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COVID-19 was themost significant infectious-agent-related cause of death in the
2020-2021 period. On average, over 60% of those admitted to ICU facilities with
this disease died across the globe. In severe cases, COVID-19 leads to respiratory
and systemic compromise, including pneumonia-like symptoms, acute
respiratory distress syndrome, and multiorgan failure. While the upper
respiratory tract and lungs are the principal sites of infection and injury, most
studies on the metabolic signatures in COVID-19 patients have been carried out
on serum and plasma samples. In this report we attempt to characterize the
metabolome of lung parenchyma extracts from fatal COVID-19 cases and
compare them with that from other respiratory diseases. Our findings indicate
that the metabolomic profiles from fatal COVID-19 and non-COVID-19 cases are
markedly different, with the former being the result of increased lactate and amino
acid metabolism, altered energy pathways, oxidative stress, and inflammatory
response. Overall, these findings provide additional insights into the
pathophysiology of COVID-19 that could lead to the development of targeted
therapies for the treatment of severe cases of the disease, and further highlight the
potential of metabolomic approaches in COVID-19 research.
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1 Introduction

As experienced during the 2020–2023 COVID-19 pandemic, SARS-CoV-2 infections can
result in a variety of respiratory conditions, including pneumonias-like symptoms, acute
respiratory distress syndrome (ARDS), and multiorgan failure (Chavez et al., 2021). Potential
risk factors for mortality among patients admitted to ICU included age, obesity, and
comorbidities such as hypertension, diabetes, and cardiovascular disease (Ejaz et al., 2020;
Ahlström et al., 2021; Booth et al., 2021). It was also observed that the clinical symptoms of
COVID-19 could be influenced by viral load as well as by respiratory and gut microbiota
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dysbiosis (Liu et al., 2020; Brosseau et al., 2021). While most of the
patients diagnosed with COVID-19 attended the disease at home, 13%-
14%needed hospitalization inmoderate care facilities, and between 5%-
6% were admitted to intensive care units (Verity et al., 2020; Gosangi
et al., 2022). Hospital mortality was between 30%–60% in case series
reported in the first wave, increasing significantly for patients admitted
to the ICU who required mechanical ventilation (Abate et al., 2020;
Bastos et al., 2021; Estenssoro et al., 2021; Kurtz et al., 2021; Ranzani
et al., 2021; Dongelmans et al., 2022). Uruguay was no exception, and
towards the end of 2020 the average number of new cases increased
exponentially to over 400 cases per day (GUIAD-COVID-19, 2022). In
addition, the most prevalent viral variant during the first wave was
B.1.1.28 (now designated as P.6), and vaccines were not yet available
(Moreno et al., 2020; Elizondo et al., 2021; Rego et al., 2021).

A number of studies have established that SARS-CoV-2 infections set
off a chain of events that can lead to a cytokine storm, an immune system
overreaction thatmay result in ARDS (Koçak Tufan et al., 2021), which is
the most frequent complication of severe COVID-19 cases. However,
there are still several aspects of the disease that remain unknown. In order
to elucidate the pathophysiological effects of COVID-19 and improve
clinical care through the selection of appropriate treatments, particularly
for patients with severe manifestations of the disease, a thorough
understanding of the metabolic alterations and early acute lung injury
biomarkers are required.

Metabolomic profiling can complement the lack of knowledge
regarding the molecular mechanisms underlying clinical
manifestations and pathogenesis of COVID-19. Consequently,
several studies have employed metabolomic approaches to better
understand the metabolic pathways involved in COVID-19
pathogenesis (Ansone et al., 2021; Chen et al., 2022; Murali et al.,
2023). Serum-based metabolomic studies in COVID-19 patients
revealed altered glycolytic pathways as well as amino acid, lipid, and
anaplerotic metabolism, suggesting an impact on energy pathways,
inflammatory response, and oxidative stress, and confirming the
systemic nature of the disease (Kimhofer et al., 2020; Lorente et al.,
2021; Shi et al., 2021; Valdés et al., 2022). Additionally, metabolomic
studies have been conducted in different biofluids, including sweat,
saliva and used face masks, as well as exhaled breath, serum and
plasma, to identify differential metabolites and metabolic changes
associated with COVID-19 (Barberis et al., 2020; Barberis et al.,
2021; Hasan et al., 2021). However, there are no studies focusing on
changes in the metabolic profile in lung tissue, which is SARS-CoV-
2 primary site of infection. In the present communication we use an
NMR-based non-targeted metabolomics approach to characterize
the metabolome of lung parenchyma from fatal COVID-19 cases
and compare it with other fatal respiratory diseases. As discussed
herein, we found statistically significant differences between
metabolites related to energy metabolism and inflammatory
processes, revealing a unique metabolic profile in the infected tissue.

