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Abstract. At present, numerical techniques allow the precision simulation of

mechanical structures. However the results are limited by the knowledge of the material

properties. In the case of piezoelectric ceramics, the full model determination in

the linear range involves five elastic, three piezoelectric, and two dielectric complex

parameters. A successful solution to obtain piezoceramic properties consists in

comparing the experimental measurement of the impedance curve and the results

of a numerical model by using the Finite Element Method (FEM). Previous works

have proposed very complicated methods highly dependent on user interaction and

expertise with piezoelectric materials. In this work, a new systematic and efficient

optimization method is proposed to adjust the full piezoelectric complex parameters

in the FEM model. The only information required from the user is the experimental

data (impedance and phase data acquired by an impedometer), the geometry, and

initial values for the properties. The highlight of this method is the combination of

a FEM routine implemented using an 8-noded axisymmetric element with a gradient-

based optimization routine based on the Method of Moving Asymptotes (MMA). The

main objective of the optimization procedure is to minimize the quadratic difference

between the experimental and numerical electrical conductance and resistance curves

(to consider resonance and anti-resonance frequencies). To assure the convergence

of the optimization procedure, this work proposes restarting the optimization loop

whenever the solution gets trapped in an undesired local minima or ends in an

unfeasible solution. An experimental example using a PZ27 sample is presented

showing that the numerical model can be accurately adjusted to the experimental

curves.

1. Introduction

In most of the studies involving CAE (Computer Aided Engineering) simulations and

experimental characterization of piezoelectric elements, it is very common to face the fact

that the material properties provided by the supplier are not accurate. Figure 1 presents
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Determination of full piezoelectric complex parameters 2

the electrical impedance curves obtained experimentally, by using an impedometer,

and numerically, by using the FEM with the material properties provided by the

manufacturer in the case of a PZ27 piezoelectric ceramic form Ferroperm [1]. In this

case, damping has not been considered in the numerical modeling. A great difference

between the curves can be noticed, which can compromise all the numerical modeling,

and hence, the validation of the numerical and experimental results.
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Figure 1. Comparative example between the electrical impedance curves obtained

experimentally (thick black line) and numerically (thin gray line) with the material

properties provided by the supplier, for the PZ27 (diameter = 10 mm and thickness =

2 mm). Numerical simulation without damping.
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The piezoelectric material properties characterization has been extensively studied

in literature [2–6]. In order to obtain the piezoelectric material properties, the

piezoceramics are cut in particular shapes that decouples the resonance modes allowing

an analytical solution. The most accepted methodology to obtain these properties

is described in the IEEE Standard on Piezoelectricity [7], however this traditional

methodology is very complex and requires samples with specific geometries and

measuring the mechanical deformations and electrical field. In another approach, some

works have implemented an optimization strategy in order to minimize the difference

between numerical and experimental electrical impedance curves. The first works using

that approach [8, 9] treated the problem for a narrow frequency range, which can result

in inaccurate property values.

In a similar approach, Pérez et. al [10] presented a characterization method

considering a wide frequency range. They propose two steps to obtain the real

piezoelectric properties. In the preliminary step, the sensitivity of the resonance

frequencies are calculated with respect to the material properties. These sensitivities are

graphically post-processed and the user must choose which frequencies should be used

to optimize some properties. Thus, a preliminary solution is obtained that approximates

the numerical electrical conductance and resistance curves to the experimental curves.

In the refinement step, an optimization algorithm based on the Nelder-Mead simplex

method is used to refine the solution and tune the remaining real properties. However,

this optimization routine does not use the objective function sensitivity, being very

susceptible to local minima. This method, although it is very robust and accurate,

depends heavily on user interaction and his expertise with piezoelectric materials.

Another drawback is that the IEEE standard assumes a lossless material and

several numeric works model the damping by using the Rayleigh coefficients. Thus,

they obtain only the real values for the elastic, dielectric and piezoelectric parameters.

It is well known, since the sixties, that the losses in the piezoelectric model can be

introduced by using complex numbers in the piezoelectric constitutive equations [11].

The identification of the complex model has been addressed by several researchers in

the last years showing the importance of the imaginary part to take into account the

losses [12, 13].

Recently, Pérez [14] have extended their work to the imaginary properties of the

piezoelectric material, also considering a wide frequency range. They have used the same

method proposed on [10] to obtain the full piezoelectric complex properties, however,

they first obtain the real properties and later the imaginary properties, separately. This

procedure is also susceptible to local minima since the imaginary property values depend

on the real property values. In addition, they have implemented an in-house FEM

software in Matlab that allows the modeling of piezoelectric structures with complex

properties, which is not possible in most commercial FEM softwares. The finite element

implemented by them is the 4-noded axisymmetric isoparametric piezoelectric 2D solid

element, which can model only discs and rings structures. This element is very simple

to implement, however, in order to model the structure accurately, the mesh need to
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be well refined, and the recommended number of elements depends on the wave-length.

For instance, for a 20x2 mm (diameter x thickness) piezoceramic disc, the minimum

recommended number of elements is equal to 4000 (200x20 elements) to model half

of the axisymmetric section (see figure 2 for reference). In an iterative optimization

procedure, for a wide frequency range, the FEM can be computationally inefficient.

Although these mentioned issues, the results presented in their work show that the

numerical curves (modulus and phase of the electrical impedance) are practically

equal to the experimental curves for the obtained full piezoelectric complex properties.

Again, although robust and accurate, this method requires too much user iteration and

expertise.

This work proposes a similar approach for obtaining the full piezoelectric complex

properties following the works mentioned before. However, the method described

here is totally systematic and more efficient computationally. The real and imaginary

parts of the complex piezoelectric properties are obtained simultaneously, minimizing

the local minima problem and simplifying the process. A wide frequency range is

also considered in order to obtain more accurate piezoelectric properties. The only

information required from the user is the experimental data (impedance and phase data

acquired by an impedometer), the mass density, the geometry of the piezoceramic disc

(diameter and thickness), and the real part of the piezoelectric properties provided by

the manufacturer, when available. The efficiency in the FEM computation presented

in this work is improved (compared to [14]) by using the 8-noded axisymmetric

isoparametric piezoelectric 2D plane element, which allows a significant reduction of

the total number of elements in the FEM routine, when compared to the 4-noded

element. In section 2.1 a convergence test is evaluated, which shows that the electrical

response is accurately modeled by using only 250 elements (50x5 elements). This grid

size reduction corresponds to a reduction of 83.6% of computational time in the same

PC, when compared to the computational time of the 4-noded element for 200x20 mesh.

