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Abstract—Fault injection experiments are a powerful aid to 

identify and fix problems in the design of fault tolerance 

mechanisms, particularly when performed at early development 

phases. For this purpose, it is important not only to classify the 

faults, but also to understand the different faulty behaviors. 

When an embedded system is considered, a common approach 

for analyzing the faulty behavior is to exploit the execution trace 

features often available in medium to high size processors. This 

paper proposes two IP modules intended to facilitate fault 

injection experiments in small processor systems: a memory 

saboteur and a bus event recorder. The former allows the 

injection of SEU and stuck-at faults, both at a specific memory 

location and at the address or data bus level. The latter provides 

an alternative to the use of a full execution trace solution, which 

is often not available in small processors. The IP blocks were 

used to inject the faults and to analyze the behavior of a 

submodule of an implantable pulse generator running on an 

FPGA-hosted openMSP430 processor system. The IP blocks, the 

fault injection environment and the results of the fault injection 

campaigns are presented. The event traces captured by the event 

recorder IP played a fundamental role to understand the faulty 

behavior. 
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I.  INTRODUCTION 

Fault injection has been extensively used for the 
dependability validation of embedded systems, both for fault 
removal and fault forecasting [1]. When the objective is fault 
forecasting, the expected outcome of the injection campaign is 
to classify the faults and obtain the fault coverage provided by 
the detection and tolerance mechanisms. 

On the other hand, when fault injection is performed at the 
earlier development phases, usually the predominant objective 
is fault removal. In this case, fault injection is the first step of 
a verification-diagnosis-correction process. The faulty 
behavior must be understood in order to identify and fix what 
is wrong in the detection and tolerance mechanisms under 
development. This raises the need for more observability on 
the fault injection experiment. 

When the system under analysis includes a 
microprocessor, an inexpensive solution to analyze the faulty 
behavior is the use of the debug and execution trace resources 
offered by medium to high size modern processors. These 
tools, particularly the second one, provide a deep insight of the 

behavior of the faulty system without sacrificing execution 
speed. However, execution trace tools are usually not 
available in small processors and slower solutions must be 
used. 

Here we present a bus event recorder instrumentation IP 
designed to facilitate emulation-based fault injection 
experiments in small processor systems. With a proper 
selection of the event matching conditions, the resulting log 
enables a thorough understanding of the faulty behavior. We 
also present a memory saboteur that allows for the injection of 
SEU and stuck-at faults, both at a specific memory location 
and at the address or data bus lines. 

Both IP blocks were used to inject faults and to analyze the 
resulting behavior of a module of an implantable pulse 
generator under development. The module runs on an FPGA-
hosted openMSP430 processor system. The event traces 
captured by the event recorder IP played a fundamental role to 
understand the faulty behavior. The event traces also allowed 
to evaluate if the faulty behavior could be harmful for the 
patient using the implantable device. 

The following Section briefly presents some of the most 
commonly used instrumentation IPs for fault injection and 
fault effect observation. In Section III we describe the 
proposed instrumentation IPs. Section IV details the 
experimental setup and presents the preliminary results of a 
fault injection campaign. Finally in Section V some 
conclusions are presented.  

II. BACKGROUND 

Different fault injection techniques are commonly used to 
assess the effectiveness of fault detection and fault tolerance 
mechanisms [2]. Here we concentrate in the emulation-based 
technique [3], i.e., a prototype of the system under evaluation 
is synthesized, usually inside an FPGA, together with the 
instrumentation needed to inject the faults and to observe its 
effects. 

Some of the most usual solutions for this instrumentation 
are briefly described in the following subsections. 

A. Injecting faults 

Saboteurs are often used as the means to inject a fault at 
some point in a circuit. They were initially introduced in [4] 
for simulation-based fault injection, and are extensively used 
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also in emulation-based fault injection. A serial saboteur is a 
block inserted in the path between a driver output and its 
corresponding receivers. Additional block inputs are needed to 
control if the output is modified according to some fault 
model, or if it is left equal to the input for normal behavior 

This scheme can be directly exploited, for example, to 
implement permanent stuck-at faults on a bus line. 