2 Materials and methods

2.1 Sample acquisition and experimental
design

The inclusion criteria comprised adults 18 years or older
admitted to the ICU with respiratory sepsis and respiratory

failure and which had received mechanical ventilation. Clinical
information was obtained by retrospective chart review, and
data of the Acute Physiology and Chronic Health disease
Classification System II (APACHE-II) scores on admission,
arterial oxygen pressure/inspired fraction of oxygen (PaO2/
FiO2 or PAFI), the need of vasopressor support, renal or
multiorgan failure, and the presence of comorbidities, such as
diabetes, hypertension, or obesity, were collected. Fragments of
lung tissue were collected during clinical autopsies performed
on ICU patients deceased between November 2020 and February
2021 who had SARS-CoV-2 infection confirmed by RT-qPCR
(n = 8). As stated above there was no vaccination strategy in
place at the time, and therefore none of these patients had
received immunization. In addition, lung fragments from
non-COVID-19 deceased patients were collected between
December 2016 and June 2018 at the same facility and with
the same ethical safeguards. This group included
microbiological and serological positive results for Klebsiella
pneumoniae, Leptospira interrogans, and respiratory syncytial
virus (n = 7). In all cases, tissue samples were obtained in the first
2 h post-mortem and stored at −80 °C until processed for NMR
analysis.

2.2 NMR sample preparation and data
acquisition

An adaptation of previously published methods was followed
(Nakayasu et al., 2016). Briefly, lung tissue samples between 50 and
100 mg in wet weight were homogenized and extracted with 0.7 mL
MeOH/H2O (4:3) in a bullet blender (Next Advance,
United States). Subsequently, chloroform was added to reach a
final CHCl3/MeOH/H2O ratio of 8:4:3, vortexed for 5 min, and
centrifuged for 5 min at 5,000 g. The aqueous phases were
lyophilized and resuspended in a phosphate buffer prepared in
D2O (pH 7.4) (Dona et al., 2014).

Water-suppressed 1D-NOESY 1H NMR spectra of aqueous
tissue extracts were obtained at 25 °C on a Bruker AVANCE III
500 operating at a 1H frequency of 500.13 MHz. A spectral width
of 10 kHz, a data size of 32 K, and a total of 128 scans were
employed to record each spectrum, using a relaxation delay of 4 s
between scans. 1D-TOCSY and HSQC spectra were acquired
and processed using parameters provided with the spectrometer.

2.3 NMR data processing

NMR data were processed and analyzed with MNova (version
14.0, MestreLab Research, S.L., Santiago de Compostela, Spain).
Free induction decays were zero-filled to 64 K points and
apodized with a 0.3 Hz exponential window function prior to
Fourier transformation. All spectra were manually phase- and
baseline-corrected, and referenced to the anomeric proton signal
of α-glucose (5.22 ppm). Spectra were manually aligned, and the
data was normalized to the total spectral area after excluding the
residual water resonance region and regions without signals. No
binning was employed to construct the data matrices used for the
multivariate statistical analyses.
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2.4 Metabolite identification and estimation
of relative concentrations

Metabolites were identified by comparison of 1H NMR data
against spectral repositories, including the Biological Magnetic
Resonance Bank (BMRB) (Hoch et al., 2023), the Human
Metabolome Database (HMDB) (Wishart et al., 2022), and
Chenomx (version 9, Chenomx, Inc., Edmonton, Canada). When
required, metabolite identification was confirmed with data from
1D-TOCSY and HSQC spectra.

Given the characteristics of lung parenchyma and the difficulties
of obtaining precise dry weights in biologically-hazardous samples,
variations in metabolite levels were estimated using relative
concentrations. This figure was computed as the ratio between
the area from individual metabolite 1H NMR signals and the
total area of the spectrum.

