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ABSTRACT
Cognitive Radio Networks have emerged in the last years 
as a solution for two problems: spectrum underutiliza-
tion and spectrum scarcity. In this context we consider 
a paid-sharing approach where secondary users (SUs) 
pay for spectrum utilization. We assume a preemptive 
system where primary users (PUs) have strict priority 
over SUs; when a PU arrives to the system and all the 
channels are busy, a SU will be deallocated. This af-
fected SU will then be reimbursed, implying some cost 
for the PUs service provider. This paper bears on the 
analysis of the behavior of the system where the number 
of users is arbitrary large and an admission control pol-
icy over SUs is applied. We develop a computationally 
efficient way to find an accurate estimation of the opti-
mal admission control boundary based on the fluid limit 
technique. Our results are validated through numerical 
examples.
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1. INTRODUCTION

Nowadays, with the rapid development of wireless
communications, the demand on spectrum has been
growing dramatically resulting in the spectrum scarcity

problem. In spite of this problem, spectrum utiliza-
tion measurements have shown that licensed bands are
vastly underutilized while unlicensed bands are too crow-
ded. Cognitive Radio (CR) has been proposed as a
promising technology to solve those problems by an in-
telligent and efficient dynamic spectrum access [2].

In this new paradigm we can identify two classes of
users: primary (PU) and secondary (SU). PUs are those
for which a certain portion of the spectrum has been al-
located to (often in the form of contractual quality of
service (QoS) guarantees). SUs are devices which are
capable of detecting unused licensed bands and adapt
their parameters for using them. There are roughly two
different approaches for this dynamic spectrum shar-
ing: paid-sharing or free-sharing. While there are many
problems yet to be solved in this area, one of the most
important is how to stimulate the spectrum sharing be-
havior of PUs. In this context paid-sharing methods
seem to be most suitable.

This work is an extension of [4]. In that work we
have studied a paid-sharing approach based on admis-
sion control decisions over SUs. We have character-
ized the optimal admission control policy that maxi-
mizes the profit of the PU’s Service Provider (SP) and
we have concluded that the admission control bound-
ary is a “switching curve” (see the definition in [4]). In
addition, in [3], we have analyzed the behavior of the
system (without considering the economical aspect) us-
ing a fluid model approximation. This work joins both
previous analyses. The main contribution consists in
defining and studying a fluid model of the stochastic
one presented in [4] and developing a methodology in
order to obtain an approximation of the optimal admis-
sion control boundary.

The rest of the paper is structured as follows. In
section 2 we sum up the main results of [4, 3], we also
introduce the fluid model and present a methodology
to obtain an approximation of the admission control
policy over SUs. In section 3 we include a numerical
example that validates our results. Finally, we draw
some conclusions.



2. FLUID MODEL
First of all we present the stochastic model proposed

in [4]. Let us note as C the total number of identical
channels. Let x(t) and y(t) be the number of PUs and
SUs in the system at time t respectively. Let λ1 and µ1

be the arrival and leaving rates for PUs (independent
Poisson arrivals and exponentially distributed service
times). In the same way, λ2 and µ2 represent the arrival
and leaving rates for SUs.

We consider a paid spectrum sharing mechanism where
SUs pay to the PU’s SP for the spectrum utilization.
Let R > 0 be the reward collected for each SU when it
is allowed to exploit the PU’s resource. We also consider
a preemptive system where PUs have strict priority over
SUs. This means that a SU can be removed from the
system if all the channels are busy and a PU arrives.
In this model, this affected SU will be reimbursed with
K > 0, implying a punishment for the SP. We take into
account a discount rate α > 0, that is, the rewards and
costs at time t are scaled by a factor e−αt.

We have associated one user with one channel. We
thus have a continuous time Markov Decision Process
(MDPs) with state space S = {(x, y)|0 ≤ x ≤ C, 0 ≤
y ≤ C, 0 ≤ x+y ≤ C} and transition rates q((x, y), (x′, y′)):

• q((x, y), (x+ 1, y)) = λ1, if x+ y < C

• q((x, y), (x− 1, y)) = µ1x

• q((x, y), (x, y + 1)) = a(x, y)λ2, if x+ y < C

• q((x, y), (x, y − 1)) = µ2y

• q((x, y), (x+1, y−1)) = λ1, if x+y = C and y 6= 0
(preemption)

where a(x, y) represents the admission control decision
in each state.

The objective is to maximize the total expected dis-
counted profit over an infinite time horizon applying ad-
mission control decisions over SUs, i.e. we want to find
the optimal policy π∗ that defines the admission control
action a(x, y) ∈ {0, 1} in each state s ∈ S maximizing
the SP’s revenue. In [4] we characterized some proper-
ties of the optimal policy, in particular we proved that
the optimal admission boundary is a “switching curve”.

In many scenarios where the number of channels C
and the user arrival rates (λi) are large, a deterministic
fluid model may offer a good approximation to the orig-
inal control problem [1]. In the direction of introducing
the fluid approximation, we make some important def-
initions. Let x̃N (t) and ỹN (t) be the number of PUs
and SUs in the system considering a scaled version of
the original stochastic model. That means that the pa-
rameters of this new process are: C̃ = CN , λ̃i = λiN ,
µ̃i = µi, i = 1, 2, being N the scaling factor. In turn,
(xN (t), yN (t)) = 1

N (x̃N (t), ỹN (t)) converges in proba-
bility to a deterministic process described by an Ordi-
nary Differential Equation (ODE). Let (xf (t), yf (t)) be

the limit process. A complete explanation of this result
is done in our previous work [3].