The objective of the current method is to minimize the difference between the

electrical conductance and resistance curves obtained experimentally and numerically

(by using FEM), similarly to [10, 14]. The real and imaginary piezoelectric properties

are called here as design variables, which are iteratively updated by an optimization

algorithm in order to achieve the proposed objective. A very important contribution

of this work is the use of the MMA (Method of Moving Asymptotes) [15] to update

the design variables. MMA is a very efficient and robust gradient-based optimization

algorithm, commonly used for structural optimization. The advantage of a gradient-

based optimization algorithm is that it can overcome most of the unwanted local minima

and improve the convergence of the method by reducing the total number of iterations

(when compared to non gradient-based optimization algorithms). Even though, local

minima around the global optimum can compromise the obtention of a satisfactory

solution. Also, during the evaluations of the method, it has been observed that the

initial design variables play a very important role in the success of the method. Thus,

to guarantee the convergence of the optimization problem, it is proposed to restart the
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Determination of full piezoelectric complex parameters 5

optimization loop whenever the solution gets trapped in an undesired local minima or

ends in an unfeasible solution. To restart the optimization loop, some conditions are

proposed, which are described in section 4. The restart approach is another contribution

in this work, together with the combination of the MMA and the 8-noded element.

To validate the method, the full piezoelectric properties obtained in section 6 are

used to build a numerical model to serve as a reference to the proposed method. The

FEM mesh of the reference model is more refined than the model of the optimization

method to avoid the “inverse crime”. Then, it is demonstrated that the optimized

properties converges closely to the reference properties. Finally. an application example

by using a PZ27 sample is presented showing that the numerical and experimental curves

are practically identical.

All the evaluations and optimizations presented in this work have been made in a

PC with Intel core i7-3960X CPU, 64 GB of RAM memory, running on Windows 7 Pro

x64. The hole method have been implemented in Matlab, and most part of the code is

parallelized (with parfor and parpool) to take advantage of all cores available. Thus, all

computational time presented in this work is based on this configuration.

This paper is organized as follows. Section 2 presents the piezoelectricity theory,

the FEM modeling and formulation implemented in this work, and the calculation of the

electrical characteristics of the piezoelectric material. Section 3 presents the objective

function of the optimization formulation, the configuration of the MMA algorithm, the

proposed optimization method, and the sensitivity analysis. Then, section 4 presents the

restart approach together with the conditions proposed to restart the optimization loop.

Section 5 presents the method validation by using a numerical model as reference, and

section 6 presents the application example. Finally, section 7 presents some concluding

remarks.

2. Piezoelectricity and FEM

For piezoelectric materials, the mechanical behavior (strains and stresses) can be related

to the electric behavior (electric field and electric displacements) according to the

following constitutive system of equations in Voigh notation [16]:

σ = cEε− eE (1)

D = eε+ ǫSE (2)

where cE , e, and ǫS are the elastic, piezoelectric and dielectric property matrices,

respectively. The superscripts E and S indicate that these properties were obtained

at a constant electric field and constant strain, respectively. For piezoelectric ceramics

belonging to the 6mm symmetry class and with polarization along the z axis, the
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Determination of full piezoelectric complex parameters 6

complex property matrices are represented as follows [16]:

cE =












c11 + ic̄11 c12 + ic̄12 c13 + ic̄13 0 0 0

c12 + ic̄12 c11 + ic̄11 c13 + ic̄13 0 0 0

c13 + ic̄13 c13 + ic̄13 c33 + ic̄33 0 0 0

0 0 0 c44 + ic̄44 0 0

0 0 0 0 c44 + ic̄44 0

0 0 0 0 0 c66 + ic̄66












(3)

e =





0 0 0 0 e15 + iē15 0

0 0 0 e15 + iē15 0 0

e31 + iē31 e31 + iē31 e33 + iē33 0 0 0



 (4)

ǫS =





ǫ11 + iǭ11 0 0

0 ǫ11 + iǭ11 0

0 0 ǫ33 + iǭ33



 (5)

where c66 = (c11 + c12)/2 and c̄66 = (c̄11 + c̄12)/2. The imaginary properties are

represented by an over bar, and the superscripts E and S are omitted to simplify the

notation. Thus, there are 10 independent real properties and 10 independent imaginary

properties, which are the design variables in this work. The real properties are related

to the electro-mechanical response of the sample, that is, the resonance peaks positions

in the impedance curve (see figure 1(a)), while the complex properties are related to the

material damping, i.e., the energy losses that influence in the amplitude of the resonant

modes.

2.1. FEM Modeling

In this work, the 8-noded axisymmetric isoparametric piezoelectric 2D plane element

is used to model ceramic discs. Figure 2 presents the piezoelectric disc, its equivalent

FEM model, and a representation of the element. The 8-noded element is more accurate

and efficient, i.e., the FEM model converges using fewer elements, and thus, reducing

the computational cost. The mesh convergence test is presented in section 2.4. Because

of symmetry, it is possible to consider only a quarter of the disc section. The suitably

boundary conditions for the electric potential and displacement are shown in figure 2(b).

The electric potential applied to the reduced axisymmetric model must be half of the

electric potential applied to the complete disc model.

Thus, by assuming axisymmetric model, the property matrices of (3), (4), and (5)

can be simplified as:

c =







c11 + ic̄11 c12 + ic̄12 c13 + ic̄13 0

c12 + ic̄12 c11 + ic̄11 c13 + ic̄13 0

c13 + ic̄13 c13 + ic̄13 c33 + ic̄33 0

0 0 0 c44 + ic̄44







(6)

e =

[
0 0 0 e15 + iē15

e31 + iē31 e31 + iē31 e33 + iē33 0

]

(7)
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Figure 2. Representation of the piezoelectric disc, its equivalent FEM model, and the

axisymmetric 2D element.

ǫS =

[
ǫ11 + iǭ11 0

0 ǫ33 + iǭ33

]

(8)

and still, the 20 independent (real+complex) properties are present in these matrices.