2.5 Statistical analysis

Multivariate statistical analyses, including principal component
analysis (PCA) and orthogonal partial least squares discriminant
analysis (OPLS-DA), were carried out with the PLS_Toolbox
package (version 8.5, Eigenvector Research Inc., Manson, WA,
United States) implemented for MATLAB (revision 2014a, The
MathWorks Inc., Natick, MA, United States). For all models, the
data was mean-centered and scaled using a Pareto factor (Van Den
Berg et al., 2006). Analysis of the data was first performed with PCA,
which reduces data dimensionality and facilitates the identification
of clusters or trends (Wold et al., 1987; Trygg andWold, 2002; Trygg
et al., 2006). The PCA scores plot was also employed to identify
strong outliers outside the 95% significance region of Hotelling’s
T2 ellipse. Cross-validation of OPLS-DAmodels was achieved using
the random subset method, which involved 20 iterations over data
split into 5 equally-sized parts. Receiver operating characteristic
(ROC) curves were plotted, and areas under the curves were
calculated to ensure the goodness of fit of the resulting models
(Ekelund, 2012; Simundic, 2012). Permutation tests with
100 iterations were also performed to determine the degree of
over-fitting and further validate the discriminant analyses (Ni
et al., 2008). When needed, statistical total correlation
spectroscopy (STOCSY) analyses were performed with an in-
house MATLAB script based on the algorithm described
elsewhere (Cloarec et al., 2005).

Pairwise t-test comparisons were carried out between
continuous demographic variables as well as between the relative
concentrations of all identified metabolites in COVID-19 and non-
COVID-19 samples using GraphPad Prism (version 7.0, GraphPad
Software, Inc., San Diego, CA, United States).

2.6 Metabolic pathways analyses

Metabolic pathway analysis was performed using the Pathway
Analysis module of Metaboanalyst v.5.0 (Xia et al., 2011; Chong
et al., 2019), which combines results from robust pathway
enrichment analysis with pathway topology analysis to identify
the most relevant pathways involved in the conditions under

study (Aittokallio and Schwikowski, 2006; Kankainen et al.,
2011). The selected pathway enrichment analysis method was
GlobalAncova (Hummel et al., 2008), the node importance
measure for topological analysis was out-degree centrality, and
KEGG metabolic pathways were used as the backend
knowledgebase.

3 Results

3.1 Clinical characteristics of study patients

All patients in this study had been diagnosed with pneumonia,
presented respiratory sepsis, and exhibited high APACHE-II scores
upon admission to the ICU (Table 1). They all required mechanical
ventilation, and more than 80% were on vasopressor support. The
average ICU stay was 17.6 ± 4.9 days for COVID-19, and 11.2 ±
8.3 for non-COVID-19 patients. When compared to non-COVID
patients, those with COVID-19 had a higher percentage of
comorbidities on admission (diabetes, hypertension, chronic
obstructive pulmonary disease, and obesity) and a lower PAFI score.

3.2 Metabolomic analysis

We initially compared 1H NMR profiles from lung tissue
extracts from COVID-19 autopsies against those from non-
COVID-19 autopsies (Figure 1). As shown in Figure 2A, a PCA
derived from the 1H NMR data showed good discrimination
between groups despite the low number of samples. Indeed,
inspection of the loading plot from an OPLS-DA model obtained

TABLE 1 Demographic and clinical characteristics of the study population upon
admission in ICU. Variations in continuous variabbles with p-values <0.05 are
indicated with bold numbers.

