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Abstract
Explaining the foundation of cognitive abilities in the processing of information by neural systems has been in the begin-
nings of biophysics since McCulloch and Pitts pioneered work within the biophysics school of Chicago in the 1940s and 
the interdisciplinary cybernetists meetings in the 1950s, inseparable from the birth of computing and artificial intelligence. 
Since then, neural network models have traveled a long path, both in the biophysical and the computational disciplines. The 
biological, neurocomputational aspect reached its representational maturity with the Distributed Associative Memory models 
developed in the early 70 s. In this framework, the inclusion of signal-signal multiplication within neural network models 
was presented as a necessity to provide matrix associative memories with adaptive, context-sensitive associations, while 
greatly enhancing their computational capabilities. In this review, we show that several of the most successful neural network 
models use a form of multiplication of signals. We present several classical models that included such kind of multiplica-
tion and the computational reasons for the inclusion. We then turn to the different proposals about the possible biophysical 
implementation that underlies these computational capacities. We pinpoint the important ideas put forth by different theoreti-
cal models using a tensor product representation and show that these models endow memories with the context-dependent 
adaptive capabilities necessary to allow for evolutionary adaptation to changing and unpredictable environments. Finally, 
we show how the powerful abilities of contemporary computationally deep-learning models, inspired in neural networks, 
also depend on multiplications, and discuss some perspectives in view of the wide panorama unfolded. The computational 
relevance of multiplications calls for the development of new avenues of research that uncover the mechanisms our nervous 
system uses to achieve multiplication.

Keywords Multiplication · Tensor product · Context-dependent memory · Associative memories · Neural networks

Introduction

Neural network models with the ability to process signals 
multiplicatively are a stage of neurocomputational network 
theory that began to develop in the 1970s. These multipli-
cative models were a sequel to the remarkable associative 
memory matrix models developed primarily in the early 
1970s. These memory matrix models sought to explain the 
reliability of data storage in the face of partial deterioration 
of neural support, a fact long established by clinical neurol-
ogy and by experimentation in animal models.

Matrix memory models were stimulated in the late 1960s 
by various suggestions, notably Gabor (1968), regarding 
the possibility that neural systems could support distrib-
uted data recording and storage, mathematically (not physi-
cally) analogous to the holograms of optics. Several authors 
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independently contributed to the development of these 
matrix models, especially Anderson (1972) and Kohonen 
(1972).

But it was soon realized that along with their remark-
able properties and their explanatory power, these matrix 
models had severe problems. In particular, they were not 
apt to branch their associations when the same key pattern 
was contextualized by different patterns. For example, when 
faced with the image of a dog, these memories had theo-
retical limits for associating that image with the different 
names that this animal has in different languages (e.g., the 
image of the dog associated with the contexts “English lan-
guage” or “Spanish language” should be able to generate two 
divergent responses: “dog” and “perro” respectively). As a 
way of solving this problem and not losing the mathemati-
cal potential of matrix representations, since the mid-1970s, 
in particular due to the contributions of Poggio (1975) and 
Kohonen (1977), multiplicative models have been intro-
duced. Varieties of these multiplicative models were devel-
oped and had an important expansion in the following years.

In this review, we cover more than fifty years of 
approaches that call for the inclusion of multiplicative 
processes in neural networks. In particular, we show how 
multiplication is used in these computational models. We 
also present the available evidence for how multiplication 
is carried on in biological networks. We review this domain 
of research including contributions that use networks with 
multiplicative processing from various angles. This is not 
intended to be an exhaustive review. We will focus on topics 
that we consider relevant for modeling cognitive functions 
and neuromimetic systems.

In the followign section, we will outline the nature of 
distributed memory models and their limitations. After that, 
we will analyze the theoretical and experimental arguments 
that have been developed to explain the appearance of mul-
tiplicative events in neural interactions. Then, we will show 
the various tensor representation formats proposed during 
the 1980s and their current developments. In the following 
section, we will show how these multiplicative processes 
are influencing powerful computational algorithms that are 
at the roots of modern artificial intelligence. Finally, we will 
present a perspective on the role of multiplicative models in 
neural computation.

Distributed memory models

After the beginning of the mathematical theory of neural 
networks, with the binary neuron model of McCulloch 
and Pits (1943), and the random networks of Rapoport 
(1948), attention began to focus on modeling memory and 
learning. An important leap in research occurred when 
Frank Rosenblatt introduced a model, which he called the 

“Perceptron”, which was made up of a layer of interconnected 
formal neurons; this layer could be trained to identify patterns 
using a learning algorithm (Rosenblatt 1958). Rosenblatt’s 
learning algorithm involved changes in the strength of the 
connections between formal neurons (weights), which were 
a symbolic version of biological synapses. This algorithm 
was inspired by Hebb's idea of synaptic reinforcement as the 
basis of memories (Rosenblatt 1958). The model showed 
many potentialities, which were explored during the 1960s, 
but it also had important limitations. These limitations 
were especially emphasized in the detailed mathematical 
analysis of the model carried out by Minsky and Papert 
and published in their book "Perceptrons" (1969). One of 
the serious problems was the impossibility of training the 
Perceptron to distinguish patterns that were not linearly 
separable (Minsky and Papert 1969). A terse version of this 
inability was the impossibility of training by means of the 
Perceptron algorithm the logical operation Exclusive-OR 
(XOR). Based on this finding, the XOR became a kind of 
minimal test through which to evaluate the computational 
potentialities of a neural model associated with a learning 
algorithm.

At the same time, another fundamental problem of neural 
theory began to be analyzed through physical models of 
neural function: The problem of the reliability of neural 
memories when partial deterioration of their physical 
support occurred. This problem has been an unresolved 
enigma, born primarily from the experience of neurology 
that showed how, in certain fortunate cases, brain damage 
with significant loss of neuronal material (for example, 
caused by strokes or trauma) resulted in good preservation of 
the consolidated memories. In this way, several researchers 
suggested the possibility of finding neural models that, in 
their own physical logic of operation (action potentials, 
synapses, neurotransmitters, etc.), support a form of 
distributed data storage similar to optical holography 
(Longuet-Higgins 1968; Gabor 1968; Borsellino & Poggio 
1972; Poggio 1973).

These suggestions stimulated the development of distrib-
uted memory models. To introduce them, let us begin by 
mentioning a remarkable model that links the biophysics and 
neurochemistry of synaptic transmission with the transduc-
tion of neuronal inputs to its output.

The neuron model of Nass and Cooper
In this model, developed by Nass and Cooper (1975), the 
neuronal activity is assumed to be based on the modulation 
of the frequency of action potentials. A simplified version of 
this model is given by the following equation:

(1)
r(i, t + 1) = H

[∑R

j=1
Mij.s(j, t) − U(i)

] ∑R

j=1
Mij.s(j, t)
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where Mij is the weight of the synapse connecting axons j to 
neuron i, U(i) is specific the threshold of neuron i, s(j, t) is 
the frequency of action potentials coming via axon j, and 
r(i, t + 1) is the output of neuron i in the following time step, 
and H is the Heaviside function ( H(x) = 0 if x ≤ 0 and 
H(x) = 1 if x > 0 ). A basic hypothesis is that this neuron 
integrates a large neural network. Under this hypothesis, 
each neuron receives thousands of inputs that generate a 
basal noise s0(j) that produces a basal output r0(i) . Assuming 
that the abundance of inputs represented by  

∑R

j=1
Mij.s(j, t) 

pushes the activity of the neuron beyond the threshold U(i), 
then the neuron activity occurs inside the linear region of 
Eq. (1).

Now, we show how to simplify the output-inputs relation 
of model (2) redefining the inputs and output as follows:

Hence, in the region near the basal states the output g(i) 
is approximate by a linear combination of the inputs f(j):

These variables g(i) and f(j) measure the deviations of 
the spike frequencies from their basal values. Consequently, 
they are positive, null, or negative real numbers.