2.2. FEM Formulation

The equilibrium equation system for the harmonic linear behavior is given by [17]:
[
−ω2Muu +Kuu Kuφ

KT
uφ Kφφ

]{
U

Φ

}

=

{
F

Q

}

(9)

where ω = 2πf and f is the working frequency, U, Φ, F, and Q are the global vectors

of mechanical displacements, electric potential, mechanical force, and electrical charge,

respectively. Muu is the mass global matrix and Kuu, Kuφ, and Kφφ are the global

matrices of elastic, piezoelectric, and dielectric stiffness, respectively. The superscript

T indicates the transpose matrix, however it must not be confused with the conjugated

transpose, because these matrices have complex values. These global matrices can

be properly built by using the local element matrices, which for the piezoelectric

axisymmetric 2D element are given by:

Muu
e = 2πρ

∫ 1

−1

∫ 1

−1

Nu
TNur|J|dηdξ (10)

Kuu
e = 2π

∫ 1

−1

∫ 1

−1

Bu
TcBur|J|dηdξ (11)

Ke
uφ = 2π

∫
1

−1

∫
1

−1

Bu
TeBφr|J|dηdξ (12)

Ke
φφ = 2π

∫ 1

−1

∫ 1

−1

BT
φǫBφr|J|dηdξ (13)

(14)
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Determination of full piezoelectric complex parameters 8

where c, e, and ǫ are given by (6), (7), and (8), respectively, ρ is the material density,

r is the distance from the point in question to the axisymmetric axis (see figure 2(b)),

given by:

r =

8∑

k=1

rkNk (15)

The matrices Nu, Bu, and Bφ are given by:

Nu =

[
N1 · · · N8 0 · · · 0

0 · · · 0 N1 · · · N8

]

=

[
N 0

0 N

]

(16)

Bu =







∂N
∂r

0

0 ∂N
∂z

1

r
0

∂N
∂r

∂N
∂z







(17)

Bφ =

[
∂N
∂r
∂N
∂z

]

(18)

2.3. Calculation of Electrical Characteristics

Before calculating the electrical characteristics of the model, such as impedance,

conductance and resistance, the equilibrium system of (9) must be solved. In the

experimental determination of the electrical impedance, a sinusoidal electric potential

is applied at the piezoceramic electrodes, see figure 2. To have the same boundary

conditions in the numerical model, the electrical degrees of freedom in the numerical

model must be prescribed. To facilitate the understanding of the solution of (9) with

prescribed (applied) electric potential, the electrical degrees of freedom are separated

into electrode 1 (φe1), electrode 2 (φe2), and free (φf), as represented in Figure 4, and

φe1, φe2, and φf are the electric potential vectors associated to these degrees of freedom.

φe2

φe1

φf

Figure 3. Electrical degrees of freedom.

Thus, by considering that the bottom electrode (φe2) is grounded, and hence

φe2 = 0, it is possible to rewrite (9) in the following manner:




−ω2Muu +Kuu Kuφf
Kuφe1

KT
uφf

Kφfφf
Kφfφe1

KT
uφe1

KT
φfφe1

Kφe1φe1











U

Φf

Φe1






=







F

Qf

Qe1






(19)

Considering that Φe1 is known (applied electric potential for each node at the

electrode surface), that there is no external loads being applied to the model (F = 0),

and that the internal electric charges are zero (Qf = 0), the unknown displacements U
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Determination of full piezoelectric complex parameters 9

and electric potentials Φf can be obtained by solving the following simplified system of

equations:
[
−ω2Muu +Kuu Kuφf

KT
uφf

Kφfφf

]{
U

Φf

}

=

[
Kuφe1

Kφfφe1

]

Φe1 (20)

Next, (19) is used to calculate the electrical charge for each node of the top electrode

Qe1 as:

Qe1 = [KT
uφe1

KT
φfφe1

Kφe1φe1
]







U

Φf

Φe1






(21)

In the case of harmonic analysis, i.e., the electrical potential varies sinusoidal with

angular frequency ω, all magnitudes in the problem are also sinusoidal with the same

frequency. From the electric charge, a vector containing the electric current flowing to

each node I is calculated as:

I = −iωQe1 (22)

where i represents the imaginary number. The physical electric current measured in

the electrode wire is the sum of the electric current values of elements of I. Thus, it is

possible to calculate the electric impedance Z and admittance Y :

Z = ΦT
e1I (23)

Y =
1

Z
(24)

Notice that Z and Y are complex numbers, the module of Z is the ratio between

the voltage and the current amplitudes whereas the phase of the complex number Z

represents the phase angle between both magnitudes. Finally, the electric conductance

G and resistance R are calculated as:

G = Re{Y } (25)

R = Re{Z} (26)

where Re means the real part. The importance of using R and G lays in the fact that

maximum of G curves occurs at resonant frequencies whereas the maximum of R curves

occurs at anti-resonant frequencies [10, 18]. Besides, G is proportional to the electric

power consumed by the sample, thus it is a representative magnitude that takes into

account the energy losses.

Thus, we have the electrical characteristics of a numerical piezoelectric model. In

the case of a real ceramic (experimental model), the sinusoidal response can be obtained

by applying a sinusoidal voltage for each frequency or by using an impedometer. In

either case the amplitude (A) and phase (θ) of the electrical impedance are obtained.

Assuming the phase angle expressed in degrees, the experimental electrical impedance

can be calculated by:

Z = Aeiθ
π

180 (27)

and the other characteristics (Y , G, and R) can be obtained by using (24), (25), and

(26).
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Determination of full piezoelectric complex parameters 10

2.4. Mesh Convergence Test

Figure 4 shows the conductance curves obtained by using different mesh discretizations:

20x2, 50x5, and 100x10 for the 8-noded element, and 100x10, 200x20, and 300x30 for

the 4-noded element. The computing time for each mesh discretization is described in

the legend of figure 4(a).

900 950 1000 1050 1100 1150 1200
10-4

10-3

10-2

10-1

100

Frequency [kHz]

C
on

d
u
ct
an

ce
[S
]

Curve 1 - 8-noded - 20x2 elements - 1.1 s
Curve 2 - 8-noded - 50x5 elements - 6.6 s
Curve 3 - 8-noded - 100x10 elements - 36.4 s
Curve 4 - 4-noded - 100x10 elements - 7.2 s
Curve 5 - 4-noded - 200x20 elements - 40.2 s
Curve 6 - 4-noded - 300x30 elements - 110.8 s

(a) 800 kHz to 1.3 MHz bandwidth.

1100 1110 1120 1130 1140 1150 1160 1170
10-4

10-3

10-2

Frequency [kHz]

C
on

d
u
ct
an

ce
[S
]

Curve 1 - 8-noded - 20x2 elements
Curve 2 - 8-noded - 50x5 elements
Curve 3 - 8-noded - 100x10 elements
Curve 4 - 4-noded - 100x10 elements
Curve 5 - 4-noded - 200x20 elements
Curve 6 - 4-noded - 300x30 elements

(b) Enlarged bandwidth from 1.1 MHz to 1.15 MHz.

