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Carbon net emission is a critical aspect of the environmental footprint in agricultural 
systems. However, the alternatives to describe soil organic carbon (SOC) changes 
associated with different agricultural management practices/land uses are limited. 
Here we provide an overview of carbon (C) stocks of non-forested areas of Uruguay 
to estimate SOC changes for different soil units affected by accumulated effects 
of crop and livestock production systems in the last decades. For this, we defined 
levels based on SOC losses relative to the original (reference) SOC stocks: 25% 
or less, between 25% and 50%, and 50% or more. We characterized the reference 
SOC stocks using three approaches: (1) an equation to derive the potential SOC 
capacity based on the clay and fine silt soil content, (2) the DayCent model to 
estimate the SOC stocks based on climate, soil texture and C inputs from the 
natural grasslands of the area, (3) an estimate of SOC using a proxy derived from 
remote sensing data (i.e., the Ecosystem Services Supply Index) that accounts for 
differences in C inputs. Depending on the used reference SOC, the soil units had 
different distributions of SOC losses within the zones defined by the thresholds. 
As expected, the magnitude of SOC changes observed for the different soil units 
was related to the relative frequency of annual crops, however, the high variability 
observed along the gradient of land uses suggests a wide space for increasing 
SOC with agricultural management practices. The assessment of the C stock 
preserved (CSP) belowground and the potential for increasing C accumulation or 
sequestration (CAP) are critical components of the C footprint of a given system. 
Thus, we propose a methodological road map to derive indicators of CSP and 
CAP at the farm level combining both, biogeochemical simulation models and 
conceptual models based on remote sensing data. We recognize at least three 
critical issues that require scientific and political consensus to implement the use 
of this propose: (1) how to define reference C stocks, (2) how to estimate current 
C stocks over large areas and in heterogeneous agricultural landscapes, and (3) 
what is a reasonable/acceptable threshold of C stocks reduction.
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1. Introduction

The identification of greenhouse gas (GHG) emission sources in 
agriculture, carbon sequestration spots and the quantification of the 
net contribution of GHG to climate change are at the center of the 
debate (Smith, 2012). Agricultural practices can have a large impact 
on the magnitude and sign of net GHG emissions and therefore, 
agricultural production has often been vilified based on its C footprint, 
particularly due to enteric methane emissions from livestock 
(Friedlingstein et al., 2019; Clark et al., 2020) or C stock reductions in 
the biota and soils due to deforestation or management practices 
(Villarino et al., 2017; Smith et al., 2020). Carbon net emission is 
undoubtedly a critical aspect of agricultural production, but a 
comprehensive characterization of the environmental footprint of 
agriculture [i.e., the changes associated with land use and management 
practices that occur during the primary production process, which 
represent between 70% and 90% of the environmental impacts 
(Notarnicola et al., 2017)] must include other dimensions such as 
habitat and biodiversity preservation, and the supply and regulation 
of ecosystem services.

Regarding the C dimension of the environmental footprint, our 
ability to quantify the different fluxes involved is variable. For instance, 
there are simple alternatives to estimate methane emissions [FAO 
(Organización de las Naciones Unidas para la Alimentación y la 
Agricultura), 2014, 2016], the amount of C released by deforestation 
and land use changes (Houghton et al., 2000), or the C sequestration 
derived from forest restoration or afforestation (Bastin et al., 2019). 
However, assessments of changes at large scale in soil organic carbon 
(SOC) stocks associated with different agricultural management 
practices/land uses are very limited. Berhongaray and Alvarez (2013) 
and Villarino et al. (2014) showed that simple alternatives to estimate 
SOC net emissions such as those proposed by the IPCC (2006) (i.e., 
Tier 1 and 2) do not perform well when compared against observed 
data in the Argentine Pampas.

In the 2020 Global C budget, Friedlingstein et al. (2022) present a 
wide range for soil C stocks ranging from 1,500 to 2,400 
GtC. Uncertainties to define C stocks are partially associated with the 
fact that direct field measurements do not easily account for the spatial 
and temporal variability of SOC (Dungait et al., 2012). The magnitude 
of these uncertainties is critical for establishing good global C budgets: 
the upper limit of the SOC stocks in soils in the Global C budget 
(2,400 Gt C) is higher than the corresponding to the permafrost (1,700 
Gt C), and one order of magnitude higher than the total oil reserves 
(175–265 Gt C; Friedlingstein et al., 2022). Belowground C stocks are 
especially important in “Open Ecosystems” such as grasslands, 
savannas and shrublands (Bond, 2019; Terrer et al., 2021), which are 
biomes profoundly modified by agriculture. However, published SOC 
concentration maps for these areas present large differences (Feeney 
et al., 2022).

Biogeochemical models have often been an alternative to 
evaluate changes in C stocks (e.g., Caride et al., 2012; Lugato et al., 

2014; Pravia et al., 2019; Baldassini and Paruelo, 2020; Baethgen 
et al., 2021). There is a growing trend in using SOC simulation 
models in applied studies, for example to evaluate sustainable 
alternative land uses, agroecological transitions, GHG mitigation 
or soil restoration (Six et al., 2004; Heimann and Reichstein, 2008). 
Campbell and Paustian (2015) summarized the approaches to 
simulate C stocks and provided a detailed description of the 
conceptual basis. Among the available semi-mechanistic 
biogeochemical models, Century (Parton et al., 1988) is one of the 
most widely used worldwide (e.g., Smith et al., 1997; Gottschalk 
et al., 2012; Lugato et al., 2014; Abramoff et al., 2018; Woolf and 
Lehmann, 2019). The Century model (and DayCent, its daily time 
step version, Del Grosso et  al., 2001) has been successfully 
calibrated and evaluated in different agricultural systems of 
southern South America, including native grasslands (Álvarez, 
2001; Pineiro et al., 2006), different crop-pasture rotations (Caride 
et al., 2012; Baethgen et al., 2021) and dry forests (Baldassini and 
Paruelo, 2020).

