dure for the order α . 

4.1. An Exploratory Estimation for α 

In our model:  

( ) ( )
1 2

1α α
   

= Φ + − Φ   
   

x xMF x p p
v v

  

where 0 1< <p , 0α > , 1 0>v , 2 0>v , we may assume, without loss of gene-
rality that 2 1>v v . Since ( )

1

e α

α

−

Φ = xx , we have then  

( ) ( )
1 2

e 1 e
α α

α α
− −

= + −
v v

x xMF x p p   

For x large enough,  

1
α

α

−v
x
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and  

2
α

α

−v
x

 

are close to zero, and since e 1≈ +u u  for u close to zero, we then have that, for 
x large enough  

( ) ( ) ( )1 21 2 1
1 1 1 1

α αα α

α α α

+ −   
≈ − + − − = −   

   

pv p vv vMF x p p
x x x

 

and, therefore, 

( )( )
( )

( )( )
( )

1 2log 1log 1
log log

α α

α
+ −−

= −
pv p vMF x

x x
  

which tends to α−  as x goes to infinity.  
Then, since by Theorem 1 the empirical distribution nF  is an uniformly con-

sistent estimator of MF, α  will be estimated by the values of: 
( )( )

( )
log 1

log
− − nF x

x
 

for x large enough. 
As we will see later on, we simulate a mixture of two Fréchet distributions of 

order 1, and Figure 1 shows that the estimation procedure is consistent. 

4.2. Estimation of p, v1, v2 

From now on, we shall assume α  known, and we will focus on the estimation 
of p ( 0 1< <p ), and 1v , 2v , ( 1 20 < <v v ).  

Let us consider three particular values: 1, 12 α , 14 α . It is clear that 
1 11 2 4α α< < , and that ( )21 12 4α α= . We have: 

( ) ( )

( ) ( )

( ) ( )

1 2

1 2

1 2

1 2 2

1 4 4

1 e 1 e

2 e 1 e

4 e 1 e

α α

α α

α α

α

α

− −

− −

− −

= + −

= + −

= + −

v v

v v

v v

MF p p

MF p p

MF p p

                 (1) 

 

 
Figure 1. Estimation of α. 
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Calling: 

1 2
4 4e , e
α α− −

= =
v v

u v                         (2) 

and since 1 20 < <b b , we have that 0 1< < <v u  and we get:  

( )( )
( )( )

1
1

1
2

4log

4log

α

α

− =

− =

u v

v v
                        (3) 

and, thus, the estimation of ,u v  leads to the estimation of 1 2,v v . Further ob-
serve that:  

1 2
1 22 2 4 42 2e , e , e , e ,

α α
α α

− −
− −= = = =

v v
v vu v u v  

and therefore, (1) may be rewritten as:  

( ) ( )
( ) ( )

( ) ( )

4 4

1 2 2

1

1 1

2 1

4 1

α

α

= + −

= + −

= + −

MF pu p v

MF pu p v

MF pu p v

                   (4) 

As usual in Statistics, and taking into account that Theorem 1 shows the uni-
form consistency of nF  as an estimator of MF for our model, if we replace in (4) 
MF by nF  and we manage to solve the equations in , ,p u v , this will lead to a 
consistent estimation of , ,p u v . For the sake of simplicity, we will denote 

, ,p u v , their estimated values (instead of , ,n n np u v ). Therefore, we will solve 
(4):  

( ) ( )
( ) ( )

( ) ( )

4 4

1 2 2

1

1 1

2 1

4 1

α

α

= + −

= + −

= + −

n

n

n

F pu p v

F pu p v

F pu p v

                   (5) 

Taking the first two Equation of (5), it is clear that they can be rewritten in 
matrix terms as: 

( )
( )

4 4

1 2 2

1

12 α

      =     −   

n

n

F pu v
pF u v

                 (6) 

Calling 
4 4

2 2

 
=  
 

 u v
u v

 we have that ( ) ( )4 2 2 4 2 2 2 2det 0= − = − > u v u v u v u v , 

since 0 < <v u ), what means that   is invertible with inverse matrix  

( )
2 4

1
2 4 2 2 2 2

1−  −
=  

− − 
 v v

u u u v u v
 

and therefore, we have 

( )
( )