A group of Q neurons subjected to R inputs can be 
described by the following matrix equation:

where f and g are column vectors

The components of matrix are the synaptic coefficients:

These models generated two innovative approaches. 
First, they assumed that the basic neural code was not 
necessarily an isolated action potential (and therefore 
a binary signal) but could encompass a continuous code 
over a certain interval (e.g., spike frequency). Second, they 
introduced neural vectors as the basic units of nervous 
system activity. In this framework, information on neural 
patterns was represented by temporally variable signals 
carried by sets of thousands or tens of thousands of neurons 
in parallel. The original model of Nass and Cooper (1975) 
(not our simplified version shown in Eq. (1)) has the virtue 
of being a model that incorporates biophysical data of the 
membranes and synaptic neurotransmission. But nearly 
identical mathematical behavior can be derived from 
electrical circuit models of neuronal function (see Kohonen 
1977, page 137).

f (j) = s(j) − s0(j) g(i) = r(i) − r0(i)

(2)g(i, t + 1) =
∑R

j=1
Mijf(j, t)

(3)g = Mf

f = [f(1)f(2)⋯ f(R)]T g = [g(1)g(2)⋯ g(Q)]T

M = [Mij] ∈ ℝ
R×Q

Distributed associative memories

These models were developed (in many cases indepen-
dently) by many authors: Anderson (1972), Kohonen (1972), 
Cooper (1974), and Amari (1977a, b), among others. In this 
vector–matrix format, an associative memory Mem can be 
defined as a set of K pairs of associated output-input vec-
tors: Mem =

{(
gk , fk

)
∶ i = 1,⋯ ,K

}
 . In an ideal situation, 

in the presence of an input vector fk belonging to the set of 
associated pairs, the output of the memory will be exactly 
gk = Mfk . The difficult problem is to find the matrix M that 
implements a memory Mem. Approximate optimal solutions 
to this problem were obtained by Kohonen using pseudoin-
verse matrices (Kohonen 1977). However, if we assume 
that the inputs are orthonormal, an elegant and minimal-
ist (because many realistic aspects are deliberately omitted) 
exact solution emerges:

(superscript T means transposition). This matrix shows 
clearly the operating way of this memory. Processing the 
input fk the matrix (4) produces

The inner products ⟨fi, fk⟩ act as filters: in the case illus-
trated in Eq. (5), one of them ⟨fk , fk⟩ = 1 and the others are 
zero. They are all zero if the input is not in the memory. 
The fundamental holographic-like property of these matrix 
memories is evident if we analyze the structure of the coef-
ficients Mαβ of matrix (4):

This remarkable equation shows (a) that components of 
all the vectors pairs of the memory are scattered through the 
matrix coefficients, and (b) that data are superimposed on 
each synaptic coefficient. Point (a) gives an explanation for 
reliability: if the matrix memory is very large, the destruc-
tion of some synapses is not enough to delete the informa-
tion, eventually producing a slight data corruption. Point 
(b) shows how data coming from different associated pairs 
are subtly incorporated into the same material support (e.g., 
synaptic molecular receptors).

We illustrate the distributed and superimposed nature 
of the memory with a miniature example. Let f1 = [abc]T  
and f2 = [def]T be the inputs of a matrix memory, and  
g1 =

[
αβ

]T and g2 =
[
γδ
]T  their associated outputs. Note 

that all four vectors are column vectors (annotated using 
transposition). Our miniature memory is defined by

(4)M =
∑K

i=1
gif

T
i

(5)Mfk =
�K

i=1
gi⟨fi, fk⟩ = gk

(6)Mαβ =
∑K

i=1
gi(α)fi(β)

M = g1f1
T + g2f2

T
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The inner structure of M is

The scattering of data is seen in the fact that the compo-
nents of each input (and output) vector are spread over the 
different coefficients of the matrix. The superimposition is 
seen in the fact that a matrix coefficient includes the addi-
tion of components belonging to different pairs of input and 
output vectors.

In these memories, the number of associated pairs is lim-
ited by memory capacity. It is assumed that for a memory 
module, the inputs all have the same dimension, and the 
same is assumed for the outputs, whose dimension is in 
general different from that of the inputs. These dimensions 
are dictated by the anatomical connectivity of the memory 
modules. A corollary of this neural vector representation of 
patterns was that associative memories were mapped onto 
large-dimensional matrices.

These matrix associative memories can acquire new data 
through various supervised training procedures. A very pow-
erful one arises from the method presented by Widrow and 
Hoff (1960), which is completely adaptable to the vector 
format of the inputs and outputs. It is a gradient-descending 
procedure that seeks to minimize the error between the out-
put to be trained and the successive outputs produced by 
memory. At the end of the process, an output close to the one 
sought is obtained, and the structure of the matrix is glob-
ally modified. This Widrow-Hoff procedure is a refinement 
of Hebb’s idea of learning through synaptic consolidation. 
Another alternative procedure to incorporate new informa-
tion into memory was developed by Kohonen (1977) using 
Greville’s theorem on pseudoinverse matrices. These two 
training methods can continue to incorporate associated 
pairs of vectors into memory until a critical level of Signal 
to Noise ratio is reached, after which interference no longer 
allows good discrimination.

A shortcoming of these models: their impossibility 
of adaptive associations

Now we show a weakness of these pioneering models of 
matrix memories that appears when trying to incorporate 
the notion of context. Any pattern that will be identified 
or associated by a biological memory is always submerged 
in a larger environment of neural activity that can be con-
sidered as its context. Whatever the type of neural activity 
that is acting as context (sensory impressions or cognitive 
information), it can be represented by means of vectors 
that encode that information (for a general approach to the 
integration of patterns see Morrison et al. 2001). Let us 
imagine that these memories are faced with a pattern (let’s 

M =

[
m

11
m

12
m

13

m
21

m
22

m
23

]
=

[
αa + �d �b + �e �c + �f

�a + �d �b + �e �c + �f

]
call it a “key pattern”) accompanied by two vector contexts 
with the same dimension between them and that adds this 
dimension to that of the key pattern (consequently, the 
dimension of this vector is the sum of that of the key pat-
tern and that of the context). It happens that under these 
conditions, memory is not capable of orienting its asso-
ciations towards two different and eventually arbitrary 
outputs. Let’s take as a simple example the problem of 
associating an object, (e.g., a book) with the name of that 
object in two different languages (e.g., “book” or “libro”). 
A matrix memory cannot generally be trained for these 
uncorrelated names, unlike a biological memory, which 
has full capacity to allow an object to be associated with 
an arbitrary name or a neologism (it is quite possible to 
create a new and arbitrary name for the book object, e.g., 
"libuk"). This incapacity of matrix memories has been for-
mally proven by Hinton (1989); a condensed proof can be 
seen in Mizraji et al. (1994, p. 148). These proofs show 
that matrix memories share with perceptrons the inabil-
ity to distinguish linearly separable patterns, which leads 
again to the XOR problem (Fig. 1).

The most widely used procedure to solve this problem is 
the design of neural models with hidden layers between the 
layer that received the input and the one that generated the 
output. This procedure creates a class of extremely relevant 
neural models. In these models, the synapses are adjusted 
by a powerful algorithm usually called “backpropagation”, 
which adjusts synaptic weights by a descending gradient 
algorithm. This algorithm was discovered several times 
by various independent authors, but widely disseminated 
through the articles by Rumelhart and McClelland and the 
“Parallel Distributed Processing” (PDP) Group (Rumelhart, 
Hinton and Williams 1986a, b; Werbos 1994). Backpropaga-
tion can also be used to train linear networks with several 
“hidden” layers (Saxe, McClelland, and Ganguli, 2013) 
but the final mapping learned in such a network is no more 
powerful than a single layer (as the product of several matri-
ces is a matrix). This algorithm is particularly useful when 
there are non-linear links between the formal neurons of 
some of its layers. The use of nonlinear activity functions 
distorts the matrix representation for the memories, but the 
representation of information by means of neural vectors and 
the distributed storage of data in the synapses of the model 
are retained. These hidden layer networks solve the context 
problem and therefore the XOR problem (which became a 
test of the computational power of neural networks), at the 
expense of obscuring their inner workings. In this way, the 
theoretical power of the matrix representation was replaced 
by the computational power of the nonlinear model.