Figure 4. Comparative graphs of the conductance curves for different mesh

discretizations, using 4- and 8-noded elements. Figure (b) corresponds to the gray

region of figure (a).

The piezoelectric complex properties used to build these graphs are described

in table 1, and they correspond to the properties of the piezoelectric material PZ27

obtained by [14]. By analyzing the enlarged region (figure 4(b)), it can be noticed that

curve 2 (8-noded element and 50x5 elements) is practically equal to curves 3 (8-noded

element and 100x10 elements) and 6 (4-noded element and 300x30 elements). The

processing time of these curves are equal to 6.6s, 36.4s, and 110.8s. This means that the

8-noded element with only 50x5 elements can accurately model the electrical behavior

reducing the processing time about sixteen times (when compared to curve 6).
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Determination of full piezoelectric complex parameters 11

Table 1. Real and imaginary material properties for the Pz27, obtained by [14].

c11 118.1 GPa c̄11 0.56 GPa

c12 74.9 GPa c̄12 0.035 GPa

c13 73.8 GPa c̄13 0.024 GPa

c33 110.4 GPa c̄33 0.47 GPa

c44 20.27 GPa c̄44 0.36 GPa

e31 -5.1 C/m2 ē31 0.0003 C/m2

e15 11.2 C/m2 ē15 -0.039 C/m2

e33 16.0 C/m2 ē33 -0.10 C/m2

ǫ11 984 ×ǫ0 ǭ11 -0.06 ×ǫ0
ǫ33 830 ×ǫ0 ǭ33 -11 ×ǫ0
ǫ0 = 8.8541× 10−12 F/m and ρ = 7707 kg/m3.

2.5. Alternative System of Units

When working with piezoelectric materials, it is common to have a bad conditioned

stiffness matrix because of the huge difference among the material property values. For

instance, the elastic properties are given in GPa, and the dielectric properties are given

in 10−12 F/m, or pF/m. This bad conditioning can generate numerical problems when

solving the equilibrium equations and obtaining the electrical responses. To avoid that,

this work applies the normalization of the material properties by changing the system

of units from SI to an alternative system of units, presented in table 2.

Table 2. Conversion of the system of units.

SI Alternative

m (meters) 103 mm (mili meters)

V (Volt) 10−6 MV (Mega Volt)

C (Coulomb) 109 nC (nano Coulomb)

Pa (Pascal) 10−6 MPa (Mega Pascal)

kg (kilo grams) 103 g (grams)

A (Ampere) 106 µA (micro Ampere)

Ω (Ohm) 10−12 TΩ (Tera Ohm)

Hz (Hertz) 10−3 kHz (kilo Hertz)

F (Farad) 1015 fF (femto Farad)

3. Optimization Formulation

The main objective of this work is to obtain the full complex properties of

piezoelectric materials. Essentially, the proposed objective function is to minimize the

square difference between the electrical conductance and resistance curves, obtained
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Determination of full piezoelectric complex parameters 12

experimentally and numerically, by adjusting the piezoelectric complex properties of

the numerical model.

However, one great concern in this project is the proper definition of the design

variables values. They must be adequately scaled so that the sensitivity of the objective

function with respect to them are well scaled. Otherwise, some variables can have higher

priority than others in the optimization process, which means that some variables will

be accurate and others will not. Thus, based on the properties obtained by [14] shown

in table 1, by considering the alternative system of units, presented in table 2, and by

proposing a scaling factor to properly scale the variables, it is proposed to define the

design variables as described in table 3.

Table 3. Definition of the design variables.

c11 = x1 ×104 MPa c̄11 = x11 ×102 MPa

c12 = x2 ×104 MPa c̄12 = x12 ×102 MPa

c13 = x3 ×104 MPa c̄13 = x13 ×102 MPa

c33 = x4 ×104 MPa c̄33 = x14 ×102 MPa

c44 = x5 ×104 MPa c̄44 = x15 ×102 MPa

e31 = x6 ×103 nC/mm2 ē31 = x16 ×101 nC/mm2

e15 = x7 ×103 nC/mm2 ē15 = x17 ×101 nC/mm2

e33 = x8 ×103 nC/mm2 ē33 = x18 ×101 nC/mm2

ǫ11 = x9 ×102ǫ0 ǭ11 = x19 ×ǫ0
ǫ33 = x10 ×102ǫ0 ǭ33 = x20 ×ǫ0

ǫ0 = 8.8541 fF/mm and ρ = 7707× 10−6 g/mm3.

Then, x is defined as the design variables vector, such as:

x = { x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . . .

. . . x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 } (28)

Thus, the full piezoelectric complex properties are directly dependent on the design

variables. The scaling factors have been established based on the results presented by

[14]. This scaling may be different for other materials, and it can be modified to attend

other specifications. Also, it is known that the piezoelectric property e31 is always

negative. Thus, its sign is included in the piezoelectric matrix property (7) so that x6

is always positive.

Thus, based on the objective function proposed by [10], the objective function of

this work is defined as:

F(x) =

nf∑

j=1

[
log10G

exp
j − log10G

num
j (x)

]2
+

+
[
log10R

exp
j − log10R

num
j (x)

]2
(29)

where the log10 function is used to equalize the conductance and resistance values

in order to reduce the difference between the highest and the lowest resonant peaks.
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Determination of full piezoelectric complex parameters 13

j = 1, . . . , nf is the frequency discretization, given a frequency range fmin ≤ fj ≤ fmax,

and nf is the number of frequencies used in the analysis.

The objective function can be written in matrix notation as:

F(x) = LTH(x) (30)

where

L =












1
...

1

1
...

1












and H(x) =













H2
1 (x)
...

H2
nf
(x)

H2
nf+1(x)

...

H2
2nf

(x)













(31)

where

Hk =

{

log10G
exp
k − log10G

num
k (x) for k = 1, . . . , nf

log10R
exp
k−nf

− log10R
num
k−nf

(x) for k = nf + 1, . . . , 2nf

(32)

Thus, the optimization problem can be formulated the following manner:

Minimize
︸ ︷︷ ︸

x

: F(x) = LTH(x)

subject to: xmin ≤ x ≤ xmax

(33)

where xmin and xmax are the minimum and maximum values for each variable. This is

the problem solved iteratively by using the Method of Moving Asymptotes (MMA) [15].