In addition to field measurements and mechanistic 
biogeochemical models, there are different approaches to characterize 
current SOC stocks. One set of approaches compiled field SOC data 
and derived models to generalize C stocks over the space. For example, 
Sanderman et al. (2018) used a machine learning-based model to 
describe SOC data derived from a global database of historical land 
use data combined with climatic, landform and lithology covariates. 
In the same way, there are other datasets (e.g., SoilGrids—Hengl et al., 
2017, OpenLandMap—Hengl and Wheeler, 2018, GSOCmap—FAO, 
2022) that can be used for mapping different soil properties at global 
scale. These products combined local soil sampling information and 
biophysical covariables using different mapping methods (e.g., digital 
soil mapping methods as regression kriging or machine learning 
techniques as Random Forest). However, the spatial interpolation 
process may be biased associated with the low density of sampling 
points at national or regional levels, suggesting the need for more 
detailed information to achieve better precision.

Open Ecosystem soils, mainly Mollisols, can store large stocks of 
recalcitrant carbon that remain sequestered when they are grazed by 
domestic herbivores. However, C stocks are vulnerable to being 
released to the atmosphere, principally as CO2, under alternative uses 
(Caride et al., 2012; Baethgen et al., 2021). The C sequestration in soil 
organic matter (SOM) is considered one of the main proposed 
strategies to capture CO2 (Lal, 2004a, 2006; Chabbi et al., 2017). The 
effects of agricultural management practices and grazing strategies on 
SOC stocks depend on their impact on N dynamics and net primary 
production (Piñeiro et al., 2010; Cotrufo et al., 2019). Open Ecosystem 
soils store more SOC in mineral-associated organic matter (MAOM), 
which is more persistent but has a higher nitrogen demand and 
saturates. Thus, the C:N ratio of the MAOM fraction is lower than in 
the Particulate Organic Matter (POM) fraction, but the C 
accumulation in the MAOM fraction can be saturated (Chung et al., 
2008; Stewart et al., 2009; Mayzelle et al., 2014; Pravia, 2017; Rodrigues 
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et al., 2022). The saturation level is strongly associated with texture, 
particularly to the fine soil particles (>2 microns) fraction (Hassink, 
1997; Feng et al., 2013). Alvarez and Berhongaray (2021) estimated 
the carbon capacity of Argentine Pampean soils using models based 
on soil texture, both available in the literature and locally developed 
from SOC estimates. Their local model based on quantile regression 
showed that climate and the clay + fine silt fraction were the main 
predictors of the potential SOC storage capacity.

In the absence of erosion, SOC dynamics in agricultural soils is 
mainly determined by C inputs (Kuzyakov and Domanski, 2000; 
Mandal et al., 2007; Maillard and Angers, 2014). Consequently, C 
inputs over a given period of time are a proxy of SOC (Bolinder et al., 
2007). Paruelo et al. (2016) showed that an Ecosystem Services Supply 
Index (ESSI) built from estimates of total annual C gains and its 
seasonality, was a good predictor of SOC stocks in agricultural areas 
of the Argentine Pampas. Also, Staiano et al. (2021) and Schwint et al. 
(2022) used the same index to describe SOC changes in a land cover 
gradient in the semiarid Chaco and in The Río de la Plata Grasslands 
(RPG), respectively. Machine learning approaches to derive dynamic 
digital maps also included historical values of vegetation indices 
(NDVI) to account for C inputs (Heuvelink et  al., 2021). These 
approaches allow using remote sensing, in particular satellite imagery, 
to assess SOC dynamics over large regions (e.g., heterogeneous 
landscapes) and over time under the same observation protocol 
(Paruelo, 2008). Such assessment is a key step for decisions and 
policies that aim to preserve or increase C sequestration and reduce 
net C emissions from the agricultural sector.

The Río de la Plata Grasslands (RPG) region occupies the vast and 
continuous plains of central-eastern Argentina, Uruguay and southern 
Brazil that surround the Río de la Plata estuary and its major 
tributaries. This region covers about 853,000 km2 and it is one of the 
largest, most diverse, and less transformed grassland areas in the 
world (Henwood, 2010), despite the important land cover 
transformation that they experienced over the last 5 decades 
(Oyarzabal et al., 2020). Within this region, Uruguay presents the 
largest proportion of remaining grasslands [close to 53% according to 
Paruelo et al. (2022)]. The area that has been transformed is devoted 
to tree plantations (mainly Eucalyptus), annual crops (mainly 
soybeans, wheat and canola) and perennial sown pastures (Baeza 
et al., 2014; Baeza and Paruelo, 2020). An important proportion of the 
crop production area is under pasture-crop rotation. These 
characteristics give this region a central role as an area with potential 
for soil C sequestration, soil C preservation and for reducing C net 
emissions from agriculture (Hutchinson et al., 2007) which are key 
aspects for climate change mitigation policies (Lal, 2004b).

Both field and simulation data show that agricultural management 
practices may either reduce or increase SOC stocks in the RPG 
(Piñeiro et al., 2009, 2010; Caride et al., 2012; Baethgen et al., 2021). 
SOC increases are associated with management practices that increase 
N availability and/or C gains (e.g., N fertilization, grazing system, 
legume crops and service or cover crops, length of the pasture phase 
of the rotation, irrigation, among others; Baldocchi and Penuelas, 
2019; Schlesinger, 2022). Due to C saturation the best-preserved soils 
may present lower potential rates of C sequestration, while more 
degraded soils that have lost SOC stocks, may sequester considerable 
amounts of C when they are properly managed (Pravia, 2017; Pravia 
et al., 2019; Baethgen et al., 2021). The C footprint must therefore 
consider the ability of an agricultural management strategy to both 

preserve and increase SOC stocks. Walker et al. (2022) evaluated the 
current, potential, and unrealized C storage in woody plant biomass 
and soil. Their analyses focused on woody systems, explicitly excluding 
agricultural and Open Ecosystem areas. The study is based on setting 
a two-dimensional space defined by the potential C storage and the 
current C storage (Figure 1). Within this space it is possible to identify 
areas where the management objectives should be to maintain (green 
areas), to increase and maintain (yellow areas) and to restore SOC 
stocks (red areas). Making this scheme operational requires three key 
elements: (a) methodological alternatives to characterize both 
potential and current SOC stocks with a solid conceptual basis, (b) 
proper calibration and evaluation of those indicators, and (c) a wide 
social and political consensus for defining the situations require C 
maintenance, C increase or C restoration.