The other procedure to provide these models with the 
capacity that the same pattern of neural activity acting as an 
input can be associated with different output patterns of neural 
activity depending on the context, was proposed at the end of 
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the 80 s and will be the subject of Sect. 4. These models, based 
on a tensor composition of the inputs to memory, have the 
great advantage that they preserve the matrix representation, 
enabling the development of the theory, without being 
condemned to try variations of computational algorithms that 
improve performance, but acting like black boxes. The tensor 
composition of the inputs requires the multiplication of neural 
signals. Before presenting this second possibility of making 
context-dependent associations, we will refer in the following 
Section to the presence of multiplications in previous models 
of neural networks.

Multiplications in early neural models 
and in biological neurons

Multiplication is the simplest form of a non-linearity and 
was early proposed as a form of increasing the computational 
power of neural models (Koch and Poggio 1992). The presence 
of multiplication in real neurons was detected in several sen-
sory processing systems, as the localization of sound (Peña and 
Konishi 2001), the combination of multisensory signals (Hus-
ton and Krapp 2009), and the computation of visual motion 
(Hassenstein and Reichardt 1956). More evidence has been 

found in the context of binocular interaction (Freeman 2004), 
attentional modulation (Treue and Trujillo 1999; McAdams 
and Maunsell 2000), and motor planning (Hwang et al 2003).

The possibility of multiplication of signals in neurons 
has been explored via biophysical models, computer simula-
tions and experimental data. A model neuron including the 
possibility of multiplicative effects among signals can be 
written as follows:

The first two sums represent signals coming from two 
separate groups of neurons, e.g., one codifying a context and 
another codifying a sensory input, and the third double sum 
represents the effect of multiplicative interactions among 
these signals. Consequently, different conditions modulat-
ing synaptic strengths lead to different magnitudes of the 
synaptic coefficients M(λ), λ = 1..3.

The biophysical mechanisms responsible for these multi-
plicative behaviors in biological neurons remain a topic of 
debate and research. Let us previously mention that it has 
been shown that multiplicative responses can arise in a net-
work through population effects, with neurons that do not 

(7)
g(i, t + 1) =

∑
j
M

(1)

ij
p(j, t) +

∑
k
M

(2)

ik
f (k, t) +

∑
j,k
M

(3)

i(jk)
p(j, t)f (k, t)

  

Fig. 1  Proposals for adaptive (context-dependent) associations. a 
Additive contextualization by enlarging the input vector f with com-
ponents representing context p. M is a one single layer memory 
matrix. Left arrow represents connectivity from each component of 
the entry to each unit of the memory layer. b Multilayer perceptron: 

the additive enlargement of input vector f with context units p is pro-
cessed by two successive hidden layers. Neuronal units of successive 
layers are fully connected. c The tensor product ( ⊗) of input vector 
f with context vector p is processed by a single layer memory matrix
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perform multiplication of signals individually. “A recurrently 
connected network with excitatory connections between 
similarly tuned neurons and inhibitory connections between 
differently tuned neurons can perform a product operation on 
additive synaptic inputs” (Salinas and Abbott 1996).

It is important to note that the general multiplicative 
framework of Eq. (7) has also appeared in recent developments 
in the rich and traditional area of Neural Field Theory, an 
approach in which the interaction of billions of neurons is 
treated as a continuum (Coombes et al. 2014). The advances 
provided by the renewed conception of transient brain 
dynamics, considering the temporal evolution of mental life 
as sequences and transient interactions of metastable states 
(Rabinovich et al 2008), together with the constructive theory 
of dynamic cognitive models (beim Graben and Potthast 2009), 
have endowed these models with the capacity to present the 
type of adaptive dynamics necessary to model cognitive 
activity. In particular, beim Graben and Potthast (2012) and 
beim Graben and Hutt (2014), building from the Amari 
equation for a neural field (Amari 1977a, b), where synaptic 
weight matrices are represented by integral kernels and the 
product between a matrix and a vector of neural activity 
becomes approximated by an integral over a synaptic kernel 
and a neural field, perform the expansion of this integral in 
the presence of a nonlinear activation function into a Volterra 
series, obtaining an expression with Eq. (7) describing the two 
main terms. This provides another possibility for the biological 
realization of multiplication, different from the lineage of 
discrete-time models that we discuss in what follows.

Now we review some of the neural network models that 
have included multiplications and several of the biophysi-
cal mechanisms proposed to perform multiplicative effects.

Multiplications in signal processing

Although the focus of our interest will be the multiplication 
of two neural signals that converge on a same neural unit, 
it is convenient to be aware beforehand that the processing 
of a signal through the multiplication operation is present, 
inevitably, from the first formal models in neurosciences. 
Indeed, since McCulloch-Pitts’ first model, the effect of a 
nerve signal on a neuron is capable of being multiplicatively 
modulated by a synaptic weight, capable of increasing or 
decreasing the relative importance or strength of that input, 
modifying the gain of the signal.

In the original paper, this multiplicative effect was 
achieved not by varying the strength of a synaptic contact, 
but by adding synaptic endings from the same axon. As in 
the origin of the arithmetic operation: to multiply is to add 
an integer number of times. This original idea was later 
refined and reinterpreted as a single synaptic weight that 
modifies the gain of a neural input by multiplying it by a 
real number.

This subtlety in interpreting a multiplication is important, 
in fact, it provides two different ways to achieve a multiplica-
tive effect: by adding or cloning similar elements, or by gener-
ating a subcellular “environment” that enhances the efficiency 
of an input, and these possibilities must be carried out at the 
level of the synapse itself (in one or more of its participating 
cellular or molecular elements) or at the level of the dendrites 
(through structural, molecular variations or the subcellular 
environment of chemical mediators). Let us note then that the 
multiplicative effect of a second input can be seen as a change 
in synaptic weight that affects the first through a change in the 
cellular environment that must process it.

A ‘multiplicative’ effect over an afferent neural signal, 
either produced by the action of a synaptic weight or by 
another signal coming from a different afferent neuron, may 
use the same cellular and molecular available mechanisms.

Logical multiplication and coincidence detectors

In the models in which the activity of the neurons is repre-
sented by a binary variable, the only possible multiplica-
tion of the inputs is the logical multiplication, through the 
implementation of the AND function. The logical conjunc-
tion, in effect, shares with the more general multiplication 
of two real numbers, the property that if one of the entries 
has no activity (has value 0), there is no response. In other 
words, for a neuron to discharge, it is necessary the temporal 
coincidence of the activity of its afferences. A “coincidence 
detector”, then, behaves like a mechanism that can gate the 
flow of information.

Neurons in nervous systems have been reported to respond 
preferentially to synchronized synaptic inputs (König et al. 
1996; Agmon-Snir et al. 1998; Joris et al. 1998) and theoreti-
cal results also have emphasized the role of the synchronous 
firing of neurons for information processing in the brain and 
the information carried by single spikes (Bialek and Zee 1990).

Srinivasan and Bernard (1976) showed that if neurons 
detect coincident arrivals of spikes from two input neurons, 
they can function as multipliers of the average spike fre-
quency of their inputs.

Multiplicative effects with integrate and fire 
neurons

The leaky integrate and fire (LIF) model (Stein 1967) has 
been used to model physiologically realistic spike trains. 
Bugmann (1991, 1992) demonstrated the existence of a mul-
tiplicative regime for a LIF neuron based on a coincidence 
detector operation.