3.1. MMA Optimization Algorithm

The method of moving asymptotes is a gradient-based optimization algorithm written

and kindly provided by Professor Kristen Svanberg [15]. It has been largely used because

it is extremely efficient in handling a large number of variables and constraints. Also,

it can be used for different kinds of applications.

The asymptotes are essentially the limits that the variables can assume at each

iteration step of the optimization process. Two asymptotes for each variable i are used

during the optimization loop, the lower al and the upper au asymptotes. They are

initially defined as ali = 0 and aui = 1, and they change between iterations following an

intern rule of the MMA algorithm.

For minimization of least square problems by using the MMA algorithm, it is

suggested to modify the optimization problem in the following manner [15]:

Minimize
︸ ︷︷ ︸

x

:

subject to: Hk(x) ≤ 0, k = 1, ..., 2nf

Hk(x) ≥ 0, k = 1, ..., 2nf

xmin ≤ x ≤ xmax

(34)
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Determination of full piezoelectric complex parameters 14

It means that, instead of minimizing the summation of H2
k , Hk is used as a

constraint in a problem without objective function. By doing that, the problem forces

all Hk to be lesser or equal to 0 and greater or equal to 0, which means that Hk will be

as close to 0 as possible. Thus, the following parameters must be configured as inputs

to the MMA algorithm:

m = 2nf + 2nf

f0 = 0

fk = Hk k = 1, ..., 2nf

fnf+k = −Hk k = 1, ..., 2nf

a0 = 1

al = 0 l = 1, ..., m

dl = 2 l = 1, ..., m

cl = 0 l = 1, ..., m

(35)

where m is total number of constraints, f0 is the objective function value, and fk are

the constraints. a0, al, dl, and cl are internal parameters of the MMA algorithm, which

have different values depending on the optimization problem. However, the modification

presented in (34) is applied only as input to the MMA algorithm. The objective function

in (29), or (30), is still used to evaluate the convergence of the optimization process.

3.2. Proposed Method

Comparing to previous works in this area, three major improvements can be highlighted

in the present work. First, the optimization technique to obtain the full complex

piezoelectric properties is totally systematic and highly robust, and because of the

gradient based optimization algorithm MMA, this technique converges simultaneously

both in the real and the imaginary part of the model. Second, the use of the 8-noded

element FEM software allows the reduction of the simulation time and improves the

accuracy of the FEM model. Third, the resulting optimization algorithm requires very

few user interactions. The software only requires that the user provides the dimensions

of the piezoelectric disc, the mass density, a file containing the experimental data, and

the initial real properties of the piezoelectric material, which can be the properties

provided by the manufacturer.

With the experimental data, the software initially computes the electrical

conductance and resistance curves of the experimental model and saves this information.

Next, the software builds the numerical model (by using FEM), computes the numerical

electrical conductance and resistance curves, and then calculates the square difference

between experimental and numerical curves by using the objective function of (29).

The next step is to verify convergence of the optimization problem which is when the

objective function becomes smaller than a specified tolerance. If convergence is achieved,

then the full piezoelectric complex properties have been found. Otherwise, the software

continues to the sensitivity analysis, and finally, updates the design variables by using the

MMA algorithm. This process is repeated in an optimization loop until convergence is
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Determination of full piezoelectric complex parameters 15

achieved. This optimization procedure can be summarized into the flowchart presented

in figure 5.

Data Input:

Dimensions

Experimental data

Initial properties

Calculate

Experimental

Z, Y,G,R

Build FEM model

Calculate

Numerical

Z, Y,G,R

Calculate

Objective Function

Converged?
Sensitivity

Analysis

Variables Update

with MMA
Full Complex

Properties

yes

no

Figure 5. Flowchart of the optimization method proposed.

3.3. Sensitivity Analysis

The MMA algorithm requires the derivatives of the objective function and constraints

with respect to the design variables. In the modified optimization problem ((33)), only

the differentiation of Hk must be calculated as follows:

∂Hk

∂xi

=







−1

Gnum
k

ln 10

∂Gnum
k

∂xi
, for k = 1, ..., nf

−1

Rnum
k−nf

ln 10

∂Rnum
k−nf

∂xi
, for k = nf + 1, ..., 2nf

(36)

The differentiation of the electrical conductance (25) can be calculated as:

∂G

∂xi

= Re

{
∂Y

∂xi

}

(37)

where
∂Y

∂xi

= −
1

Z2

∂Z

∂xi

(38)

The differentiation of the electrical resistance (26) is calculated by the following

manner:
∂R

∂xi

= Re

{
∂Z

∂xi

}

(39)

Now, it is necessary to calculate the differentiation of the electrical impedance (23)

with respect to the design variables:

∂Z

∂xi

= ΦT
e1

∂I
∂xi

= −iωΦT
e1

∂Qe1

∂xi

(40)
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Determination of full piezoelectric complex parameters 16

The derivative of the electrical charge vector Qe1 at the electrode is obtained by

differentiating (21):

∂Qe1

∂xi

=
[

∂KT
uφe1

∂xi

∂KT
φfφe1

∂xi

∂KT
φe1φe1

∂xi

]







U

Φf

Φe1







︸ ︷︷ ︸

∂Qe1
∂xi

A

+ [KT
uφe1

KT
φfφe1

]

{ ∂U
∂xi
∂Φf

∂xi

}

︸ ︷︷ ︸

∂Qe1
∂xi

B

(41)

Since Φe1 is constant (input electric potential), its differentiation with respect to

the design variables is equal to 0, and it has been omitted in (41). The derivative of U

and Φf are calculated by differentiating 20:

{ ∂U
∂xi
∂Φf

∂xi

}

= −

[
−ω2Muu +Kuu Kuφf

KT
uφf

Kφfφf

]
−1

[
∂Kuu

∂xi

∂Kuφf

∂xi

∂Kuφe1

∂xi

∂Kuφf
T

∂xi

∂Kφfφf

∂xi

∂Kφfφe1

∂xi

]






U

Φf

Φe1






(42)

In (42), it is necessary to invert the matrix in parenthesis. Given that this matrix

depends on the frequency ω, this inversion must be calculated for all frequency band,

i.e., nf inversions. The matrix inversion is complicated and very slow, which makes

the sensitivity calculation impracticable due to many inversions. To remedy that,

it is possible to manipulate the involved matrices by using the adjoint method. By

substituting (42) in (41), ∂Qe1

∂x

B
can be written as:

∂Qe1

∂xi

B

= −K1K
−1
2 K3







U

Φf

Φe1






(43)

where

K1 = [KT
uφe1

KT
φfφe1

] (44)

K2 =

[
−ω2Muu +Kuu Kuφf

KT
uφf

Kφfφf

]

(45)

K3 =

[
∂Kuu

∂xi

∂Kuφf

∂xi

∂Kuφe1

∂xi

∂Kuφf
T

∂xi

∂Kφfφf

∂xi

∂Kφfφe1

∂xi

]

(46)

In (43), it is possible to modify the sequence of matrices K1 and K2:

∂Qe1

∂xi

B

= −
((
K−1

2

)
∗

K∗

1

)
∗

K3







U

Φf

Φe1






(47)

where * denotes the conjugate transpose of the matrix. Considering that
(
K−1

2

)
∗

=

(K∗

2)
−1, (47) can be rewritten as:

∂Qe1

∂xi

B

= −K∗

adjK3







U

Φf

Φe1






(48)

where Kadj is obtained by solving the following linear system of equations:

K∗

2Kadj = K∗

1 (49)
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Determination of full piezoelectric complex parameters 17

The next step is to differentiate the components of the stiffness matrix. Notice that

in (46), the derivative of the stiffness matrix is separated by degrees of freedom φl and

φe1. However, it is possible to calculate the differentiation of (11), (12), and (13), and

then separate them into the mentioned degrees of freedom. Thus,

∂Kuu
e

∂xi

= 2π

∫ 1

−1

∫ 1

−1

Bu
T ∂c

∂xi

Bur|J|dηdξ (50)

∂Ke
uφ

∂xi

= 2π

∫ 1

−1

∫ 1

−1

Bu
T ∂e

∂xi

Bφr|J|dηdξ (51)

∂Ke
φφ

∂xi

= 2π

∫
1

−1

∫
1

−1

BT
φ

∂ǫ

∂xi

Bφr|J|dηdξ (52)

(53)

which means that the differentiation of the stiffness matrix depends on the differentiation

of the elastic c, piezoelectric e, and dielectric ǫ property matrices with respect

to the design variables. By the chain rule, the matrices properties must be first

differentiated with respect to the material properties, and then the material properties

are differentiated with respect to the design variables. The differentiation of (6), (7), and

(8) with respect to each material property is equal to 1 only in the position where each

property appears and zeros in the remainder positions. For instance, by differentiating

the elastic property matrix of (6) with respect to c11 and c̄11 is equal to:

∂c

∂c11
=







1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0







;
∂c

∂c̄11
=







1i 0 0 0

0 1i 0 0

0 0 0 0

0 0 0 0







(54)

Analogous procedure must be done for all real and imaginary properties. Finally,

the differentiation of the material properties with respect to the design variables can be

calculated by differentiating the properties in table 3, which yields to:

Table 4. Differentiation of the material properties with respect to the design variables.

∂c11/∂x1 = 104 ∂c̄11/∂x11 = 102

∂c12/∂x2 = 104 ∂c̄12/∂x12 = 102

∂c13/∂x3 = 104 ∂c̄13/∂x13 = 102

∂c33/∂x4 = 104 ∂c̄33/∂x14 = 102

∂c44/∂x5 = 104 ∂c̄44/∂x15 = 102

∂e31/∂x6 = 103 ∂ē31/∂x16 = 10

∂e15/∂x7 = 103 ∂ē15/∂x17 = 10

∂e33/∂x8 = 103 ∂ē33/∂x18 = 10

∂ǫ11/∂x9 = 102ǫ0 ∂ǭ11/∂x19 = ǫ0
∂ǫ33/∂x10 = 102ǫ0 ∂ǭ33/∂x20 = ǫ0
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Determination of full piezoelectric complex parameters 18

4. Conditions to Guarantee the Convergence

The convergence of the optimization problem is achieved when the absolute difference

between the objective function values of subsequent iterations (itt−1, itt) is lesser than

a predefined convergence tolerance (δconv).

Condition 1: |Fitt − Fitt−1| < δconv (55)

where δconv = 10−10 is proposed to guarantee that the objective function and the design

variables are not changing anymore. If (55) is satisfied, than the optimization process

stops, and a local minimum has been achieved. However, the problem may converge

to an undesired local minimum, which can be identified graphically or numerically.

Graphical identification makes the method non-systematic and is not used in this work.

The numerical identification of an optimal or an undesired local minima can be measured

by the objective function value F of (30) and by defining an objective function tolerance

(δobj). Thus, another condition is proposed:

Condition 2: Fitt < δobj (56)

However, there is not a specific value for δobj that excludes all undesired local

minima. Based on the tests performed in this work, it is proposed to use δobj = 10.

However, this value can be different for different materials. If (56) is never satisfied,

than δobj can be raised to attend another specific problem.

Thus, if (55) and (56) are satisfied, then the optimal solution has been achieved and

the full complex piezoelectric properties have been obtained. If only (55) is satisfied,

than the solution is trapped in an undesired local minimum.

It has been noticed that the initial values of the design variables play a very

important role in the success of the method. An improper choice of these values makes

the solution to get trapped in an undesired local minimum. However, a priori it is not

possible to predict whether these values will result in a good or a bad solution, and

there is no rule to define the initial design variables which results in a good solution.

This problem can be avoided in two ways, one more physical by performing a sensitivity

analysis and a rough approach algorithm, as described in [10], or the other by restarting

the design variables with random values if the problem does not converge. Due to the

simulation speed improvement by the use of MMA and the 8-noded element, the choice

of restarting the design variables with different values is possible in practice. Hence,

if condition in (55) is satisfied, but condition in (56) is not, then the design variables

are redefined randomly. It must be noticed that the MMA algorithm also needs to be

restarted (ali = 0, aui = 1).

The initial design variable values representing the real part of the material

properties are defined based on the properties given by the manufacturer of the

piezoelectric material. In the case this information does not exist, the properties of

a similar material can be used, or the method presented in [10, 14] can be used to

obtain these initial values for the real part of the model. For instance, considering the

material properties of the Pz27 provided by the manufacturer, and the scaling presented
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Determination of full piezoelectric complex parameters 19

in table 3, the initial design variables (represented by a tilde ∼) of the real part of the

model are defined in table 5.