In this article we provide an overview of C stocks of non-woody 
areas of Uruguay based on different approaches. Our work is based on 
the conceptual framework presented by Walker et al. (2022) (Figure 1) 
adapted to non-forest ecosystems. We  estimated the original 
(reference) SOC stocks based on three approaches. First, we used Feng 
et al. (2013) equation to derive the potential SOC capacity based on 
the clay + fine silt fraction soil content. Secondly, we used DayCent 
(Del Grosso et al., 2001) to estimate the C stocks considering the input 
from pristine grasslands biomass of the area. Finally, we derived an 
estimate of SOC under current conditions from a proxy derived from 
remote sensing data (the Ecosystem Services Supply Index or ESSI, 
Paruelo et al., 2016) that account for differences in C inputs. The SOC 
estimate from the ESSI represents the equilibrium SOC (EqSOC) 
under current management practices during the last 20 years. The 
ability of ESSI to estimate equilibrium SOC stocks was locally 
evaluated using SOC data obtained from a long-term experiment. 
We used, as our third estimate of reference SOC, the EqSOC values 
corresponding to the 95th percentile within each of the soil units 
considered in this research. Finally, we propose a methodological road 
map to derive indicators of C conservation and net emissions at the 
farm level combining both, biogeochemical models and conceptual 
models based on remote sensing data.

FIGURE 1

Two dimensional space defined by the reference C storage and the 
current C stocks, consisting of three categories defined by 
thresholds delineated by the ratio of current (y axis) to reference (x 
axis) carbon storage. Modified from Walker et al. (2022).
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2. Materials and methods

2.1. Spatial unit of analysis

We used the Uruguayan soil map at scale 1:1,000,000 (Altamirano 
et al., 1976), which arises from the generalization of a survey of soil 
associations at scale 1:100,000, generated through the interpretation 
of aerial photos from 1967 at a scale of 1:40,000. The 1:1,000,000 soil 
map defines 99 soil units which are found in several regions of the 
country resulting in 321 soil polygons. For each one of the 99 unique 
soil units a “dominant soil type” and one or more “associated soil 
types” were defined, based on the area covered in the corresponding 
soil unit. For the dominant soil type of each soil unit, a physical–
chemical characterization of the finer fraction (less than 2 microns) of 
the different layers was available, including data of thickness, texture 
(sand, silt and clay content), organic carbon, total nitrogen, pH and 
cation exchange capacity. The soil units were grouped into 20 
agroecological regions, defined on the basis of climatic homogeneity, 
physiography and soil type, land cover, and on a range of limitations 
and land use capability [FAO (Organización de las Naciones Unidas 
para la Alimentación y la Agricultura), 1997; Supplementary Figure 1]. 
In this work, we  grouped the 20 agroecological regions into 11 
agroecological zones (Supplementary Figure 1) based on the similarity 
of their characteristics and their geographical location. For each soil 
polygon we estimated reference SOC stocks using three methods: 
quantile regression obtained from Feng et  al. (2013), simulations 
derived from DayCent model (Del Grosso et  al., 2001), and 
estimations using the Ecosystem Services Supply Index (ESSI, Paruelo 
et al., 2016). All geospatial operations were performed using QGIS 
3.10, R studio and the Google Earth Engine platform (Gorelick 
et al., 2017).

2.2. Reference SOC stocks

2.2.1. Potential SOC or SOC capacity using the 
model of Feng et al.

We estimated the potential SOC or SOC capacity, defined as the 
upper limit of the stable carbon associated with the fine soil fraction, 
using the model fitted by boundary line analysis proposed by Feng 
et al. (2013):

 
Potential SOC mgg soil clay silt− ∗( ) = + <( )1 0 84 20. % µm

 
(1)

The original model was fitted using the upper 10% of the Carbon 
data from a worldwide synthesis using a boundary line analysis or 
quantile regression. This analysis corresponds to a regression model 
that fitted a function to the most extreme values of the dataset, 
representing the maximum attainable SOC values. The model assumes 
that those potential values of SOC in the fine fraction can be achieved 
if the carbon inputs and turnover rates match those of the sites with 
the highest SOC stabilization used for fitting the model. As input, the 
model uses textural data of the finer soil fraction, corresponding to % 
of clay and fine silt. The fine silt fraction (0.002–0.020 mm) was not 
available in the Uruguayan soil type descriptions, and it was therefore 
estimated as a fraction of the total silt content, i.e., 0.002–0.050 mm 
(Alvarez and Berhongaray, 2021). The regression model fitted by the 

authors for the Argentine Pampean Region, enabled a good estimation 
of the fine silt with high goodness of fit (clay + fine silt (%) = 0.676 * 
(% clay + silt) ^ 1.01; value of p < 0.0001; R2 = 0.92).

The potential SOC was estimated for each soil unit based on the 
dominant soil type descriptions. For each of them, the weighted 
average of % clay + silt was calculated for the upper 20 cm of the soil 
considering the thickness of each layer. At the same time, a bulk 
density of 1.25 g/cm3 and its corresponding scaling factors were used 
to convert the data from mg C/g soil to stock at 20 cm in Mg C/ha.

2.2.2. SOC DayCent simulations
We used the DayCent model version 4.5 (Del Grosso et al., 2001) 

to estimate the C stocks in the upper 20 cm of the soil expected under 
the original grassland of the area and with low stocking rate. This 
model simulates the C dynamics and other elements in grasslands, 
forests, savannas and crop/crop-pasture systems. The DayCent is 
similar to the Century model (Parton, 1996), but it runs at a daily 
instead of monthly time step. The flows between different pools are 
controlled by environmental conditions (i.e., temperature, soil water 
content and soil texture) and by litter composition (i.e., lignin content 
and C/N ratio) that control the productivity and decomposition rates. 
The plant growth submodel is mainly determined by temperature and 
plant available water (Parton, 1996) and the parameters of the model 
were set for local composition of C3/C4 grass species. In this case, 
we assumed a composition of 75% of temperate species and 25% of 
warm species. The model had been previously calibrated for the 
Western Sedimentary Soils agroecological region (Baethgen et al., 
2021), specifically to simulate changes in C from a long-term 
agricultural experiment (see section 2.3) under different agricultural 
management practices (e.g., crop sequences, pasture proportion in the 
rotation, and fertilization level). Historical climate data (i.e., 
precipitation and minimum and maximum temperature) were 
obtained from INIA’s database,1 which provides daily information 
from 1975 to 2021. Atmospheric deposition (dry and wet) is the main 
input of N, and it was estimated as a linear function of annual rainfall. 
More information of the model characteristics is available at: https://
www2.nrel.colostate.edu/projects/daycent/.