( )

2 4

2 4

12 2 2 2

1

1 2 α

 −
   −     =   − −   

n

n

v v
Fp u u

p Fu v u v
                 (7) 
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Remark 3  
It should be noticed, as be used later on, that, more in general, if 3≥k , 

1 20 < < < < ku u u  and we consider the ×k k  matrix: 

2 2 2
1 2

4 4 4
1 2
2 2 2
1 2

 
 
 =  
 
 
 



  







k k k

k

k

k

u u u

u u u
u u u

 

then   is invertible. 
Thus 

( )
( )

1
1

1
,

1 2 α
−
    =   −   

 n

n

Fp
p F

 

calling 1 1
1 2,− −
⋅ ⋅   to the first and second rows of 1− , we get the non-linear 

system: 

( )
( )

( )
( )

1
1 1

1
2 1

1

2

1
1

2

α

α

−
⋅

−
⋅

  
  =

   


 
 − =    





n

n

n

n

F
p

F

F
p

F

                     (8) 

with 0 1< <p , 0 < <v u  as variables. Adding to this system the only equation 
of (4) that we have not used yet, ( ) ( )14 1α = + −nF pu p v , that can be rewritten 

( )14

1

α −
=

−
nF pu

v
p

                        (9) 

and imposing the restriction 

( )14 α <nF u                          (10) 

we replace (9), and (10) in (7), obtaining 

( )
( )

( )
( )

1

2

1
2

1
1

2

 
=   

 
 

− =   
 





n

n

n

n

F
p

F

F
p

F

                     (11) 

with 1
1 1

−
⋅= C , 1

2 2
−
⋅= C  depending only on p, u, because v is replaced by (8), 

and p, u, restricted to the constraints 

( )10 1, 4 α< < <np F u                     (12) 

we arrive to the non-linear equation 

( )
( )

( )
( )

2 2

1 21 1

1 1
0 1

2 2α α

      
      = − + − −

            

n n

n n

F F
p C p C

F F
         (13) 

under the constraints (12). (13) is solved by the Newton-Raphson method or any 
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other non-linear equation-solving method. Then, using (13), from the estimators 
( ), ,p u v  we get the estimators ( )1 2, ,p v v . 

Remark 4  
As mentioned before, the estimation procedure leads to consistent estimators 

of the parameters. Then, one may ask by their asymptotic distribution to per-
form confidence intervals, etc. Even if this is not included in the main goals of 
this work (because, as pointed out in the introduction, we will validate estima-
tions by suitable testing), we shall explain briefly how this asymptotic distribu-
tion is obtained. The solutions of the non-linear Equation (13), using the Impli-
cit Function Theorem may be expressed in the following way 

( ) ( ) ( ) ( )( )1 1, , 1 , 2 , 4α α= n n np u v h F F F               (14) 

with h a differentiable function.  
Since in the preliminaries of Theorem 2 of [11] the asymptotic distribution of 

the empirical process is derived, a standard application of the Delta Method 
([16]), leads to the asymptotic distribution of the estimators ( ), ,p u v . Off course, 
the same applies to ( )1 2, ,p v v . Its estimation will be treated later on, but this 
remark also applies in that context.  

5. Testing the Estimated Model 

As a concrete example of the method as well as a validation procedure, we will 
now simulate a large sample with strong-dependence, where the common dis-
tribution of all the data is a mixture of two Fréchet distributions. We will test if 
data fits to a single Fréchet distribution and rejection is expected. Further, we 
will use our method to estimate the parameters of a mixture of two Fréchet dis-
tributions, and in this case it is expected that the goodness of fit test does not re-
ject the estimated model. 

We will then choose as the true model a mixture of Fréchet distributions with 
0.3=p , 1 0.3=v , 2 0.7=v , that is 

( ) 1 10.3 0.7
0.3 0.7

   = Φ + Φ   
   

x xMF x  

We computed 4000 maximums, each one coming from samples of size 500 of 
the simulation procedure described in section 0.3, with parameters 0.3=p , 

0.3δ =  and 0.7η = . As mentioned before in section 0.3, by Theorem 1 of [10], 
these maximum should follow a distribution very close to our choice of MF.  