If the departure rates of both classes of users were
equal, the optimal admission control decision would only
depend on the total number of occupied channels (see
for instance [5]). We can approximate our general sys-
tem to be in that particular context. That is to say, we
will work with a new system were the departure rates of
both classes are the same, a µ scaled version of the fluid
model. This new system has the following parameters:
µs1 = µs2 = µ, λs1 = λ1µ

µ1
and λs2 = λ2µ

µ2
.

Considering the scaled system λs1, λs2, µ, the optimal
admission control boundary will be a line with equation
xf +yf = δ (that is a “switching curve”). Working with
the stochastic system, it means that a(x̃N (t), ỹN (t)) =
1,∀(x̃N (t), ỹN (t))/x̃N (t)+ỹN (t) < δN and a(x̃N (t), ỹN (t)) =
0 in other cases. The idea is to approximate the opti-
mal SU access control boundary (the AC boundary of
the original system with different departure rates) with
a line parallel to γ1 (solution of the µ-scaled system).
Not only is it a “switching curve”, it has many advan-
tages (e.g. its practical implementation: it is only nec-
essary to know the number of occupied bands to decide
whether the new SU will be accepted in the system or

not). Observe that
λs
1

µ = λ1

µ1
and

λs
2

µ = λ2

µ2
.

Let π be a feasible policy and Rα(k0, π) the profit
function that we want to maximize. Working with the
fluid approximation, we can identify two subsets of sys-
tem parameters to analyze (Cases of fig. 1).

if ρ1 + ρ2 < C (A, B) or ρ1 < C ≤ ρ1 + ρ2 (C):

Rα(k0, π) =

∫ ∞
0

λs2Re
−αtdt (1)

if ρ1 ≥ C (D):

Rα(k0, π) =

∫ t1

0

λs2Re
−αtdt−

∫ tc

t2

λs1Ke
−αtdt (2)

where: ρ1 =
λs
1

µ , ρ2 =
λs
2

µ , t1/xf (t1) + yf (t1) = δ,

t2/xf (t2)+yf (t2) = C, tc/xf (tc) = C and k0 = xf (0)+
yf (0).

In the first case, when ρ1 + ρ2 < C or (ρ1 + ρ2 > C
and ρ1 < C), with the fluid analysis we conclude that
δ < C but very closely to C. In terms of the stochastic
system, this threshold will be highly dependent on N .

On the other hand, based on Proposition 2 of [3] and
incorporating the economical aspect, when ρ1 > C (case
D of figure 1) we can make an additional analysis.

If at t = 0 the system is in the state k0 (i.e. x0 +
y0 = k0), then for a feasible control policy π, the total
discounted revenue will be:

Rα(k0, π) =

∫ t1

0

λs2Re
−αtdt+

∫ tc

t2

−λs1Ke−αtdt (3)

1γ : x+ y − C = 0



Figure 1: Admission Control with boundary −xf−yf +
δ = 0. Examples of (xf (t), yf (t)) are represented for
different system parameters. Cases A, B: ρ1 + ρ2 < C;
Case C: ρ1 + ρ2 > C and ρ1 < C; and Case D: ρ1 > C

where: t1 = 1
µ ln

[
ρ1+ρ2−k0
ρ1+ρ2−δ

]
, t2 = t1 + 1

µ ln
[
ρ1−δ
ρ1−C

]
and

tc = 1
µ ln

[
ρ1−x0

ρ1−C

]
(See the system differential equations

in [3])
After working with eq.(3), the explicit form ofRα(k0, π)

is obtained. Then, the objective consists in solving the
deterministic problem: maxδ Rα(k0, π) s.t. 0 ≤ δ ≤ C.
In the next stage we will present some numerical results
that show the performance of this methodology.

3. NUMERICAL RESULTS
The idea is to compare the results of Modified Pol-

icy Iteration Algorithm (MPI, one of the best known
practical algorithms for solving infinite-horizon MDPs,
it was used in [4]) with the solution provided by the
deterministic approximation. We have compared both
methods in several cases and we present the case of fig.
2 as an example.

The approximation obtained by the fluid model is
closely to the optimal admission control boundary (ob-
tained using MPI). We have used µ = µ1 in order to
obtain the µ-scaled approximation. The reason is be-
cause the second term of equation 2 has an important
effect in Rα(k0, π) calculation when ρ1 > C, therefore,
in the direction of obtaining a good approximation of
the original system, λs1 must be equal to λ1 then µ = µ1.

In order to test how close to the optimal is the approx-
imation of the admission control boundary, we made
several experiments (n = 30) with both boundaries (the
optimal and its approximation) and computed the profit
of the SP. Each experiment consisted in one realization
of the continuous time markov chain using the appro-
priate AC boundary. In each transition the discount
profit of the SP was computed.

We built the reward confidence intervals (0.95 level of
confidence) for MPI ([0.021, 0.029]) and for the fluid ap-
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Figure 2: Parameters:λ1 = 20, λ2 = 2, µ1 = 10 (µ),
µ2 = 1, C = 1, N = 100, α = 50, R = 1 and K = 3.

proximation ([0.022, 0.031]). Based on these results, we
can conclude that the performance of the approximated
boundary has a good accuracy.

4. CONCLUSIONS
We have studied the behavior of the system when an

admission control is applied using a fluid approxima-
tion of the stochastic model. This study can be useful
for many proposals, as an example, we have developed
a computationally efficient way to find an estimation
of the admission control boundary. It is important to
remark that all the contributions have been evaluated
through extensive sets of simulations.
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