We simulated the SOC content in the upper 20 cm of the soil until 
temporal stabilization for each agroecological region considering the 
soil characteristics of the dominant soil type in each soil unit 
(Supplementary Table 1). A total of 1,000 years of light grazing by 
native herbivores were simulated, considering stable conditions 
during the whole simulation period based on climate observed in the 
last 50 years, and in vegetation structure and species composition. 
Once stabilized, we  observed a strong relationship between SOC 
content and the % of clay + silt across all the agroecological regions, 
which was estimated at 0.717 Mg C/ha for each unit of clay + silt (%) 
of increment (value of p = 0.0003, R2 = 0.78). We used this factor to 
correct the SOC content of the soil units belonging to the same 
agroecological zone based on their content of clay + silt.

2.2.3. SOC from ESSI p95
From the estimation of the EqSOC at MODIS scale (250 m) for 

the 2000–2022 period (see section 2.3), we  calculated the 95th 

1 http://www.inia.uy/gras/Clima/Banco-datos-agroclimatico
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percentile (p95) for each soil polygon (from the 1:1,000,000 soil map). 
This value was used as a reference of the upper limit that the EqSOC 
could reach within a specific soil polygon. For each soil polygon 
we estimated EqSOC (p95) by calculating the 95th percentile of all the 
MODIS pixel values inside each soil polygon. The resulting values of 
estimated SOC were corrected by the clay + silt content of each soil 
unit using the correction factor derived from DayCent model 
simulations (see section 2.2.2).

2.3. SOC-ESSI calibration

We used measured SOC data from a long-term agricultural 
experiment (established in 1963 and still operational) which consists 
of 21 plots (250 × 20 m) with 7 different crop or crop-pasture 
sequences located in La Estanzuela Experimental Station (Instituto 
Nacional de Investigación Agropecuaria [INIA], the Uruguayan 
National Agricultural Research Institute) situated in southwestern 
Uruguay (34°20′ S, 57°41′ W, 82 masl; Baethgen et al., 2021). In this 
study we  used 4 of those sequences: (a) continuous winter and 
summer annual grain crops, (b) 66% of the time with grain crops and 
the remaining 33% with pastures, (c) 50% of the time with grain crops 
and 50% with pastures, and (d) 33% of the time with grain crops and 
66% with pastures (Baethgen et al., 2021). We also considered SOC 
data measured in 5 plots (30 × 10 m) of a natural grassland relict in 
the same experimental station located at 4 km from the long-term 
experiment. SOC content was calculated for an equivalent soil mass 
of 250 kg/m2 (Gifford and Roderick, 2003) which represents a depth 
of 20 cm with a reference bulk density of 1.25 g/cm3.

We extracted the annual mean and standard deviation of the 
NDVI (NDVIm and NDVIsd, respectively) from the Harmonized 
Sentinel 2 surface reflectance (Level 2A) satellite images for an area of 
2 × 4.6 km that included the plots with the SOC data described above, 
from 1 July 2017 to 30 June 2022. We masked the pixels affected by 
clouds, cirrus and shadows using the cloud probability dataset  
(Copernicus Sentinel Data, 2022) and obtained the monthly median 
NDVI value at 10 m spatial resolution, based on data obtained every 
5 days. The annual NDVIm and NDVIsd were estimated from the 
monthly median NDVI values, averaged for each plot and for the 
whole period (2017–2022) and scaled from 0 to 1 for the SOC-ESSI 
calibration. We adjusted a multiple regression analysis with the SOC 
data as the dependent variable and the NDVIm and the NDVIsd as 
the independent variables. Both independent variables were 
statistically significant for explaining the SOC variation at 20 cm depth 
(R2 = 0.86, NDVIm value of p < 0.0001, NDVIsd value of p < 0.05), but 
the NDVIm explained 88% of the observed SOC variation while the 
NDVIsd accounted for the remaining 12%. Thus, we changed the ESSI 
calculation which was originally calculated as ESSI = NDVIm − 
NDVIsd (Paruelo et al., 2016; Staiano et al., 2021) to a calculation that 
considers the relative weights of the ESSI components for estimating 
SOC: ESSI = NDVIm * 0.88 − NDVIsd * 0.12, and used this equation 
for the SOC-ESSI calibration.

From the SOC-ESSI calibration, we generated estimates of the 
Equilibrium SOC (EqSOC) at the Sentinel 2-pixel level (10 m) for the 
area that included the plots with SOC data (2 × 4.6 km) for the 2017–
2022 period. EqSOC does not strictly represent the current C stocks, 
but an estimate of the long term (approximately 50 years) value of a 
particular pixel given the average C dynamics captured by the ESSI. It 

has been demonstrated that after of 40 years the SOC reaches the 
equilibrium, with interannual changes of less than 1% (Villarino et al., 
2017). Thus, to obtain an estimate of EqSOC that considers the 
changes in the carbon input dynamics over the last decades and for 
the whole study area (Uruguay), we performed a calibration between 
the ESSI calculated from the Sentinel data and the ESSI calculated 
from MODIS satellite images (available from 2000 to the present) to 
estimate EqSOC for the period 2000–2022. We calculated the ESSI 
from MODIS using the MOD13Q1 product (250 m of spatial 
resolution and 16 day of revisit time) where pixels affected by clouds, 
cirrus and shadows were masked with the quality band available in 
this product. The procedure was the same as for the Sentinel data, 
where the NDVIm and NDVIsd values were scaled and then weighted 
by 0.88 and 0.12, respectively for the ESSI calculation. We  then 
performed a linear regression analysis between the mean ESSI from 
Sentinel 2 and the mean ESSI from MODIS for the period 2017–2022, 
by averaging the ESSI values from Sentinel pixels inside each MODIS 
pixel present in the Sentinel image subset. This analysis resulted in a 
significant relationship (value of p < 0.0001, R2 = 0.77, see 
Supplementary Figure  2). Finally, we  obtained the EqSOC at the 
MODIS scale for Uruguay for the 2000–2022 period by applying the 
regression parameters of the ESSI Sentinel-ESSI MODIS relationship 
and the SOC-ESSI calibration to the ESSI values estimated with 
MODIS data. We considered only pixels with crops and grassland, 
discarding pixels with native forests, tree plantations, water or urban 
infrastructure applying a mask derived from Baeza and Paruelo (2020).