Parameter COVID-19 Non-COVID-19 p-value

Cohort size (n) 8 7 -

Mean age 68.6 ± 8.2 57.3 ± 17.1 0.992

Female 3 (37%) 3 (50%) -

COPDa 4 (50%) 2 (33%) -

Diabetes 3 (38%) 0 (0%) -

Hypertension 7 (88%) 1 (17%) -

Obesity 3 (38%) 0 (0%) -

Renal failure 5 (63%) 2 (33%) -

APACHE-II score 20.6 ± 8.4 19.2 ± 10.2 >0.999

PAFIb on day 1 115 ± 31 230 ± 162 0.001

Vasopressor support 8 (100%) 5 (83%) -

Days of mechanical
ventilation

16.4 ± 5.3 9.7 ± 7.1 >0.999

Length of ICU stay 17.6 ± 4.9 11.2 ± 8.3 >0.999
aChronic obstructive pulmonary disease.
bArterial oxygen pressure/inspired fraction of oxygen (PaO2/FiO2 or PAFI).
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with the same data identified an important number of
discriminating 1H signals (Figures 2B, C). Dereplication using a
combination of STOCSY analyses, classical 1D and 2D NMR
experiments, and comparison to data from various 1H spectral
repositories allowed us to identify 21 metabolites (Figure 2C),
11 of which had significant differences in levels among the two
cohorts (Table 2). The relative concentrations of the amino acids
valine, alanine, methionine, glycine, tryptophane, phenylalanine,
tyrosine, and asparagine were significantly increased in samples
from COVID-19 patients. On the other hand, choline and glycerol-
3-phosphate levels, as well as that of the metabolic intermediate
succinate, were significantly lower among these samples.

3.3 Pathway analysis results

Metabolic pathway analysis was performed to identify the most
relevant pathways involved in COVID-19 lung autopsy (Figure 3).
This pathway analysis identified alterations in amino acids
biosynthesis and degradation, anaplerotic alanine-aspartate-
glutamate metabolism, glycine-serine-threonine metabolism,
synthesis and degradation of ketone bodies and
glycerophospholipid metabolism.

4 Discussion

One of the most salient aspects from the results presented above
is the general increase in the levels of essential amino acids, generally
recognized as sepsis biomarkers (Mierzchala-Pasierb et al., 2020;
Ahn et al., 2021), in patients with COVID-19. Indeed, branched
chain amino acids (BCAAs), including isoleucine and valine
(Table 2), are involved in stress, energy, and muscle metabolism

(Neinast et al., 2019). BCAAs have different metabolic routes, with
valine going solely to carbohydrates (glucogenic), leucine solely to
fats (ketogenic), and isoleucine being both a glucogenic and a
ketogenic amino acid. These metabolites can also regulate
immune responses and influence viral infection (Atila et al.,
2021). Hence, the maintenance of metabolic homeostasis is
essential for the body’s normal physiological functioning, and
disruptions in metabolic homeostasis could potentially facilitate
virus infection. Our results in lung autopsies of COVID-19
patients show a significant enrichment in valine (Table 2). This is
also evidenced by the metabolic pathway analysis, which revealed
that valine, leucine, and isoleucine degradation and, to a lesser extent
synthesis pathways, are significantly affected (Figure 3). High levels
of BCAAs are associated with metabolic encephalopathy, often
linked with respiratory suppression, epileptic seizures, and brain
damage due to lack of oxygen (Ozturk et al., 2022). These results
contrast those from a previous study conducted in serum, where the
metabolic profiles of patients with ARDS due to COVID-19 and
H1N1 were compared (Lorente et al., 2021). This report by Lorente
and coworkers is particularly noteworthy, as it presents a footprint
analysis in patients with the same severity of ARDS. On the other
hand, most existing metabolomic studies contrast SARS-CoV-
2 infected patients with healthy controls and cannot discern
between metabolic dysregulations caused by the virus or the
development of ARDS. These authors found that amino acid
metabolism was decreased in COVID-19 patients, and the
concentration of BCAAs, including isoleucine and valine, were
also lower when compared with influenza A patients. Although
different biofluids are commonly used for biomarker discovery, it is
necessary to consider lung tissue metabolome as a complementary
input. Indeed, it is not uncommon to find that certain metabolites
are decreased in serum but increased in the tissue (Bernatchez and
McCall, 2020).