Remark 5  
It should be noticed that indeed, we are not simulating data following the dis-

tribution MF, but following a distribution that is very close to MF, according to 
Theorem 1 of [10]. There are two reasons for that choice. At first, obviously, this 
choice makes harder the work for the estimation procedure because the real 
model is not exactly a mixture of two extremal distributions. At second, it is of 
particular interest this kind of data, because as pointed out in the Introduction 
and [10], they appear in many applications.  
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With our simulated sample of 4000 maximum values, we first proposed for 
fitting (i.e., as H0 in our test) a simple Fréchet model with 1α =  (F1). In this 
example and all the further ones, we have used the adaptation of Kolmogo-
rov-Smirnov test (KS) for this type of models provided by [11]. In this context, 
for F1, the KS statistic was 0.1928443, what means that -value 0.001p , im-
plying a clear rejection.  

Figure 2 shows the difference between the empirical distribution of our sam-
ple, and the theoretical distribution of the proposed model (F1). Clearly the dis-
tribution of the proposed model (red curve) is below the empirical distribution 
(black curve), reflecting the much more heavy-tailed nature of the proposed 
model with respect to the true model. 

Therefore we turn our attention to the estimation of a mixture of two compo-
nents. The exploratory estimation of α  corresponds to the Figure 1 leading to 

1α = . Then, following the procedure of the previous section, we get the following 
results: 0.25=p , 1 0.35=v , 2 0.7200471=v . We perform the KS-test proposing 
as H0 the mixture of two Fréchet of order 1 with the estimated parameters, leading 
to a KS statistic equal to 0.01380997, which implies -value 0.20>p (Figure 3).  

In conclusion, the simulated model fits the estimated two components mix-
ture and does not fit an extremal distribution. 

6. Mixture of Three Components - Simulation of Data 

We will now turn our attention to the case of a mixture of 3=k  extremal dis-
tributions.  

Again, the basis of the models that we will present here is provided in [10], 
but we have to explain them for the sake of clarity.  

Example III:  
Let U be a random variable such that ( )1= =P U p , ( )2= =P U q , 
( )3 1= = − −P U p q , 0>p , 0>q , 1+ <p q . Let 1, ,σ σ n , …an iid se-

quence of random variables on 1,2,3 .  
( )( )1 1σ δ= =iP , ( )( )1 2σ λ= =iP , ( )( )1 3 1σ δ λ= = − −iP , with 0δ > , 

0λ > , 1δ λ+ < .  
( )( )2 1σ η= =iP , ( )( )2 2σ ρ= =iP , ( )( )2 3 1σ η ρ= = − −iP , with 0η > , 

0ρ > , 1η ρ+ < .  
( )( )3 1σ τ= =iP , ( )( )3 2σ ν= =iP , ( )( )3 3 1σ τ ν= = − −iP , with 0τ > , 

0ν > , 1τ ν+ < .  
Set ( )σ=i iY U . Thus,  

{ }
. .

1
1

1 1 / 1 δ= →∞
=

= →∑ i

n
a s

Y n
i

U
n

 

{ }
. .

1
1

1 1 / 2 η= →∞
=

= →∑ i

n
a s

Y n
i

U
n

 

{ }
. .

1
1

1 1 / 3 τ= →∞
=

= →∑ i

n
a s

Y n
i

U
n
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Figure 2. The difference between the empiri-
cal distribution (ECDF), and the theoretical 
distribution of the proposed model F1. 

 

 

Figure 3. The difference between the empiri-
cal distribution (ECDF), and the theoretical 
distribution of the proposed model M2. 