2.4. SOC maps and data analysis

The EqSOC was compared with the three reference values: the 
potential SOC capacity derived from Feng et  al. (2013), the SOC 
derived from the DayCent simulations, and the 95th percentile (p95) 
values of EqSOC for each soil polygon. This comparison was 
performed by considering all the EqSOC values of each soil polygon 
and calculating the 50th percentile (p50). The resulting values were 
corrected considering the clay + silt content of each soil polygon given 
the relationship between SOC and the clay + silt content derived from 
DayCent model simulations (see section 2.2.2). To compare the 
EqSOC and the potential SOC, the EqSOC values had to be converted 
into the SOC fraction captured in the fine soil portion (clay and fine 
silt) which is the fraction obtained by the model from Feng et al. 
(2013). Thus, we multiplied the EqSOC values estimated from each 
soil polygon by 0.75, which is a coefficient derived from averaging the 
conversion coefficients obtained through a meta-analysis by Gregorich 
et al. (2006) and Wiesmeier et al. (2014) for obtaining SOC in the fine 
soil fraction for cropland and grassland soils (Alvarez and 
Berhongaray, 2021).

The data analysis was conducted for each soil polygon (n = 321 soil 
polygons on the 1:1,000,000 soil map) for which we estimated absolute 
and relative differences between current EqSOC and the three 
reference SOC values: (a) Potential SOC capacity, (b) SOC simulated 
with the DayCent model, and (c) the 95th percentile of EqSOC 
derived from the ESSI-SOC calibration. The relative differences were 
calculated as: Rel. Diff = (EqSOC − Reference SOC) × 100/Reference 
SOC. We also calculated the proportion of area with annual crops in 
each soil polygon by using the MapBiomas land cover map (Vallejos 
et al., 2021; Baeza et al., 2022) for the year 2018 to explore the possible 
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relation between SOC differences and the expansion of crop 
production. On the other hand, we obtained the proportion of MODIS 
pixels that had negative, positive and no trends in the ESSI during the 
2000–2022 period in each soil polygon. The sign of the trend reflected 
the changes in C inputs throughout the period. The ESSI trends were 
calculated performing a linear regression of the annual ESSI values as 
the dependent variable and the years between 2000 and 2022 as the 
independent variable and considering a significance level of 5% for 
defining significant temporal trends.

We plotted the current EqSOC values against each estimator of 
the reference SOC for all soil polygons as shown by Walker et al. 
(2022) (Figure 1) establishing three thresholds corresponding to 25%, 
50%, and >50% of the difference between current EqSOC and 
references SOC. We also mapped these differences at the soil polygon 
level for the whole study area.

3. Results

3.1. SOC-ESSI calibration

The ESSI calculated from the annual mean and standard deviation 
of the NDVI derived from Sentinel data captured a high proportion 
of the spatial variability in observed SOC stocks (R2 = 0.86, Figure 2). 
The generalization over the whole country, based on MODIS data, 
generated a median value of 48.2 Mg C/ha. The 95th (EqSOC p95) and 
50th (EqSOC) percentiles are displayed in Figure 3.

3.2. Reference SOC stocks

As expected, the highest reference SOC stocks were those derived 
from Feng et al. (2013) (Figure 3; Table 1). SOC values for the first 20 cm 
ranged from 33 to 130 Mg C/ha (p1 and p99). This approach considered 
exclusively the capacity of the fine fraction of soils to hold C compounds, 
as opposed to the balance of inputs and outputs and the effect of climate 

and C in the vegetation (i.e., C/N ratio or lignin content) on C stabilization. 
The C stocks derived from DayCent simulations represent a pre-European 
settlement condition and considered a grazing pressure expected from 
wild herbivore populations (Pineiro et al., 2006). The median values for 
the study area were 18% lower than the estimates of potential SOC 
capacity (Figure 3; Table 1). The differences between DayCent simulations 
and potential SOC capacity from Feng et al. (2013) represent the C deficit 
from the potential vegetation of the Open Ecosystems that once 
dominated the area (in average 18.5 Mg C/ha for the first 20 cm of the 
soil), a measure of the potential sequestration. The SOC DayCent 
simulations, however, presented higher values for the 1st percentile than 
the potential SOC capacity estimates. This may be because the lowest 
potential SOC capacity values (Feng et al., 2013) are found in sandy soils 
(i.e., low content of clay + silt), which in NE Uruguay are deep and can 
sustain relatively high production of native pastures (Figure 3). Contrary, 
SOC DayCent simulations presented lower values than potential SOC 
capacity estimates and higher discrepancies were found in NW 
Uruguayan soils (Figure 3). This may be due to two characteristics of these 
soils: they present high clay content that results in high estimated of 
potential SOC capacity, and low soil depth (i.e., 20 cm and sometimes 
less). The low depth determines that DayCent simulates low pasture 
production, due to the low total available water for plants. Hence, the C 
stock predicted by potential SOC capacity driven only by soil texture, was 
higher than the value predicted by DayCent simulations that considers 
low C input due to low soil depth. The last reference map corresponds to 
the SOC stocks of the top 5% of EqSOC (p95) values of the MODIS pixels 
included in each soil polygon (Figure 3; Table 1). The median values of 
the EqSOC p95 were on average 42% and 29% (42.4 and 23.9 Mg C/ha, 
respectively) lower than the references generated from potential SOC 
capacity and DayCent simulations, respectively.