FIGURE 1
Representative 1H NMR spectrum of a lung parenchyma extract sample. Signals corresponding to formate (1), tryptophan (2), phenylalanine (3),
tyrosine (4), fumarate (5), uracil (6), α-glucose (7), β-glucose (8), asparagine (9), lactate (10), glycerol-3-phosphate (11), glycine (12), betaine (13), choline
(14), phosphocholine (15), creatine (16), citrate (17), pyruvate (18), glutamine (19), glutamate (20), methionine (21), acetate (22), alanine (23), valine (24), and
isoleucine (25) are annotated. The grayed-out region corresponds to the residual HDO signal.
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Other metabolites found to be significantly more abundant in
patients with COVID-19 were tyrosine, phenylalanine, and
tryptophan. Absorption of the latter metabolite is mediated by
angiotensin converting enzyme 2 (ACE2), the primary receptor
of SARS-CoV-2, and has been recognized as a marker of
inflammation in severe COVID-19 cases (Takeshita and
Yamamoto, 2022). Similarly, elevated plasma or serum levels
of tyrosine are observed in a variety of ailments, including
hyperphenylalaninemia, sepsis, severe burns, transient
tyrosinemia and hyperphenylalaninemia of the newborn,
phlebotomus fever, viral hepatitis, or hepatic encephalopathy
(Rosen et al., 1977; Watanabe et al., 1979; Rudnick and Ebach,
2004; Ansone et al., 2021). High levels of this non-essential amino
acid synthetized from phenylalanine have also been detected in
septic patients (Freund et al., 1978). Also, increased
phenylalanine serum concentrations have been associated with
immunological activation and an increased risk of cardiovascular

events in sepsis and other viral infections (Ansone et al., 2021).
This could be explained due to muscle tissue catabolism leading
to amino acid release, which, together with the body’s differential
metabolic capacity for different amino acids, results in their
accumulation. Indeed, despite muscle tissue is easily able to
oxidize BCAAs to support its own energy requirements,
aromatic amino acids as well as sulfur-containing amino acids
such as taurine, cysteine, and methionine are not as easily
metabolized, and may account for the increase in the levels of
tyrosine seen during sepsis (Freund et al., 1978). It has also been
reported that as disease severity progresses, there is a significant
increase in phenylalanine serum concentrations (Martínez-
Gómez et al., 2022). Taken together with our results, these
findings support the idea that these aromatic amino acids
could be used as biomarkers of COVID-19 severity.

Additionally, succinate was found significantly depleted in
COVID-19 patients. This metabolite plays a key role in hypoxia,

FIGURE 2
PCA score plot obtained from lung parenchyma extract 1H NMR data (A), and score and loading factor plots obtained from the OPLS-DA comparing
COVID-19 and non-COVID samples (B and C, respectively). Metabolites that differentiate the COVID-19 from the non-COVID-19 cohorts are annotated
in the loading factor plot, including tryptophan (1), phenylalanine (2), tyrosine (3), glycerol-3-phosphate (4), glycine (5), choline (6), creatine (7), asparagine
(8), succinate (9), methionine (10), alanine (11), lactate (12), valine (13), and isoleucine (14). The OLPS-DA model had R2Y and Q2Y coefficients of
0.75 and 0.32, respectively, and its ROC curve had an AUC value of 0.98 (Supplementary Figures S1, S2).
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where it acts inhibiting the prolyl hydroxylase domain-
containing enzymes (PHD) (Yang et al., 2012). Under normal
oxygenation, PHD constantly degrades the hypoxia-inducible
transcription factor (HIF). This O2-sensitive factor mediates the
response to hypoxia through the expression of genes that
regulate cellular energy production, biosynthesis, cell growth,
and redox homeostasis (Yang et al., 2014). In our cohort of
severe COVID-19 patients lower initial PAFI scores were
observed, indicating decreased blood oxygenation (Yang
et al., 2012). While increased succinate levels would be
expected in this scenario, it is known that mechanical
ventilation periods like the ones experienced by our patients
lead to succinate downregulation (Mussap and Fanos, 2021). As
previously reported, these results indicate that despite high
sensitivity, changes in succinate levels are not suitable
indicators of disease severity or patient prognosis (Mussap
and Fanos, 2021).

Choline levels were also found to be significantly lower in
COVID-19 samples. This has also been reported in serum from
severe COVID-19 patients, where an increase in the
consumption of this trimethylamine caused by activation of
macrophage innate immune receptors was linked to

extracellular cytokine secretion (Sanchez-Lopez et al., 2019).
The presence of pro-inflammatory components in
bronchoalveolar lavage fluid is elevated even in severe
COVID-19 patients treated with glucocorticoids, suggesting
that slowing down the cytokine storm is a critical strategy
for disease control (Barberis et al., 2020).