A logarithmic stimulus–response relation has been 
observed in real neurons since the 60 s (Ratliff 1965) and also 
postulated in neural modeling literature (Koch and Poggio 
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1992; Yeshurun and Schwartz 1989). Tal and Schwartz (1997) 
provide a biophysical mechanism to perform this logarithmic 
transfer function. They show that in leaky integrate and fire 
neurons, a broad range of the ratio of refractory period dura-
tion to membrane time-constant yields a logarithmic transfer 
function. Then, LIF neurons can be used to multiply neural 
signals by addition of two LIF neuron outputs, yielding the 
logarithm of the product.

The Sigma‑pi neuron and “functional‑link nets”

Sigma-pi neurons were initially proposed by Feldman and 
Ballard (1982), and then by the influential PDP group in 
the mid-1980s (Rumelhart, Hinton and McClelland 1986) 
as part of the toolbox of the new neural modeling para-
digm. A sigma-pi neuron (i) has its entries partitioned in 
different pools. The activities of all the K neurons in a pool 
(j) are multiplied. Then the neuron performs a weighted 
sum of these products that come from the different pools:

Williams (1986), stated that for all practical purposes, 
no more than two neurons were needed in each multiplica-
tive pool in the models used.

Valle-Lisboa et  al (2005) showed that the context-
dependent associators that perform the tensor product of 
their vector inputs (see Sect. 4) can be seen to be com-
posed of a particularly convenient special case of sigma-pi 
neurons that admit a powerful algebraic representation.

“Functional-link net” is a system architecture and a net-
work computational approach developed with the goal of 
devising a general-purpose artificial neural-net computer 
(Pao 1989; Pao and Takefuji 1992). Using this category 
of nonlinear mappings, Pao (1989) compared the XOR 
training speed for a network whose inputs were neural 
vectors with products of their components (trained by the 
Widrow-Hoff algorithm), versus a network of hidden lay-
ers trained by backpropagation. Pao found that the network 
with nonlinear vectors acquired the XOR with much fewer 
training steps than the network with hidden layers: a sug-
gestive result that encouraged the search for models that 
included forms of non-linear processing as alternatives to 
solve contextualization problems.

Neurobiological mechanisms postulated to perform 
multiplications in a neuron

In addition to the mechanisms mentioned in the models 
of LIF neurons, various other proposals have been made 
to multiply the signals that reach a neuron. Biophysical 
mechanism implied in neural multiplication have been 

(8)ai =
∑

j
wij

∏
k
aj1aj2...ajK

reviewed in the classical works of Koch and Poggio 
(1992), Koch (1999), Koch and Segev (2000) and Silver 
(2010) among others.

Among the many mechanisms proposed, we want to 
highlight those that rest on dendritic processing. Dendrites 
with their spines, the capacity of clustering of the synap-
tic inputs and the variety of passive and active responses, 
have been proved to generate nonlinear interactions in the 
processing of neural afferences to a neuron (Koch et al. 
1983; Mel 1993; London and Häusser 2005).

Of particular relevance for this review is the role of 
NMDA receptor in coincidence detection and in Hebbian 
associative learning (Seeburg et al 1995; Yuste et al 1999; 
Tabone and Ramaswami 2012).

Recently, a new mechanism has been envisioned: a 
‘multiplicative disinhibition’ arising from the coincidence 
of excitation and release from shunting inhibition (Gro-
schner et al 2022).

Nonlinearities in matrix models of associative 
memory

As early as the 1970s, the limitations of the linear approach 
for distributed associative memories were well known. In 
1975, Poggio analyzed what he called “Optimal nonlinear 
associative recall” (Poggio 1975) a general framework for 
determining the nonlinear function which optimally associ-
ates (on given criteria) two sets of data given by discrete, 
finite column vectors forming two matrices X (“input”) and 
Y (“output”) with the same numbers of columns and an arbi-
trary numbers of rows. The optimal solution in least squares 
sense is a polynomial mapping of degree k on X. In this 
analysis, the matrix structure of distributed memories is pre-
served. Poggio also provides an iterative method which was 
used by Kohonen to analyze these nonlinear maps and per-
form some numerical experiments (Kohonen 1977, p. 83).

In the next section, we will present a solution to the con-
textualization problem in associative networks based on the 
tensor product of the inputs of a matrix memory. But before, 
it should be noted that tensor models were previously used 
by Pellionisz and Llinás to propose a way of how the brain 
may implement functional geometries involved in sensory 
motor transformations (Pellionisz and Llinás 1979, 1985).

Multiplicative contexts in matrix memories

During the 1980s, various models of distributed memory 
with tensor components were deployed. These models 
allowed expanding the computational capabilities of matrix 
memories and solving the problem of adapting the outputs 
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to different contexts. The models we will mention had dif-
ferent mathematical formats and different motivations due 
to the varied backgrounds of the researchers. But they all 
converged to matrix or tensor structures that associated Out-
puts (O), Contexts (C) and Inputs (I). In these triplets (O, C, 
I) the elements were multidimensional objects, assimilable 
in all cases to neural vectors.

Models with tensor product representation

Perhaps the pioneering work using multiplicative processing 
was published by Pike (1984), where the author develops an 
operation between matrices that produces a scalar product of 
their components. When matrices have a structure of outer 
products abT and cdT the scalar generated corresponds to 
the product of two inner products (Pike 1984, p. 284). This 
operation was used by Humphreys et al. (1989), in an article 
where the varieties of memory modalities are analyzed from 
the perspective of cognitive psychology. These authors use 
matrix memories and describe three-dimensional arrays of 
vectors that manage to filter the inputs by means of two inner 
products (Humphreys et al. 1989, p. 215) their work shows 
a tensor neural model that illustrates the potentialities of 
the approach.

Dolan and Smolensky (1989), in a framework that brings 
together classical artificial intelligence and cognitive sci-
ence, propose a tensor product between vectors that they call 
“roles” and others they call “fillers”. The objective of their 
article is to analyze the possibility that connectionist net-
works represent and process cognitive structures, in particu-
lar trees and structured representations. This article seeks to 
reconcile some traditional cognitive science theories with 
connectionist approaches (a topic of intense controversy and 
disagreement at the time). Although the focus of the article 
departs form the associative memory tradition, its mathemat-
ics uses the matrix formats typical of distributed memories, 
and there the tensor triples (O, C, I) are clearly expressed in 
terms of vectors. The filter by double inner products appears 
clearly in Dolan and Smolensky (1989, p. 58). Shortly there-
after, Smolensky (1990) published a lengthy paper using a 
rigorous mathematical formalism that expands on the theo-
retical approach he had published in his paper with Dolan.

Starting from a biophysical approach, Mizraji (1989) pub-
lishes an article where he raises the problem of contexts in 
matrix memories. The tensor model of this article is based 
on two fundamental biological constraints: (a) the need 
for neural memories to be adaptive systems in the sense of 
Ross Ashby (1958), so that associations can be modulated 
by vector contexts, and (b) that the principle of “gratuity” 
(Monod 1967) operates, so that contexts, inputs, and out-
puts do not have forced structural links to each other for 
example, that they are free to use an arbitrary name for a 
book (“libuk”) as was mentioned in Sect. 2. We mention in 

passing that the idea of “gratuity” was discovered by Jacques 
Monod in the context of molecular biology. In his classic 
book “Chance and Necessity”, he describes this notion as 
follows: “This fundamental concept of gratuity- i.e., the 
independence, chemically speaking, between the function 
itself and the nature of the chemical signals controlling it- 
applies to allosteric enzymes. In this case one and the same 
protein molecule does double duty as specific catalyst and as 
transducer of chemical signals” (Monod 1971). In the neu-
ral environment, gratuity implies the necessity for cognitive 
adaptive behavior of non-constrained links between the key 
inputs and their contexts. This work shows that one way of 
contextualizing while retaining the matrix structure of the 
memories, and subjecting the procedure to the mentioned 
constraints, is to perform a Kronecker product between the 
context and the key input, and associate this dual input with 
the different outputs. This is how, here too, the triplet (O, 
C, I) arises and the filtering by double internal products 
emerges immediately as a consequence of formalism (Miz-
raji 1989, p. 197).