More elaboration is needed when trying to inject faults in 
individual memory locations. The direct solution of adding a 
saboteur for each location is either unfeasible because of the 
excessive area cost involved, or directly impossible if the 
memory is implemented using the memory blocks embedded 
inside the FPGA. In this situation a global saboteur can be 
inserted at the memory output bus. The controller that drives 
the saboteur control inputs must evaluate the memory address 
and control signals in order to activate the fault only when the 
location under attack is being accessed. 

SEU faults can be faced by triggering a read-modify-write 
cycle at the injection time. This approach can be used to inject 
faults in individual flip-flops [5] or at memory locations [6]. 
Another approach consists in providing additional logic to the 
saboteur controller described above in order to activate the 
fault at the injection time and de-activate it if a new write 
operation to the location under attack is detected. This latter 
approach is the one we used, as described below. 

B. Observing faulty behavior 

The simplest solution for observing fault injection 
experiments of a processor based system would be waiting 
until the program reaches the exit point and observing the 
memory to check if the results produced by the program were 
affected by the fault. This is not enough because the normal 
execution flow is modified by effect of the injected fault; 
consequently, additional program exit points must be 
identified. Moreover, a timeout mechanism must be used 
because the faulty execution flow, or even the internal 
processor logic, can remain in an endless loop. 

A low cost solution to implement an environment like the 
one described above is to use a watchdog or timer as a timeout 
mechanism, and the debug features offered by almost all the 
processors to capture the exit points and observe the final 
memory contents.  

However, if I/O activity is involved, and especially if there 
are safety requirements associated to it, I/O operations must be 
observed to decide if the faulty behavior is safe or not. Also, 
when the main goal is to fix possible detection or tolerance 
problems, a more detailed view of the execution flow is 
needed. In these situations the execution and/or bus activity 
trace tools available in most processors are a valuable tool. 

Examples of the execution/bus activity trace features 
available in modern processors are the ARM CoreSight On-
chip Trace and Debug Architecture [7] available in ARM 
based System on Chip designs, and the AHB Trace buffer 
peripheral available for the Leon3 processor [8]. 

Smaller processors usually do not provide full trace 
capabilities, or in the best case they have a very limited 

capacity. For example, the Enhanced Emulation Module [9] 
available on some MSP430 processors from Texas provides 
advanced debugging including breakpoint conditions triggered 
by program or data access conditions, but the trace depth is 
limited to the 8 instructions that precede a breakpoint. 

III. PROPOSED IP MODULES DESCRIPTION 

A. Saboteur 

A saboteur, like the one described at the end of Section 
II.A. Injecting faults, was developed targeting an openMSP430 
processor system [12]. The openMSP430 processor core [10] 
is a processor compatible with the Texas Instruments MSP430 
family and is available at the Opencores repository [11].   

The saboteur can inject faults at the address and data bus 
lines, and also at a specific memory location. 

For the faults injected at a bus line, the supported fault 
models are permanent stuck-at-0 and stuck-at-1 and are 
configured by a mask specifying the affected bit positions. For 
the memory location faults the same fault models plus SEU 
(bit-flip) faults are supported. Additional configuration is 
needed to specify the affected memory address. In the case of 
SEU faults, the time at which the fault must be injected should 
also be specified. 

The SEU faults remain active since the configurable 
injection time until the module detects a write operation on the 
same memory location. 

 

Fig. 1. Connection and main structure of the Saboteur. 

The saboteur architecture consists of a fault injection 
controller and two saboteur blocks to be inserted in the 
memory address and data output buses. Fig. 1 is a block 
diagram, showing only one of the saboteurs for clarity. For 
each saboteur, the fault injection controller generates a mask 
with value “1” at the positions where a fault must be injected 
or all zeroes at the times no fault must be injected. An 
additional control signal indicates the type of fault that must 
be injected. The saboteur is purely combinatorial and produces 
the proper modification according to the fault type indicated 
by the controller. 