 
Therefore if we assume that δ η τ≠ ≠ , δ τ≠ , λ ρ ν≠ ≠ , λ ν≠ , 

δ λ η ρ τ ν+ ≠ + ≠ + , δ λ τ ν+ ≠ + , we have that  

1

if 1
if 2
if 3

δ
η
τ

=
= =
 =

U
b U

U
 

2

if 1
if 2
if 3

λ
ρ
ν

=
= =
 =

U
b U

U
 

3

1 if 1
1 if 2
1 if 3

δ λ
η ρ
τ ν

− − =
= − − =
 − − =

U
b U

U
 

Example IV:  
Now, we define ( )σ=i iY U , for any ∈i . We then have that 1, , , nY Y  

fulfills (H1), (H2) of section 0.2, with 1 2 3, ,b b b  random variables as in Example 
III.  

Thus, if we assume 1 2 30 α α α< < < , and consider three independent se-
quences ( ) ( ) ( )1 1 1

1 , , , , ~ nV V iid F , ( ) ( ) ( )2 2 2
1 , , , , ~ nV V iid F ,  

( ) ( ) ( )3 3 3
1 , , , , ~ nV V iid F , ( ) ( )α∈ Φ

i

iF MDA , and for any i we set: 
1) If ( ) ( )11,σ = =i i iU X V   
2) If ( ) ( )22,σ = =i i iU X V   
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3) If ( ) ( )33,σ = =i i iU X V   
Then, 1, , , nX X  fulfills (H3), (H4) of section 0.2 and therefore, Theorem 

1 of [10] applies and, 
( )

1

1
1

max , ,
α →∞→
 n w

n

X X
MF

n
, with  

( ) ( )
1 1 11 1 11 1 11α α αα α αδ η τ

    = Φ + Φ + − − Φ    
    

x x xMF x p q p q  

7. A Method for Estimation of Parameters, Case k = 3 

As pointed out in Remark 1, for the estimation of α  we just use an exploratory 
method. Therefore, we will concentrate our attention in the estimation of weights 
and scale parameters. 

Estimation of p, q, v1, v2, v3 

Let us consider now  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1 2 2 2

1 4 4 4

1 8 8 8

1 16 16 16

16 1

8 1

4 1

2 1

1 1

α

α

α

α

α

= + + − −

= + + − −

= + + − −

= + + − −

= + + − −

n

n

n

n

n

F pu qv p q w

F pu qv p q w

F pu qv p q w

F pu qv p q w

F pu qv p q w

               (15) 

with  

1

1

1

exp
16

exp
16

exp
16

α

α

α

 −
=  

 
 −

=  
 
 −

=  
 

vu

vv

vw

                        (16) 

Following the ideas of section 0.4.2 we write down  

( )
( )
( )

1
16 16 16

1 8 8 8

4 4 4
1

1

2
14

n

n

n

F u v w p
F u v w q

u v w p qF

α

α

α

            =        − −     

              (17) 

Setting  
16 16 16

8 8 8

4 4 4

u v w
A u v w

u v w

 
 

=  
 
 

 

and using Remark 2 we get  

( )
( )
( )

1

11

1

1

2
1 4

n

n

n

Fp
q F
p q F

α

α

α

−

 
   
   =    − −   

 

  
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From the equations  

( ) ( )116 1α = + + − −nF pu qv p q w  

( ) ( )1 2 2 28 1α = + + − −nF pu qv p q w  

we may express ,u v  as a function of , ,p q w . Calling 2 3, ,/    to the first, 
second, and third (respectively) row of 1−  with ,u v  replaced as a function of 

, ,p q w , we have then the non-linear equation on , ,p q w :  

( )
( )
( )

( )
( )
( )

( )
( )
( )

2 2 2

1 1 1
1 2 3

1 1 1

1 1 1

0 2 2 1 2

4 4 4

α α α

α α α

          
          
          = − + − + − − −          
                         

n n n

n n n

n n n

F F F

p C F q C F p q C F

F F F

(18) 

Solving this equation we get the estimates of , ,p q w  and therefore of ,u v . 
As in the case of two components we will denote this estimations omitting its 
dependence of the sample size n. From the estimations of , , , ,p q u v w , we finally 
get the estimations of 1 2 3, , , ,p q v v v . 