Table 5. Initial values of the design variables based on the

properties provided by the manufacturer.

x̃1 x̃2 x̃3 x̃4 x̃5 x̃6 x̃7 x̃8 x̃9 x̃10

14.7 10.5 9.37 11.3 2.3 3.09 10.67 12.4 11.3 9.14

If the optimization loop restarts, then the initial design variables for the new loop

must be modified, otherwise the same solution is obtained. Thus, it is proposed to use

random values inside a range of ±20% of x̃ every time the loop restarts. To obtain

random values, the “rand” function from MatLab is used as:

xi = rmin
i + rand(1)

(
rmax
i − rmin

i

)
, i = 1, . . . , 10 (57)

where

rmin
i = 0.8x̃i

rmax
i = 1.2x̃i

}

i = 1, . . . , 10 (58)

and rand(1) creates a random value between 0 and 1.

In the case of the imaginary part of the model, there is no particular rule to define

the initial values. Based on the results presented by [14], it is proposed to define the

initial design variables of the imaginary part of the model as:

x̃11,...,16 = x̃1,...,6 and x̃17,...,20 = −x̃7,...,10 (59)

This rule also applies if the loop restarts. However, there is another issue that

needs to be handled. Depending on the values of the imaginary properties during

the optimization, there is the possibility that the electrical conductance and resistance

assume negative values, which is numerically possible, however, physically unfeasible.

One way to handle negative values of conductance and resistance is to use constraints

in the optimization algorithm. For instance, the constraints can be formulated as:

Condition 3: Gj ≥ 0 and Rj ≥ 0, ∀j = 1, . . . , nf (60)

However, the MMA algorithm has a relaxed way to deal constraints, which means

that they can be violated during the process to prevent local minima, even though they

must be satisfied at the final step of the optimization. Because of the log10 function

used in the objective function, the conductance and the resistance cannot be negative at

anytime. Thus, another way to deal with this issue is to restart the optimization loop if

the condition in (60) is violated. Thus, all three conditions in (55), (56), and (60) must

be satisfied to guarantee that a satisfactory solution has been achieved.

Another approach used to improve the simulation speed is to divide the method

in two steps: preliminary and refinement steps. The preliminary step is considered

while (56) is not satisfied. The domain is discretized with a coarse mesh in order to

achieve a solution close to the optimal solution. According to the mesh convergence test
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presented in section 2.1, a 20x2 mesh discretization can be used in the preliminary step,

although not accurate, it is 6 times faster than the 50x5 mesh discretization. Once (56)

is satisfied, the refinement step is considered, and the mesh is refined so that the optimal

solution is achieved and more accurate values of the design variables are obtained. The

discretization used in this step is equal to 50x5 elements, which is shown (in section 2.4)

to be as accurate as more refined meshes and up to sixteen times faster (regarding

processing times).

5. Method Validation with Numerical Results

In this section, the validation of the method is presented. To validate the method the

full piezoelectric material properties obtained in section 6 are used to build a FEM

model of the piezoceramic. Then, the electrical response of this numerical model is

calculated and it is used as a reference in the proposed method. The reference curves

have been obtained by using a mesh equal to 200x20 elements, which is different and

more refined than the meshes used in the proposed method to avoid “inverse crime”. The

optimized properties are supposed to be slightly different from the reference properties

only because of the discretization difference, and not because of geometry or material

imperfections. The diameter and thickness of the piezoceramic disc are equal to d = 20

mm and h = 2 mm, respectively, and the material density is equal to ρ = 7707 kg/m3.

According to (34), the minimum and maximum boundaries of the design variables

must be defined. For this example, the following boundaries are defined:

0 ≤ xi ≤ 30 for i = 1, . . . , 10

-300 ≤ xi ≤ 300 for i = 11, . . . , 20
(61)

The maximum value for the real variables have been defined based on the existing

material properties. On the other hand, the limits for the imaginary variables have been

established empirically, based on tests performed in this work. These values works fine

for soft piezoelectric ceramics, such as Pz27. However, these limits may be properly

modified to meet other material conditions.

The initial design variables representing the real part of the properties are listed in

table 5, and the initial design variables representing the imaginary part are calculated

by (59). The initial objective function value is equal to F = 572.

Figure 6 presents the objective function evolution through the optimization process.

The final objective function value is equal to F = 1.4× 10−3. The design variables have

been redefined 6 times before the optimized solution is achieved. Peaks 3 and 4 indicate

that condition 3 has been violated, while peaks 1, 2, 5, and 6 indicate that the solution

has converged to an undesired local minima. The hole process required 352 iterations

and took only 20 minutes and 53 seconds (by using the PC configuration mentioned in

section 1).

Figure 7 shows the comparison between the numerical reference and optimized

electrical impedance curves at the end of the optimization process. It can be noticed
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Figure 6. Convergence graph of the objective function evolution.

that the electrical response for the optimized properties fits precisely to the reference

electrical response, even with the mesh discretization difference.
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Figure 7. Numerical reference and optimized electrical impedance curves: (a)

modulus; and (b) phase.

Table 6 lists the full piezoelectric complex properties of the numerical reference and

the optimized cases. The percentage differences between both of them are presented,

which are calculated as 100|xref
i −xopt

i |/|xref
i |. Precise solutions are obtained for the real

part of the properties, where the only non-zero, but very small, difference is found for

ǫ11. In the case of the imaginary properties, most of them show precise solutions, except

for c̄11, ē15, and ǭ11 which show a very small difference from the reference properties.

However, these small differences can be neglected, since the absolute difference is very

small when compared to the real properties.
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Table 6. Validation example. Comparison of the reference properties with the

optimized properties.

Ref. Opt. Diff. % Ref. Opt. Diff. %

c11 [GPa] 117.7 117.7 0.0 c̄11 [GPa] 0.42 0.43 2.4

c12 [GPa] 73.7 73.7 0.0 c̄12 [GPa] -0.26 -0.26 0.0

c13 [GPa] 73.3 73.3 0.0 c̄13 [GPa] -0.14 -0.14 0.0

c33 [GPa] 109.7 109.7 0.0 c̄33 [GPa] 0.40 0.40 0.0

c44 [GPa] 20.3 20.3 0.0 c̄44 [GPa] 0.41 0.41 0.0

e31 [C/m2] -5.2 -5.2 0.0 ē31 [C/m2] 0.035 0.035 0.0

e15 [C/m2] 11.6 11.6 0.0 ē15 [C/m2] 0.035 0.032 8.6

e33 [C/m2] 16.0 16.0 0.0 ē33 [C/m2] -0.079 -0.079 0.0

ǫ11/ǫ0 950 952 0.2 ǭ11/ǫ0 15.77 15.05 4.6

ǫ33/ǫ0 815 815 0.0 ǭ33/ǫ0 -10.68 -10.68 0.0

6. Experimental Result

In this section, the proposed optimization method is applied to find the full piezoelectric

complex properties of a Pz27 sample. The diameter and the thickness of this sample

are equal to d = 20 mm and h = 2.004 mm. The material density is measured by using

the Archimedes principle, and it is equal to ρ = 7707 kg/m3. The experimental data

used to calculate the electrical impedance, phase, conductance, and resistance have been

acquired by an impedometer. The experimental electrical impedance and phase curves

are shown in figure 9 as the thick black curve.