Similarly, we found a significant drop in glycerol-3-
phosphate levels among COVID-19 samples. This
phosphorylated polyol is tightly related to phospholipid
metabolism, which is now known to be deregulated in
COVID-19 patients based on serum metabolomic analyses
(Shen et al., 2020; Shi et al., 2021). More importantly, it has
been reported that the decrease in the levels of this species are
directly related to severity in COVID-19 patients (Wu et al.,
2020). Although the reduction in glycerol-3-phosphate
concentration at the site of SARS-CoV-2 infection warrants
further investigation, our results corroborate that this
metabolite could be considered as a biomarker of severe
manifestations of the disease.

Finally, lactate was the most widely expressed metabolite
across both cohorts with no statistically significant differences
between them. This finding is consistent with the known fact that

TABLE 2 Metabolite relative concentrations in COVID-19 and non-COVID-19 patients. Variations with p-values <0.05 are indicated with bold numbers.

Metabolite COVID-19 Non-COVID-19 Fold changea p-value

Alanine 1.842 ± 0.205 1.306 ± 0.304 −1.41 0.001

Asparagine 0.145 ± 0.047 0.070 ± 0.030 −2.07 0.002

β-Hydroxybutyrate 0.246 ± 0.116 0.205 ± 0.063 −1.20 0.217

Betaine 0.395 ± 0.330 0.330 ± 0.211 −1.20 0.327

Choline 3.262 ± 0.808 5.341 ± 1.662 1.64 0.008

Creatine 0.655 ± 0.236 0.523 ± 0.214 −1.25 0.139

Glucose 0.269 ± 0.090 0.679 ± 0.561 2.52 0.081

Glutamate 2.309 ± 0.426 2.465 ± 0.488 1.07 0.263

Glycine 1.645 ± 0.229 1.202 ± 0.207 −1.37 0.001

Glycerol-3-phosphate 0.027 ± 0.004 0.036 ± 0.006 1.33 0.002

Histidine 0.129 ± 0.123 0.040 ± 0.014 −3.25 0.052

Isoleucine 1.508 ± 2.527 0.400 ± 0.132 −3.77 0.128

Lactate 15.958 ± 4.933 17.677 ± 3.053 1.11 0.214

Methionine 0.212 ± 0.116 0.109 ± 0.038 −1.94 0.021

Phenylalanine 0.564 ± 0.254 0.272 ± 0.067 −2.07 0.007

Phosphocholine 1.050 ± 0.342 1.010 ± 0.250 −1.04 0.400

Succinate 0.006 ± 0.002 0.013 ± 0.004 2.17 0.002

Tyrosine 0.415 ± 0.134 0.180 ± 0.052 −2.31 0.001

Tryptophan 0.054 ± 0.026 0.028 ± 0.003 −1.92 0.011

Uracil 0.074 ± 0.018 0.059 ± 0.022 −1.25 0.102

Valine 1.480 ± 0.677 0.723 ± 0.246 −2.05 0.008

aFold changes were computed according to the guidelines of Vinaixa and coworkers (Vinaixa et al., 2012).
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high plasma lactate concentration is a marker of poor prognosis
and an indicative of metabolic acidosis in critically ill patients,
and was expected to be higher in both groups (Martha et al.,
2021).

In conclusion, distinct metabolic signatures associated with
energy metabolism and inflammatory pathways differentiate
COVID-19 from fatal pneumonias caused by other respiratory
infections. In particular, we found a significant increase in the
levels of branched-chain, aromatic, and sulfur-containing amino
acids in lung tissue from fatal COVID-19 cases. Many of these have
been recognized as sepsis and inflammatory markers and are
associated with lung injury, a condition that commonly leads to
severe refractory hypoxemia and is one of the main causes of
mortality in COVID-19 patients (Dhont et al., 2020; Donina,
2022; Ribeiro et al., 2022).

To our knowledge, this is the first comparative metabolomic
study employing lung tissue samples from COVID-19 patients. In
spite of the heterogeneity and wide range of symptoms observed,
our findings provide additional insights into the pathogenesis of
COVID-19 and have helped identify potential biomarkers for
disease severity and treatment efficacy. Notwithstanding, the

nature of the samples led to small cohorts affected differently
by comorbidities. Some of these, such as diabetes, could have a
sizable impact on the metabolic pathways identified as altered in
our analyses (Felig et al., 1977). Therefore, the preliminary results
reported in this work should be further corroborated in larger
scale studies.
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