8. Testing the Estimated Model 

Now as another concrete example of the method as well as a validation proce-
dure, we will simulate a large sample with strong-dependence, where the com-
mon distribution of all the data is a mixture of three Fréchet distributions. In 
this case we will first estimate the parameters of a mixture of two Fréchet distri-
butions. The estimated model will be tested, and rejection is expected. Further, 
we will use again our method but to estimate the parameters of a mixture of 
three Fréchet distributions, and in this case it is expected that the goodness of fit 
test does not reject the estimated model. 

Therefore, here we consider as the true model a mixture of three Fréchet dis-
tributions of order 1, with parameters 0.3=p , 0.3=q , 1 0.55=v , 2 0.9=v , 

3 0.2=v , that is:  

( ) 1 1 10.3 0.3 0.4
0.55 0.9 0.2

     = Φ + Φ + Φ     
     

x x xMF x  

We computed 4000 maximums, each one coming from samples of size 1000 of 
the simulation procedure described in section 0.6, with parameters 0.3=p , 

0.3=q , 0.55δ = , 0.9η = , 0.2τ = . As mentioned before in section 0.6, by 
Theorem 1 of [10], these maximum should follow a distribution very close to 
our choice of MF.  

We first proposed for fitting (i.e., as H0 in our test) a mixture of two Fréchet 
distributions with 1α =  (M2). In this context, for M2, the estimated parame-
ters were: 0.625=p , 1 0.28=v , 2 0.76=v , and the corresponding KS statistic 
was 0.0326095, what means that -value 0.001p , implying a clear rejection.  

Then, we proposed for fitting (as H0) a mixture of three Fréchet distributions 
with 1α =  (M3). In this context, for M3, the estimated parameters were: 

0.285=p , 0.334=q , 1 0.51=v , 2 0.86=v , 3 0.29=v  and the KS statistic was 
0.01936157 with a -value 0.10>p , non-rejecting H0. 
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Figure 4. The difference between the empir-
ical distribution (ECDF), and the theoretical 
distribution of the proposed model M2. 

 

 

Figure 5. The difference between the empir-
ical distribution (ECDF), and the theoretical 
distribution of the proposed model M3. 

 
In Figure 4, we can appreciate a moderate deviation of the proposed M2 

model with respect to the empirical distribution, but this discrepancy is syste-
matic, in the sense that most of the time the proposed model is above the empir-
ical distribution, what means that real data have heavier tails, what is coherent 
with a very small p-value.  

In Figure 5, the proposed M3 model and the empirical distribution are almost 
equal, what is coherent with the no rejection decision of the test. 

9. Discussion & Conclusions 

Finite mixtures of extremal distributions appear in practice when dealing with en-
vironmental data (as well as in other fields) with a strong dependence structure. 
Therefore, one needs to be able to estimate the parameters of such a mixture under 
strong dependence, and test whether data fits to the estimated mixture.  

In this paper, we successfully accomplish this task for the case of a mixture of 
two or three extremal distributions of the Fréchet type. The results obtained in 
simulated data show that this new estimation procedure developed here has an 
efficient performance.  

Therefore, this work completes a line of research that includes [10] and [11], 
what obviously make new questions and subjects of interest arise. 

10. Further Work 

As pointed out, the estimation of the order α  should be improved in a similar 
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way as the classical methods for the iid case [17] [18]. In addition, the asymptot-
ic distribution of the weights and scale parameters, and their corresponding con-
fidence regions can be more precisely exposed following the ideas mentioned in 
Remark 4.  

In the case that methods based on moments (instead of quantiles) are applica-
ble [19], an alternative method must be developed and its performance com-
pared to the estimation procedure of this paper should be studied. 

Another direction of work is the study of mixtures of different types of ex-
tremal distributions, or mixtures of extremal distributions and non-extremal 
ones, or more general finite mixture models under strong dependence, as it has 
been done in the iid case [4] [5] [6] [8] [9].  

In a forthcoming paper, we deal with the problem of the estimation of the 
components in larger dimensions mixtures (k large) by using other techniques 
(i.e., Machine Learning) for faster estimations of k. 
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