If we have insisted so much on the double filter by inner 
products (in which the aforementioned works agree despite 
their different approaches), it is because therein lies the 
broad computational potential of these multiplicative mod-
els. This double filter is the key to encoding contextualized 
patterns without having to resort to hidden layers, and to be 
able to train the networks using the Widrow-Hoff algorithm, 
generally much simpler to execute than Backpropagation.

The search for the dynamics of cognitive processes has 
given rise to the natural appearance of tensor neural models. 
In beim Graben and Potthast (2009), the authors connect 
the abstract symbolic representations of cognitive processes, 
with their representation through vector spaces where tensor 
operations are installed and allow the generation of neural 
dynamic systems. In language analysis, tensor models have 
had an important presence. An investigation on the difficult 
problem of understanding how the grammatical structures of 
natural language are implemented in a physical support such 
as the human brain has been carried out by beim Graben and 
Gerth (2012). The authors show in a parsimonious way how 
the formalism of grammars, with their hierarchical structures 
and the ramifications of their trees, can move constructively 
from abstract representations to vectors and tensor products; 
this establishes the link with connectionist models, and con-
sequently, with their potential neural implementation (beim 
Graben and Gerth 2012). In beim Graben el al (2022) vector 
symbolic architectures (VSA) and associated tensor repre-
sentations are discussed in detail as a versatile way of rep-
resenting a wide variety of grammatical structures. In their 
article, the authors accompany the formal theory with a com-
putational procedure and update the link between connec-
tionist neural models and artificial intelligence (beim Graben 
et al. 2022). Other VSA and hyperdimensional computing 
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models create a binding conceptually equivalent to forming 
the tensor product, and this tensor product is projected to a 
lower dimensional vector space. The low dimensional vec-
tors so obtained are an approximation to the fully accurate 
tensor representations, trading off mathematical precision 
for computational advantages. This idea was developed  by 
Plate (1994), Gayler (1998) and Kanerva (2009).

Context‑dependent associative memories

Let us dedicate the rest of this section to the various deriva-
tions of the biophysical model described in Mizraji (1989). 
We are now going to present the contextualized memories 
following the simple format described that article.

The Kronecker product for arbitrary matrices 
U = [uij] ∈ ℝ

m×n and V = [vij] ∈ ℝ
p×q is defined as

The basic properties of this product are:

Here, A, B, C and D are arbitrary matrices (as long as 
they comply with the dimensional conformability of the 
operations), and λ is a scalar.

To describe context-dependent matrix memories, we will 
assume the simplest case, where all input and context vectors 
are orthonormal. These memories would exhibit the follow-
ing structure

where gij represents the output associated to the input fj in 
the context pi . Conseqently, an input fh in the context pk is 
processed as follows:

Here we can clearly see the emergence of the double filter 
that this model creates, a consequence of property (d) of the 
Kronecker product.

Let us imagine, to illustrate its computational capacity, 
a minimalist contextualized memory, which describes how 
the visual input f associated with a book, can modify its 
output according to the required idiomatic context. (e.g., p1 
ask for the name in English and p2 in Spanish). This small 
memory is

U⊗ V = [uijV] ∈ ℝ
(mp)×(nq)

(a)λ(A⊗ B) = A⊗ (λB)

(b)(A⊗ B)T = AT ⊗ BT

(c)A⊗ B + A⊗ C = A⊗ (B + C)

(d)(A⊗ B)(C⊗ D) = (AC)⊗ (BD)

(9)M =
∑

i,j
gij(pi ⊗ fj)

T

(10)M(pk ⊗ fh) =
�

i,j
gij⟨pi, pk⟩⟨fj, fh⟩

and if the context is p2 we get

hence, “libro” ( g2 ). Note that due to orthonormality it is 
⟨p1, p2⟩ = 0 and ⟨p2, p2⟩ = ⟨f , f⟩ = 1.

But for the biophysical approach in which this model 
was developed, it was clear that Kronecker’s product, a 
too perfect mathematical operation, could not exist in real 
neural structures. However, experiments of random removal 
of components from a memory matrix with the structure of 
the matrix given in Eq. (9) show a strong degree of tolerance 
to destruction, measured by the correlation between the 
current output vector, and the ideal trained output vector. 
An example of this is shown in Fig. 2 from Pomi and Mizraji 
(1999). In that article, the “ideal” Kronecker product is 
reinterpreted as a situation in which each component of the 
key input is weighted by all elements of the context vector, 
a fact that emerges immediately from the formal definition 
of the Kronecker product. In contrast, a real condition could 
be interpreted as a statistical Kronecker product, where each 
key input component is weighted by a statistical sample of 
the context vector components (Pomi and Mizraji 1999). 
Let us note that there is a symmetrical situation here and 
we could in the previous comment swap key vector for 
context vector, since in fact, the nullification by a weight = 0 
of some components (of the context or of the key vector) 

M = g1(p1 ⊗ f )T + g2(p2 ⊗ f )T

M(p2 ⊗ f) = g1⟨p1, p2⟩⟨f , f⟩ + g2⟨p2, p2⟩⟨f , f⟩ = g2

Fig. 2  Diagram of a sigma-pi neuron. Input units (s, m, p, q, n) are 
partitioned in three disjoint sets. The activities of the neurons within 
each one of these pools are multiplied (blocks 1, 2, and 3). Neuron 
(i) performs a weighted sum of these products.  Adapted from Valle-
Lisboa et al. (2005)
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deletes them both. Since the signal-to-noise ratio of matrix 
memories already established by the creators of the theory 
(Anderson 1972; Kohonen1972) increases with the size of 
the memory, the dimensional expansion that creates the 
Kronecker product enhances this ratio and gives more space 
for the disappearance of elements, nevertheless maintaining 
an acceptable quality of the associations.

Symbolic and computational potentialities

We want to make two comments about the potential relation-
ships of this relatively simplebiophysical model with compu-
tation and artificial intelligence. A first somewhat surprising 
fact, shown in Mizraji (1989), is that for this kind of memory 
the “XOR problem” does not exist. Let us say previously 
that a dyadic logical operation (such as XOR or Disjunc-
tion or Conjunction) requires the definition of a set of truth 
valuesτ = {t, f} , where the “true” value, t, and the “false”, 
f, are abstract objects. These objects can be represented, 
respectively, in multiple ways: by letters (T, F), by numbers 
(1, 0) and also by column vectors of the same dimension (s, 
n). A dyadic operation like XOR is an application of type

where × represents the Cartesian product. With these bases 
we see that an X matrix with the memory structure (9), 
implements the XOR in a straightforward way:

C o n s e q u e n t l y ,  X(s⊗ s) = X(n⊗ n) = n  a n d 
X(s⊗ n) = X(n⊗ s) = s , which gives us a matrix–vector 
version of the XOR operation. This has been extended in 
multiple directions showing the potential of this formalism 
to represent a very wide variety of logical operations through 
matrix memory modules (Mizraji 1992, 2008a; Mizraji and 
Lin 2011). In Valle-Lisboa et al. (2005), it is shown that 
through the Widrow-Hoff algorithm, the memory X shown 
in Eq. (11) is acquired in a minimum number of steps.

Another interesting connection between artificial intel-
ligence and neural models arises from a problem established 
by Minsky (1988), related to the access to diagnoses from 
successive partial data. This problem and a possible solu-
tion have been analyzed in terms of a recursive process that 
occurs in a network of neural modules where standard asso-
ciative memories interact with context-dependent memories 
(Pomi and Mizraji 2001). A similar neural approach has 
been used to analyze subtle aspects of performance evo-
lution in the case of medical diagnosis (Pomi and Olivera 
2006; Pomi 2017).