Though the magnitude of the differences between the median 
EqSOC of each soil polygon and the reference values varied in 
magnitude (Table 1) the spatial patterns were similar (Figure 4). The 
highest differences were observed for the polygons dominated by 
sandy soils, mainly in the NE and W regions of the country.

The soil polygons showed a different relationship between the 
references and the current SOC values (Figure 5), and also different 
distribution within the zones defined by the thresholds in Figure 1. 
The median EqSOC was mostly distributed in the yellow (8%) and red 
(92%) zones when the potential SOC is used as reference (Figures 5, 
6). The opposite pattern resulted from using the EqSOC p95 as 
reference: in this case, most of the polygons (76%) were located in the 
green zone (less than 75% of the reference value; Figures 5, 6). The 
comparison of median EqSOC with SOC derived from DayCent 
simulations showed a wider distribution of the polygons in the space 
of reference-current SOC and a more even distribution of the soil 
polygons within the three zones (Figures 5, 6).

3.3. Current SOC stocks

The EqSOC calculated from ESSI over a 20-year period allowed 
to identify temporal trends in the index and on the equilibrium SOC 
expected for an individual pixel. The colors of the dots in Figure 5 
display EqSOC values for each soil polygon and indicate the polygons 
where negative trends (SOC losses) were dominant (red), polygons 
dominated by positive trends (SOC gains; blue dots) and polygons 
where trends were negligible (gray dots). Using DayCent SOC values 

FIGURE 2

Linear regression between carbon stock (EqSOC, in Mg C/ha) and 
the average Ecosystem Services Supply Index (ESSI) value between 
2017 and 2022 estimated from information obtained from Sentinel 
satellites. The SOC stock values were obtained from a long-term 
agricultural experiment established in 1963 and still operational 
(Baethgen et al., 2021).
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as reference (Figure 5), in 53% of the polygons the neutral trends were 
dominant, indicating the temporal preservation of SOC stocks, while 
in 41% of the soil polygons the trends were mostly negative. Also, 65% 
of the soil polygons that fell under the line corresponding to 50% of 
the reference DayCent SOC, had predominantly negative trends (red 
dots, Figure 5).

The proportion of area with annual crops in the soil polygon 
explained 31% of the variability observed in the difference between 
EqSOC and the reference DayCent SOC (Figure 7). An increase of 1% 
in the area with annual crops was associated with an average reduction 
of 0.283 Mg of C in the first 20 cm in the soil polygon. Interestingly, 
the regression intercept was negative (−25.42 Mg C/ha) reflecting 
lower SOC values compared to the reference situation, even in areas 
with no crops. This may be  due to losses of SOC due to grazing 
management in the past in areas with no crops, and/or to 
overestimation of the reference SOC estimated with the DayCent 
model. The quantile regressions (p5 and p95) showed similar slopes 
(0.21 and 0.25, respectively) evidencing the expected loss in SOC due 

to converting grasslands into croplands. However, the regression 
intercepts showed a wide range of almost 38 Mg C/ha (3.47 in p5 and 
41.46 in p95) reflecting a substantial variability within the same range 
of conversion of grasslands to croplands.

4. Discussion

4.1. Patterns of reference and current C 
stocks

The assessment of C stock preserved belowground is a critical 
component of the C footprint of a given system. An exclusive focus on 
increasing sequestration minimizes the importance of management 
actions that preserve SOC and avoid net CO2 emissions to the 
atmosphere, such as natural habitat preservation, adequate grazing 
management, well managed crop-pasture rotation, among others. 
Moreover, those systems that maintained C stocks similar to the 

FIGURE 3

Maps of reference SOC stocks of each soil polygon obtained using three methods: Feng et al. (2013), DayCent model (Del Grosso et al., 2001), and 
from the 95th percentile (p95) of EqSOC from the ESSI-SOC calibration (EqSOC p95). The EqSOC was estimated from the ESSI (Ecosystem Services 
Supply Index, Paruelo et al., 2016) and represents the equilibrium SOC under current management practices (i.e., in the last 20 years). The estimation of 
the current SOC corresponds to the 50th percentile (p50) of EqSOC of all the pixels inside each soil polygon. Only situations with crops and grassland 
were considered, discarding areas with native forests, tree plantations, water or urban infrastructure through applying a mask derived from Baeza and 
Paruelo (2020).
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reference values (C stocks preservation, CSP) level may have 
biophysical limitations to further increase C stocks due to saturation 
(Schlesinger, 1990; Hassink and Whitmore, 1997; Pravia et al., 2019; 
Rodrigues et al., 2022), i.e., their C accumulation potential (CAP) may 
be low. The C stock preserved (CSP) belowground and the potential 
for increasing C sequestration (CAP) indicate the status of a given 
land unit with respect to the difference between its current carbon 
content (EqSOC) and the reference SOC. Thus, certain land units 
could maintain their C stocks similar to the reference values (C stocks 
preservation, CSP) while others could show a C accumulation 
potential (CAP) if present smaller values than the reference 
SOC. Three critical issues that require scientific and political 
consensus to implement the use of the CSP criteria are: (1) how to 
define maximum or potential C stocks, (2) how to estimate current C 
stocks over large areas and in heterogeneous agricultural landscapes, 
and (3) what is a reasonable/acceptable level of reduction (e.g., in 
Figures 1, 5 a threshold of 25% were used). Defining and establishing 
the reference values and thresholds will contribute to differentiate 
those land units that should preserve SOC stocks from those that 
should and have the potential capacity to capture and store C to 
contribute to transitioning to net zero C emission.