The same initial design variables used in section 5 are used in this example. The

design variables limits are also the same as used in the numerical validation example.

The initial objective function value is equal to F = 572.

Figure 8 presents the evolution of the objective function through the optimization

process, where the 9 peaks denote that the design variables have been redefined before a

satisfactory solution is achieved. The peaks 1 and 9 indicate that condition 1 has been

satisfied and condition 2 has not, and thus, the design variables have been redefined.

The other peaks indicate a violation of condition 3. The final objective function value

is equal to F = 3.18, and the hole process required 273 iterations and took only 18

minutes and 21 seconds to run (by using the PC configuration mentioned in section 1).

However, this performance cannot be always guaranteed because the design variables

are redefined randomly.

Figure 9 shows the comparison between the experimental and optimized electrical

impedance curves at the end of the optimization process. It can be seen that both

curves are superposed for the hole bandwidth. However, some regions (indicated by the

arrows) are not perfectly adjusted. This difference is mainly caused by the imperfections

of the sample, for instance, parallelism of faces, porosity, etc., while the numerical model

assumes an ideal sample.

Page 22 of 26CONFIDENTIAL - AUTHOR SUBMITTED MANUSCRIPT  SMS-102334

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Determination of full piezoelectric complex parameters 23

50 100 150 200 250
-200

0

200

400

600

800

1000

1200

1400

1

2

3

4

5

6

7

8

9

Frequency [kHz]

O
b
je
ct
iv
e
F
u
n
ct
io
n
F

Figure 8. Convergence graph of the objective function evolution.
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Figure 9. Experimental and optimized electrical impedance curves: (a) modulus; and

(b) phase.

Table 7 lists the full optimized piezoelectric complex properties of the sample used

in this example. By comparing the optimized real properties with the manufacturer

real properties (see table 7), it can be noticed a great difference for all values. Thus, by

analyzing the graphs shown before, the optimized result obtained here can reproduce

the experimental electrical response of the Pz27 sample, whereas the properties provided

by the manufacturer cannot (see figure 1).

Because there is no exact properties to compare the presented results, the accuracy

of the proposed method is evaluated by starting the process with random initial

properties in the range of±20% around the properties given in table 5 and by calculating

the mean and the standard deviation of the optimized results. 100 tests have been

performed in this accuracy evaluation. The maximum and minimum reset count are

equal to 30 and 0, respectively, which corresponds to evaluation times equal to 44 and
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Table 7. Experimental example. Full optimized piezoelectric complex properties of

the Pz27 sample used in this example.

c11 [GPa] 117.7 c̄11 [GPa] 0.42

c12 [GPa] 73.7 c̄12 [GPa] -0.26

c13 [GPa] 73.3 c̄13 [GPa] -0.14

c33 [GPa] 109.7 c̄33 [GPa] 0.40

c44 [GPa] 20.3 c̄44 [GPa] 0.41

e31 [C/m2] -5.2 ē31 [C/m2] 0.035

e15 [C/m2] 11.6 ē15 [C/m2] 0.035

e33 [C/m2] 16.0 ē33 [C/m2] -0.079

ǫ11/ǫ0 950 ǭ11/ǫ0 15.77

ǫ33/ǫ0 815 ǭ33/ǫ0 -10.68

4 minutes, respectively. Table 8 shows the mean values of the optimized properties

with the respective standard deviation. It can be seen that the standard deviations are

very low compared to the mean values, which means that the proposed method is very

accurate.

Table 8. Accuracy evaluation of the proposed method.

Mean SD Mean SD

c11 [GPa] 117.6 0.85×10−6 c̄11 [GPa] 0.41 0.24×10−6

c12 [GPa] 73.7 0.12×10−6 c̄12 [GPa] -0.27 0.46×10−6

c13 [GPa] 73.4 0.47×10−6 c̄13 [GPa] -0.15 0.14×10−6

c33 [GPa] 110.2 0.25×10−6 c̄33 [GPa] 0.40 0.06×10−6

c44 [GPa] 20.4 0.14×10−6 c̄44 [GPa] 0.42 0.10×10−6

e31 [C/m2] -5.2 0.05×10−6 ē31 [C/m2] 0.034 0.02×10−6

e15 [C/m2] 11.6 0.36×10−6 ē15 [C/m2] 0.039 0.47×10−6

e33 [C/m2] 16.1 0.31×10−6 ē33 [C/m2] -0.079 0.01×10−6

ǫ11/ǫ0 961 80.7×10−6 ǭ11/ǫ0 17.23 129.3×10−6

ǫ33/ǫ0 817 13.6×10−6 ǭ33/ǫ0 -10.71 1.59×10−6

7. Concluding Remarks

This work presents a new efficient and systematic optimization method to find the

full piezoelectric complex properties, by adjusting the real and imaginary parameters

simultaneously and considering a wide frequency range. This method combines a higher-

order axisymmetric plane element with a gradient-based optimization algorithm which

results in lower computational time and very few user interaction. It has been proposed

a restart approach to redefine the design variables if the solution is an undesired or

unfeasible local minima.
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The experimental result showed that the optimized properties can reproduce an

electrical response very similar to the experimental curves. The method validation shows

that in the case of a material that follows exactly the 6mm symmetry, the algorithm

converges to the real solution. In this case, the convergence error can be numerically

estimated. However, in theory, there is no way to determine the accuracy of and

individual optimized property from the experimental result. The complete model can

be experimentally evaluated by using mechanical magnitudes, for example a vibrometer

to obtain the displacement field.

The method presented in this work has been applied only for soft piezoelectric

ceramics, such as Pz27 and APC 850. However, only the results for the Pz27 are

presented. Finally, as future works, it is proposed to extend the method to hard

piezoceramics.
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