Pioneering research on the use of neural models for 
symptom analysis of mental disorders was published 
by Hoffman and McGlashan (1997) to explain auditory 

XOR ∶ τ × τ → τ

(11)X = n(s⊗ s)T + s(s⊗ n)T + s(n⊗ s)T + n(n⊗ n)T

hallucinations in schizophrenia. This work was inspired 
by the famous Elman model (Elman 1990), adapted to 
associate phonetic inputs with conceptual interpretations. 
Based on these results, Valle-Lisboa et al. (2005) published 
an investigation that included in the topology of the Elman 
model a multiplicative contextualization of the conceptual 
interpretations and the contents of the working memory, 
obtaining results similar to those found by Hoffman and 
McGlashan. Let us mention that the original Elman model 
included hidden layers, however, in the model by Valle-
Lisboa et al., pattern multiplication makes hidden layers no 
longer necessary.

An abundant investigation is carried out today on the 
structure of semantic spaces. We point out two examples 
in which the Kronecker product was used to organize these 
spaces into subspaces selected by multiplicative contexts. In 
Pomi and Mizraji (2004), a minimal model is shown where 
the associations between patterns are parameterized by vec-
tor contexts. This allows us to divide the space into two lay-
ers with independent associations in each of them. However, 
the entire structure is subtly superimposed on the memory 
matrix. In Valle-Lisboa et al. (2014) applies the previous 
idea as a way of representing semantic networks organized 
by multiplicative contexts. This makes it possible to develop 
a model of language production that illustrates aspects of its 
physiological execution and the way in which this execution 
deteriorates in some mental disorders such as schizophrenia 
(Valle-Lisboa et al. 2014).

An extension of the contextualized memory model 
described in Eq. (9) results from introducing multiplicative 
contexts that are also associated with the outputs (Mizraji 
2008b; Mizraji et al. 2009). In these reports, the output is 
also associated with a multiplicative context, so the ten-
sor structure of this model is (C', O, C, I), where C' is the 
context associated with output O. The motivation for this 
contextualization of the output is as follows: In cognitive 
processes, e.g., thought, neural modules create a “dialogue” 
with each other, such that the output of a memory M1, for 
example, is the input of a memory M2. We will assume 
that the specific access from the output of memory M1 to 
the memory M2 requires a kind of specific password. That 
password is the output context.

In this case, the full output is a context-modulated vector 
with the structure

where p�i is the context and gij is the associated output. A 
memory module with double contextualization has the fol-
lowing structure

dij = p�i ⊗ gij

(12)M =
∑

i,j
(p�i ⊗ gij)(pi ⊗ fij)

T
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Property (d) of the Kronecker product gives us another 
expression for this memory:

This representation shows that the context pairs gener-
ate a (generally spatially distributed) partition of the entire 
memory module into sub-modules segregated by the context 
pair. To illustrate this in a formally simple situation, let us 
imagine that for each term in Eq. (13) the contexts are unit 
vectors (vectors with a 1 at position i and 0 at all others) with 
the same dimension n. So, it turns out that

being  δαβ = 1 iff α = β  and δαβ = 0  iff α ≠ β . Hence, 
eiei

T = In , the identity matrix of order n. The memory is now

whose explicit structure shows the partition of memory into 
sub-modules:

An extension of this idea shows the usefulness of this 
formalism to analyze a topographic organization of memory 
modules that generate diverse associative trajectories (Pomi 
et al. 2018).

Finally, let’s point out that this multiplicative formalism 
can help to understand how simple words like prepositions 
(“On”, “Under”, “In”, etc.) encode complicated topologi-
cal relationships that the brain is capable of computing. An 
approach to this difficult problem has been published by 
Mizraji and Lin (2015) based on the computational capa-
bilities of multiplicative contexts. In that article, the authors 
present a hierarchical model with three neural layers, rang-
ing from concrete natural language phrases to increasingly 
abstract and general encodings.

Hence, from the point of view of biophysics, the original 
plan that Warren McCulloch wanted to carry out (McCulloch 
1967; Perkel 1988), to develop a calculation of ideas with his 
neural networks (this plan quickly failed due to the lack of 
robustness of his circuits) is now achievable with context-
dependent associative memories. But artificial intelligence, 
which emerged along with the early models of neural 
networks, as noted above, followed a tortuous path, away 
from neural models, through symbolism and functionalism, 
only to make a strong comeback in the second decade of 
this century to neuro-inspired models, with the dizzying 

(13)M =
∑

i,j
(p�ipi

T ⊗ gijfij
T) =

∑
i

(
p�ipi

T ⊗
∑

j
gijfij

T
)

eiei
T = [δjiδij] ∈ ℝ

n×n i, j = 1,… , n

M =
∑

i

(
eiei

T ⊗
∑

j
gijfij

T
)

M =

⎡⎢⎢⎢⎢⎣

∑
jg1jf1j

T 0 ⋯ 0

0
∑

jg2jf2j
T
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
∑

jgnjfnj
T

⎤⎥⎥⎥⎥⎦

development of multilayer models called deep-learning. 
Although these models are in principle computational 
artifacts, their evolution has converged to dialogue with the 
biology and dynamic organization of the cerebral cortex 
and the complex sensory processing of humans, as will 
be discussed in the next section. There we will discuss the 
presence of multiplicative processing in some of the most 
important models in the area, and the possible reunion of 
these artificial models with neurobiological computing.

But before that, we want to notice that, interestingly, ten-
sor product nets became recently part of the computational 
tools of deep learning models (see, for example Yu et al. 
(2012); Cohen et al. (2016); Huang et al. (2017); Newman 
et al. (2018)). Eventually this could become another example 
of natural and cultural convergent evolution of computa-
tional solutions.

Multiplication in deep neural networks

As we mentioned before, artificial neural networks were 
born as neurocognitive models (McCulloch and Pitts 1943; 
Rosenblatt 1958; Rumelhart and McClelland 1986) but present-
day artificial neural networks (ANNs) involve several non-
biological procedures that render them unrealistic as models 
of neuronal computation. Among them, the backpropagation 
algorithm — in its many instantiations — remains a doubtful 
procedure in the brain (but see Grüning 2007). In fact, this 
has prompted many of the most influential researchers in 
ANNs to look for other methods that can accomplish a similar 
computation (Lillicrap et al. 2020). There is another strand of 
computational models of cognition involving Bayesian learning 
(Yang and Piantadosi, 2022), that are even further removed 
from neurobiology, as they are formulated at the algorithmic 
level. Although multiplicative processes can be used to 
re-implement these models as neural networks (Cabana et al. 
2016) we will not review them here.

Nevertheless, the lack of reality of current models only 
affects the training stage of the network. It might be the 
case that the computations performed by the networks 
are close to the actual neurobiological computations, and 
only depart from biology when the parameters need to be 
learned. There is some evidence that this is the case, as 
there is a growing body of research, for instance in visual 
processing using convolutional neural networks (Yamins and 
DiCarlo 2016) and also in language (Caucheteux and King 
2020, 2022; Schrimpf et al. 2021) and speech processing 
(Millet et al. 2022) using transformer networks, that finds a 
strong correlation between brain areas and network layers. 
Moreover, in all of these examples, the higher the correlations 
between model layers and brain layers, the better the models 
perform in comparison with humans (see for instance, Fig. 6 
in Schrimpf et al 2021).
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Thus, at least part of the computations performed by 
artificial neural networks uses similar internal representa-
tions and similar computations as biological networks. In 
many cases, these computations involve the multiplication 
of activity. We stress here that whereas matrix–vector mul-
tiplications are conceptualized as a simple way to imple-
ment synaptic weights, activity multiplications require the 
particular cellular biophysics properties we are arguing for 
in this review. Another point to notice is that ANNs used in 
Artificial Intelligence are based on tensor representations. 
For instance, notice that Tensor Flow, one of the first Python 
libraries created to train deep networks, use intensively ten-
sor-based computations. Thus, from the beginning, the use 
of tensor algebra is natural in these models. But we will 
show that the connection runs deeper than this.