In this article we used three alternatives to generate potential SOC 
stocks. Other models, either mechanistic [e.g., RothC, Socrates, 
Struc-C (Stockmann et al., 2013), Cycles (Kemanian et al., 2022) or 
empirically based (i.e., Sanderman et  al., 2018)], can be  used. Of 
course, the selection of the reference situation would determine the 
magnitude of the C deficit. Alvarez and Berhongaray (2021) used 
estimates of C capacity (both global and locally calibrated model) to 
estimate the C saturation deficit of the Argentine Pampa soils. They 

estimated an average C saturation deficit for the first 25 cm close to 
70 Mg/ha, quite similar to the 62.3 value found for the first 20 cm in 
our study. Among the three alternatives used to estimate reference C 
stocks in our study, the strategy of using a mechanistic agroecosystem 
model such as DayCent simulations presented some advantages. First, 
even though DayCent does not explicitly consider a maximum value 
in SOC accumulation, it considers the capacity of the fine fraction of 
the soil to hold C, as well as the dynamics of C inputs and losses based 
on climate, vegetation and management drivers. In doing so it 
generates more realistic C scenarios than Feng et al. (2013). Secondly, 
it is a dynamic reference situation because the potential vegetation 
simulated and/or the management practices (i.e., grazing and fire) can 
be manipulated to simulate different situations. Third, it minimized 
some circularity associated with using the observed highest values 
(the 95th percentile) as a reference, as in the case of EqSOC p95.

The estimation of current SOC stocks can be based on different 
approaches. Field data based on a sampling protocol at the plot/
paddock level is, clearly, the option that provides the highest precision. 
However, it may not be feasible to generate a nation-wide coverage 
due to costs and logistics. DayCent (or Century) proved to be an 
excellent alternative to simulate C stocks dynamics under different 
agricultural management systems of Uruguay (Pineiro et al., 2006; 
Baethgen et al., 2021). A proper characterization of the management 
history allows tracking changes in C stocks at the paddock level. Even 
though the precision of the SOC estimation of a given paddock 
depends on knowing the initial C stocks, simulations can track the 
trend of changes and provide a reliable estimation of the expected 
differences between paddocks under different management. A 
relatively large proportion of the information required to perform 
such simulations can be  derived from secondary data (soil maps, 
climate databases) and land cover maps, such as those provided by the 
MapBiomas Pampa project (Vallejos et al., 2021; Baeza et al., 2022).

In this article we used a third approach to characterize current 
SOC stocks. We  calibrated the relationship between an index 
associated to ecosystem services supply (ESSI) using current SOC data 
from a long-term experiment and native grasslands relicts. The ESSI 
captures differences in C inputs over an agricultural rotational period, 
through the estimation of annual C gains and its seasonality, thus 
being a good indicator of C inputs and, therefore, of SOC stocks. The 
index increases as the growing season integral of the NDVI augments 
(higher NDVI mean) and decreases as the system becomes more 
seasonal (higher NDVI standard deviation). The spatially explicit 
integration of this index over time allows capturing the spatial and 
temporal changes in SOC stocks. The local calibration carried out for 
the same soil and climate was generalized over the whole country 
using a correction based on the soil clay + silt content. Though using 
a different approach, estimations based on the NDVI dynamics 
considered (as DayCent) the effect of both, the soil texture (to account 
for C capacity) and C inputs in determining SOC stocks. As in the case 
of DayCent, SOC estimates based on ESSI (EqSOC) may not predict 
with accuracy absolute values but do provide a description of the 
equilibrium C stocks expected under a given land-use management. 
Also, this approach allows covering wide areas of territory, having 
spatially continuous information and detailed spatial resolution. 
Although other datasets could be used to characterize the current 
SOC (e.g., SoilGrids—Hengl et al., 2017, OpenLandMap—Hengl and 
Wheeler, 2018, GSOCmap—FAO, 2022), the EqSOC offers the 
advantage of not needing the interpolation of point data and, given 

TABLE 1 Summary values corresponding to the median, p1, p99 and 
coefficient of variation for the current SOC (EqSOC), the three 
alternatives to define the reference SOC: potential, DayCent, and EqSOC 
p95, and the absolute and relative differences between them.

Median Percentile 
1

Percentile 
99

CV 
(%)

SOC Potential (Mg 

C/ha)

101.5 22.9 141.4

34.8

SOC DayCent (Mg 

C/ha)

83.0 44.7 108.7

21.6

EqSOC (p95) 

(Mg C/ha)

59.1 21.5 80.6

26.7

EqSOC (Mg C/ha) 48.2 10.5 72.8 33.8

EqSOC − SOC 

Potential (Mg C/ha) −62.2 −88.1 −11.8 38.4

EqSOC − SOC 

DayCent (Mg C/ha) −34.2 −59.8 −6.0 37.9

EqSOC − EqSOC 

(p95) (Mg C/ha) −8.0 −21.8 −4.4 40.0

Rel. Dif. EqSOC 

− SOC Potential (%) −62.3 −77.8 −41.5 12.8

Rel. Dif. EqSOC 

− SOC DayCent (%) −43.6 −82.3 −8.7 36.0

Rel. Dif EqSOC 

− EqSOC (p95) (%) −15.0 −57.6 −6.3 59.7
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that it is based on information derived from satellite-based remote 
sensing, it is easily updatable in the future.

As expected, the magnitude of SOC changes observed for the 
different soil polygons was related to the relative frequency of annual 
crops (Figure 7). In a review of long-term experiments, Powlson et al. 
(2022) found that in most cases SOC values under arable cropping 
were in the range 38–67% of pre-clearance values. The variability 
explained in our study (Figure 7) was only 31% and the range of C 
losses for intermediate levels of conversion of grasslands to croplands 
was ample. Several factors may account for the non-explained 
variability. The design of the agricultural system would certainly play 
a key role. This suggests that areas that were never used for annual 
crops can lose SOC due to poorly managed grazing strategies, and that 
areas used for crop production may be managed in such a way that 
maintain SOC stocks. The long-term experiment and model 
simulations showed that the length of the pasture phase of a pasture-
annual crop rotation, the level of fertilization, the use of service crops 
and the use of no-till may explain the differences in C losses observed. 
Baethgen et al. (2021) showed for crop-pasture rotations that different 
management may result in differences greater than 30 Mg/ha after 
60 years, which is similar to the range of variation observed in this 
work (Figure 7).

Despite their usefulness, the approaches outlined to characterize 
reference and current C stocks have shortcomings. Some of the limitations 
are intrinsic (it is impossible to know the C content that a soil had 
100 years ago) and others are operational, although they can be reduced 
through a proper calibration and evaluation of the methodological 
approaches. Clearly, expanding geographically the calibration and 
independent empirical evaluation of DayCent, EqSOC and/or other 
models is a critical issue in a research agenda aimed to better define the C 
footprint of a given land unit (i.e., a paddock, a farm, an administrative 
unit, an agroecological region, or the whole country).