Multiplication of activity is explicitly used in Long-
Short Term Memories (LSTMs) for gating (Hochreiter and 
Schmidhuber 1997). It is also used, though this is implicit in 
the equations, in transformer networks and many attention-
based networks (Vaswani et al. 2017). It is not explicitly 
used in most convolutional neural networks or autoencoders, 
the other popular neural network models. In the following, 
we take a closer look at the role of multiplication in two of 
the most important Artificial Neural Network models used 
in Artificial Intelligence, namely, transformers and LSTMs.

LSTMs, the unstable gradient problem, 
and multiplication

Recurrent neural networks (RNN) have been influential 
models since their creation (Elman 1990; Pollack 1990). 
Their main feature is that they include a form of transient 
memory that after training represents important abstract 
features of the problem they are set to solve, and this in 
turn reflects the connection (synaptic) weights the network 
learned. Thus, the early simple recurrent networks were able 
to discover the presence of different word categories in a 
linguistic input generated with a simplified grammar, without 
any grammatical preprogramming (Elman 1990). Crucial for 
this performance was that they were trained to predict the 
next word in their input, a task that continues to be central 
in present-day Large Language Models (LLMs). The early 
models like that of Elman used a simple backpropagation 
algorithm, and later backpropagation through time (Williams 
and Zipser 1989). A well-known property of natural 
language that these networks tried to model, is long-distance 
dependencies, i.e., the dependency of the processing of some 
words on previous words, that are at an arbitrary distance 
from the current word (Chomsky 1956).

Although these models could potentially accommodate 
any dependency between words, they suffered from several 
drawbacks that made them unsuitable for scaling up. In par-
ticular, they suffered from the exploding gradient problem 

or vanishing gradient problem (Hochreiter 1998). In deep 
networks and recurrent networks, there is the possibility that 
the error signal that backpropagates either vanishes when 
going back several time steps (or network layers) or grows 
without limits. In any case, this makes the learning of long 
dependencies in recurrent networks or training the deepest 
layers in deep networks, quite hard. Hochreiter and Schmid-
huber introduced Long Short-Term Memories to propose a 
solution to the vanishing gradient problem (Hochreiter and 
Schmidhuber 1997).

In the analysis performed by Hochreiter (see also Bengio 
et al. 1993), it is shown that the output of a hidden unit 
should be a linear function of its input if the gradient is not 
to explode or vanish; if this is the case, its derivative is con-
stant, and an appropriate weight can make the transmission 
of error to be backpropagated without change. This creates 
other problems though, as the unit would transmit the errors 
to units that should not change and be influenced by other 
inputs that should not affect it.

Multiplicative gating enters here as a way to solve the 
vanishing gradient problem without affecting the effect of 
other inputs. Although the details of the LSTMs are outside 
the scope of this review, let us describe briefly how mul-
tiplication enters in this architecture. The idea is to have 
context units that keep a value during an arbitrary number of 
time-steps (or words in the sequence) and use multiplicative 
gates to control the input, output, and change of each of the 
cell states. Each layer thus consists of the activity of a set 
of “cell states” and “hidden states”. During each time step, 
both state vectors (the cell and context vectors) are passed 
to the following time step. The input vector  xt and the hid-
den vectors  ht are transformed by a layer that outputs a vec-
tor of activities  gt (Fig. 3b, c). Usually, a logistic activation 
function is used, implying that the components of this vec-
tor belong to the interval [0,1). The first multiplicative gate 
performs the point-wise multiplication of this vector to the 
cell state vector. It is interpreted that this gate can “erase” 
those components of the cell state that should be turned off 
according to the current input and the previous context. The 
input and hidden state are also processed by two other lay-
ers, one using a logistic activation function, producing  ut, 
and another using a hyperbolic tangent activation function, 
producing  st. The output of these two layers is pointwise 
multiplied by the second multiplicative gate. The role of the 
multiplication is to select those components in the interval 
(-1,1) that should be added to the cell state vector that will 
pass to the other time step. The result of this multiplication 
is added to the cell state (that has already been multiplied by 
the first gate), effectively storing a new cell state. The final 
gate uses the hyperbolic tangent of the new cell state and 
the output of another layer that processes the state and input 
producing  at, to update the hidden state. The hidden state is 
broadcasted to the upper output layers. Thus, there are four 
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matrices that need to be learned and three pointwise vector 
multiplication operations (see Fig. 3b and c for the details 
and Olah 2015). We emphasize here that these pointwise 
multiplications, by no means imply a localist representa-
tion, as they are based on vectors, and thus admit distributed 
representations; localist representations are a special case 
(using sparse vectors).

As this resumed explanation shows, multiplication is thus 
used in LSTMs, its main purpose is solving the vanishing 
gradient problem, which specifically applies to learning 
with backpropagation, a biologically unrealistic learning 
algorithm. Nevertheless, it has other desirable properties. 
In particular, the reason why it solves the vanishing gradi-
ent problem is that the network learns to store, erase and use 
different cell-states according to context and past experience. 
This implies a form of controlling the flux of information 
in and out of transient storage. Multiplication is essential to 
gate information in or out of this storage, and in particular, to 
erase the information that is irrelevant for a particular con-
text. In this sense, it works in a similar fashion as it does for 
our context-dependent memory models and it is related to 
the classical models of Grossberg and coworkers (Carpenter 
and Grossberg 1981).

When learning highly nonlinear mappings, filtering out 
irrelevant information is essential, as is explicitly mentioned 
in early models of (computational) attention, a further level 
of filtering that was inspired in cognitive attention (Mnih 
et al. 2014; Petersen and Posner 2012). Without much regard 
for the precise neurobiological properties, these attention 
algorithms have been used in machine translation tasks with 
sequence-to-sequence (seq2seq) models (Bahdanau et al. 
2016; Luong et al. 2015). Attention in artificial neural net-
works denotes a set of modules or procedures that enhance 

filtering, and they are in particular crucial for the working of 
one of the models that is revolutionizing all areas of artifi-
cial intelligence; the transformer. We present how attention 
works together with the transformer architecture in the fol-
lowing section.

Transformers and attention

One of the most important innovations in neural networks 
during the last few years is the Transformer architecture 
(Fig. 4a). Although several types of transformer architec-
tures are available, the ones used for machine translation are 
particularly common, and are the basis for the well-known 
Large Language Models like the family of models GPT-x 
(Brown et al. 2020), which are the basis for popular appli-
cations such as ChatGPT, and are nowadays the subject of 
an intense research activity (Liu et al. 2023). A description 
of the details of the transformer architecture and reasons 
for each architectural decision are outside the scope of this 
review. The reader should consult recent reviews about the 
topic (Ghojogh and Ghodsi 2020).

What is important for our review is the presence of 
attention mechanisms. Transformers include attention 
mechanisms as a way to solve long-term dependency 
problems. The first artificial neural networks that used 
attention were applied to vision (Mnih et  al. 2014) and 
machine translation (Bahdanau et al. 2016). The machine 
translation models were initially based on Long Short-Term 
Memories. Several types of attention were devised (see 
below), but the most conspicuous type nowadays is the multi-
head attention, which is the type used by transformers. The 
main idea behind all attention mechanisms proposed is that 
these mechanisms provide dynamically varying weights that 

Fig. 3  Recurrent neural networks and their unfolded representation. 
a A simple recurrent network (left) and its unfolded version (right). 
Each time step a vector representing a word  (xt) enters the network; 
in the hidden layer, the input and context vector  (ht) are multiplied by 
a matrix and then they are non-linearly transformed by the function 
σ, classically a logistic function. This output is the next context vec-
tor and is further processed by superior layers (not shown) to produce 
the output. b A LSTM block as part of an unfolded LSTM. In each 
time-step, each block receives the input vector  xt, the previous con-

text vector  (ht-1) and the previous “cell-state” vector  (Ct-1) and then 
it outputs a new cell state and a new context. In each time the con-
text, input and cell state are processed through different matrices and 
functions. c Detailed equations showing the information flow within 
a LSTM block. In all cases σ refers to a squashing function, in gen-
eral a logistic function. The vectors in square brackets [h,x] denote 
the concatenation of h and x vectors. The symbol ⨀ is the pointwise 
vector multiplication. The function tanh is the hyperbolic tangent
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can filter out the context that is irrelevant for processing the 
current input, while allowing this processing to be influenced 
by potentially distant context. As an example, a seq2seq 
model is a neural network that can take an input sequence 
in one language and output the corresponding sequence 
in another language. The initial seq2seq models used two 
LSTMs, one called the encoder, the other the decoder. The 
encoder receives a word one at a time, and outputs a context 
vector ht after receiving t words. The context vector is used 
as an initial context vector in the decoder, that receives also 
as input a vector coding for the beginning of a sentence. The 
decoder computes the new context vector and outputs a word. 
The process continues until the decoder outputs a termination 
word. Using a single ht vector to encode the whole input 
sequence has several limitations. Ideally all the context 
vectors produced during the processing of the input sequence 
have information about its meaning. But not all the context 
vectors are equally relevant for the meaning of each particular 
output. This is where attention is relevant. By learning the 
weights associated with attention, the network learns to select 
only the relevant context to process each input.

There are several dimensions to consider in order to 
classify the different types of attention (Chaudhari et al. 
2021). For instance, it is relevant to consider whether the 
mechanism is global or local (Luong et al. 2015), whether 

is uses a hard attention (Xu et al. 2016) or soft attention 
(Bahdanau et al. 2016), and whether attention is applied at 
one or several levels (Yang et al. 2016) among other relevant 
things. In all cases, attention involves the multiplication of 
vectors of activities and vectors of weights derived from 
activities, which is the type of multiplication that we argue is 
central for effective cognitive computation. In the following, 
we demonstrate this by concentrating in multihead attention 
as an example.

Multi‑head attention

In the paper titled “Attention is all you need”, Vaswani 
and collaborators (Vaswani et al. 2017) proposed the use 
of multi-head attention as a form both of self-attention and 
encoder-decoder attention. In Fig. 4 b, we present the gen-
eral architecture of the multi-head attention mechanism.

Multihead attention refers to the presence of several par-
allel channels that implement complementary attention func-
tions. Each head includes three matrices that are learned 
during model training. Each of the attention heads processes 
all word embeddings by these three matrices, transforming 
each embedding into a query, a key and a value vector. The 
dot product of each query and each key is then scaled by the 
square root of the key dimensions and submitted to softmax. 

Fig. 4  Transformer and multi-head attention architectures. a Trans-
former architecture (Vaswani et al., 2017; Jia, 2019). The left struc-
ture is called the encoder, the right network the decoder, and many of 
these network blocks can be concatenated. In the figure, only the Nx 
block is shown. b The inner workings of one of the heads in multi-
head attention. In each head, each input vector (called embedding as 

it can be an internal vector) is multiplied in parallel by three matrices; 
a matrix  WQ that produces query vectors, a matrix  WK that produces 
key vectors and a matrix  Wv that produces value vectors. Each input 
embedding  ei is transformed into a weighted sum of all value vectors 
into  ei’ (see text). The output of all heads is then concatenated and 
multiplied by an output matrix before entering the next layer

780 Biophysical Reviews (2023) 15:767–785



1 3

Softmax is a function that takes all the component activi-
ties of a vector and produces a new vector of probabilities, 
i.e., the sum of all components is 1 and each component is 
proportional to the exponential function of the activity. The 
result is used to weight the value vectors. In matrix form, if 
(following Alammar 2018) E is a matrix whose rows are the 
embeddings coming from the previous layer, then we define,

where Q is called the queries matrix, K, the keywords matrix 
and V the values matrix. Then each attention head produces 
an output:

The rows of Z are further processed by the other layers 
in the case of the encoder self-attention part of the trans-
former. In the case of encoder-decoder attention, the output 
of the encoder are keys and values that are used together 
with decoder queries and the current input to predict the next 
word in the decoder.

In order to see why these operations are important for 
our review, consider the individual components of the out-
put. The outputs of each self-attention head for each word 
embedding  (zi) are,

with  vj the value vector associated with the input embedding 
 xj,  qi(l) the l-th component of the i-th query vector,  kj(l) the 
l-th component of the j-th keyword vector.

The z vectors are a linear combination of value vectors 
v, but the coefficients are themselves calculated from the 
embeddings by applying softmax on top of the (scaled) dot 
product of all query and value vectors. This implies that 
this linear combination already includes a multiplication of 
activities. There is also a multiplication of activity in the 
dot product of the query and key vectors. These multiplica-
tions are essential. The dot product between q and k vectors 
filters words according to their relative importance (given 
the context). The importance is used to weight each value 
vector by multiplication. In this sense this is reminiscent of 
the double filtering process our tensor model is based on, a 
connection that we are currently exploring.

Although the way attention is usually presented is not 
exactly an input–output feedforward network nor as a 

Q = EWQ

K = EWK

V = EWV

Z = sof tmax

�
QKT

√
dk

�
V

zi =
�n

j=1
vjsof tmax(

∑dk
l=1

qi(l)kj(l)√
dk

)

recurrent network, it can be made to comply these biologi-
cally related architectures. In this sense, the important aspect 
of these models is that they show the paramount relevance 
of multiplication in state-of-the-art models.

Conclusions and perspectives

Multiplication greatly enhances the capabilities of neural 
models, and it is included in several classical models of 
cognitive processing like tensor matrix memories (Mizraji 
1989), tensor models of symbolic processing (Smolensky 
1990), or pattern recognition machines (like functional-link 
nets, Pao 1989). It is also used in state-of-the-art Artificial 
Intelligence tools, like Long Short-Term Memories (LSTM, 
Hochreiter and Schmidhuber 1997) and Transformers 
(Vaswani et al 2017). Newer models based on Structured 
Space Models (Dao et  al. 2022) also include forms of 
multiplication. The growing importance of this basic 
operation opens two questions.

On one side, multiplications allow for the flexible modu-
lation of input–output mappings, which in turn permits 
neural networks to implement gratuitous mappings, i.e., 
computations that are not dependent on the details of the 
input (much in the way an allosteric modulator allows for the 
regulation of a metabolic pathway by chemical compounds 
unrelated to the pathway, as proposed by Monod 1967). Is 
the presence of gratuitous interactions an inescapable design 
feature of intelligent systems? If the answer is positive, in 
this sense classical multiplicative neural networks, but also 
state-of-the art intelligent machines realize the postulate that 
Ross Ashby proposed as necessary for a system to present 
adaptive behaviors (Ashby 1956, 1960; Mizraji and Lin 
2011). There is an opportunity then, to understand theo-
retically what is required for this type of intelligent compu-
tation. Multiplication will  likely be part of the necessary 
ingredients of this understanding.

This leads to the other question. What are the concrete 
material bases for multiplying signals in the nervous system? 
Most simple expositions of synaptic integration start with 
an additive, linear summation model, not different from the 
usual connectionist information processing unit (Kandel 
2001; Rumelhart, Hinton and McClelland 1986). It is clear 
that dendritic trees, shunting inhibition, des-inhibition, 
and nonlinear receptor dynamics drastically modify this 
simplistic picture. What precise combination of these and 
other ingredients are actually used by different parts of the 
nervous system? An interdisciplinary effort starting with 
computational models and ending at the molecular level 
to explain these aspects is needed to unravel the secrets 
that synapses and circuitry hide and what it takes to be 
intelligent.
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