4.2. A road map to define a comprehensive 
C footprint of Uruguayan agricultural 
systems

A comprehensive definition of the C footprint of a given land unit 
should include at least the following elements (Figure 8):

 • The magnitude of the C stock preserved with respect to the 
reference situation (C stocks preservation, CSP).

 • The potential for increasing C sequestration based on C losses 
(Reference SOC-Current SOC), i.e., the C accumulation 
potential (CAP).

 • The past trend of C sequestration from the temporal trends of 
EqSOC (Past Trends, PT).

 • A C sequestration management plan based on the projected 
EqSOC under a proposed land use/land cover scenario (Future 
Scenarios, FS).

In addition to being scientifically sound, the models and 
approaches used in integrative evaluations of C footprint require 
robust local calibration and evaluation. Moreover, they need to 
be accepted beyond the scientific community as a reference. The 
potential C sequestration (CAP) or the C saturation deficit is defined 
by the difference between reference and current C stocks. Here 
again, establishing a methodology to characterize both stocks 
become a technical-political definition. In this article we used three 
approaches to estimate reference SOC stocks (i.e., potential SOC or 
SOC capacity, DayCent simulations and ESSIp95), and we calculated 
their differences respect to current SOC (EqSOC). These differences 
indicate the carbon saturation deficit or the C accumulation 
potential (CAP) and represent the capacity of a given land unit to C 
sequestration. The magnitude of the C deficit will depend on the 

FIGURE 4

Relative differences between current EqSOC and the three approaches used to estimate reference SOC: (a) Potential SOC capacity, (b) SOC from the 
DayCent model, and (c) the 95th percentile of EqSOC from the ESSI-SOC calibration. The relative differences were calculated as: Rel. Diff = (EqSOC 
− Reference SOC) × 100/Reference SOC.
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FIGURE 7

Difference between current EqSOC and the reference SOC 
estimated from DayCent model (in Mg C/ha) for each soil polygon 
along a gradient of relative cropland frequency (%) based on 
MapBiomas land cover map (Vallejos et al., 2021; Baeza et al., 2022) 
for the year 2018.

selected reference situation (i.e., potential SOC, DayCent or 
ESSIp95). Often the selection of a technical approach involves a 
tradeoff between simplicity and precision. Defining tiers (e.g., IPCC, 
2006) proved to be a useful approach to move forward in evaluating 
environmental issues.

An objective characterization of the SOC trends (PT) in the last few 
years (e.g., in the last decade) can be  used to assess the effect of 
management practices on the C footprint. By using an index (ESSI) based 
on remote sensing data (MODIS in our study) it was possible to track 
changes on C inputs to the soil stocks over periods that are longer than 
the most frequent agriculture rotational plans. Thus, the analysis of trends 

allows assessing to what extent the different land units are meeting the 
goals of preserving or capturing C, which can be used for monitoring and 
studying the degree of progress toward the proposed goals. Trends can 
be also derived (next Tier) from simulations and field data.

The expected trend in SOC sequestration on any land unit can 
be projected based on the expected changes in land use/land cover 
and/or in agricultural management practices. Thus, indicators of 
SOC sequestration (e.g., based on ESSI, and/or on calibrated 
simulation models) can be used to assign values of expected changes 
in SOC stocks to the planned sequences of land uses/land covers and/
or to different agricultural management practices (Campbell and 
Paustian, 2015).

5. Final remarks

The use of indicators derived from locally calibrated and evaluated 
models is a practical approach to generate country-wide or regional 
assessments of the environmental performance of agricultural systems. A 
successful case of adapting models to generate indicators into a soil 
conservation policy is Uruguay’s Law of Soil and Water Conservation for 

FIGURE 5

EqSOC for three methods to estimate the reference SOC stocks: 
potential SOC, DayCent SOC and EqSOC p95. We defined three 
areas delimited by threshold values CORRESPONDING to 25% 
(upper), 50% (middle) and <50% (lower) of difference between current 
EqSOC and reference SOC. Each point corresponds to a soil polygon 
and the colors represent situations in which significant negative 
trends of the ESSI predominate (red), significant positive trends 
predominate (blue), and where both negative and positive trends are 
balanced (gray).

FIGURE 6

Relative frequency (%) of soil polygons located in each category 
defined by threshold values corresponding to 25%, 50%, and >50% of 
difference between current EqSOC and the three approaches to 
define the reference SOC: potential, DayCent, and EqSOC p95.
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Agricultural Purposes (Law N° 15.239). In this case a locally calibrated 
version of the Universal Soil Loss Equation (USLE-RUSLE; Wischmeier 
and Smith, 1978; Renard, 1997; Garcıa Préchac et al., 2004, 2005) was 
used to generate and evaluate soil management plans. Building trust on 
the models among the different stakeholders is not a simple task. In the 
case of Law N° 15.239 the process took more than 5 years (Zurbriggen 
et al., 2020; Freeman et al., 2021). Implementing an operational method 
for characterizing changes in SOC to inform public policy requires: 
building capacity, generating consensus, defining the implementation 
authority, and providing the elements (protocols and data) to audit the 
system. It may also require implementing a successful pilot experience. A 
critical point is the need to establish basic agreements at the policy-
making level to define the evaluation of the environmental performance 
of the agricultural sector. A clear communication of the benefits for the 
society of keeping track of the environmental footprint (including the C 
footprint) in terms of welfare, food safety, access to markets, etc., would 
be essential.
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FIGURE 8

Methodological road map proposed to derive C footprint of a given land unit combining both biogeochemical models and conceptual models based 
on remotely sensed data. For this, some criteria should be considered to define C footprint and these include the magnitude of the C stock preserved 
with respect to the reference situation (C stocks preservation, CSP), the potential for increasing C sequestration based on C deficit [Reference SOC-
Current SOC, the C accumulation potential (CAP)], the past trend of C sequestration from the temporal trends of EqSOC in the last few decades (Past 
Trends, PT) and a C sequestration/C preservation management plan based on the project EqSOC under a proposed land use/land cover scenario 
(Future Scenarios, FS).
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