The faults corresponding to specific memory locations are 
injected at the output data bus. The fault injection controller 
monitors the memory address and control signals: when a read 
access to the configured address is detected, the mask is 
activated so that the faulty value is produced by the saboteur 

 



 

 

block; when a write operation is detected and there is an active 
SEU type fault, the fault is de-activated and remains inactive 
until reconfiguration.  

The saboteur block is shown in Fig. 2 and Table I. It 
receives the mask and fault type from the controller and 
applies the proper bitwise operation according to the fault 
type. Note that when no fault is being applied the controller 
generates an “all zeroes” mask so that all the gates leave the 
input unmodified.  

 

Fig. 2. Structure of the Injector block. 

TABLE I.  LOGIC USED FOR EACH TYPE OF FAULT 

Fault type Logic operation Input Output 

SEU XOR 
1 0 

0 1 

Stuck-at '1' OR 
1 1 

0 1 

Stuck-at '0' AND 
1 0 

0 0 

 

B. Event recorder 

For the fault injection experiment to be representative, it is 
desirable to maintain the system under study with a minimum 
of changes. For this reason, in order to be able to capture a log 
of the program behavior during each run, a new peripheral was 
developed –the Event Recorder. This peripheral allows 
obtaining such a log while running the system at normal speed 
and without modifying the firmware code. 

The Event Recorder captures the occurrence of pre-
configured events in the OpenMSP430 buses and then stores 
them in an internal memory (FIFO). The events that can be 
configured are read or write transfers with matching values in 
address or data bus. Once a capture takes place, signals of 
Program memory and Data memory buses corresponding to 
the last bus transfer are stored. Additionally, together with 
these signals, a time-stamp word and a bit mask (indicating the 
event that triggered the capture) are also stored. The time-
stamp must be generated by an external timer. 

This new peripheral is managed completely through the 
peripheral bus. This allows the user to configure and read the 
Event Recorder either from the program executed by the 
microcontroller or through the debugging unit using GDB 
debugger. 

The hardware description of this block was written using 
VHDL. After synthesizing for an Altera Cyclone III chip, the 
following summary was obtained: 

 Total logic elements: 1.626 / 15.408 (11 %). 

 Total memory bits: 26.624 / 516.096 (5 %). This can be 
adjusted by modifying the size of the FIFO. 

 Maximum operation frequency: 93.46 MHz. 

1) Internal structure 
The peripheral is basically composed by 5 main blocks as 

shown in Fig. 3. 

Buses interface: This block connects the peripheral bus to 
the Control registers and Data output registers blocks. Besides 
that, it uses latches for storing the last transaction carried out 
on the program memory and data memory bus. 

Control registers: Besides implementing the registers 
which are mapped in peripheral space, this block contains the 
set of registers that stores the events to be captured. The 
number of events is configured at compile time. 

Comparator: This is a combinatory block which compares 
the data of the last bus transaction (coming from the Buses 
interface) with the content of the registers implemented in the 
Control registers block. When a coincidence occurs, the data 
of the buses is sent to the FIFO block, along with a bit mask 
identifying the event that triggered the capture and a write 
enable signal connected to the FIFO through an edge detector.  

 

 

Fig. 3. Main structure of the Event Recorder. 

FIFO: This FIFO memory stores the comparator output 
when the write enable signal is activated. The size of the FIFO 
is configurable at compile time. 

Output data registers: This block is intended to make the 
content of the FIFO accessible from the peripheral bus; it 
divides the FIFO output into 16 bits words which are mapped 
in peripheral space. 

 



 

 

2) General operation of the peripheral 
To correctly configure and read the Bus Event Recorder, 

the following steps must be performed: 

a) Enabling peripheral writing 

Since this peripheral is aimed to be part of a fault injection 
system, it is necessary to avoid possibly undesirable 
reconfigurations during the injection experiments. This is due 
to the fact that, in presence of a fault, the program being 
executed could behave in an unexpected way, performing 
writing operations in the Bus Event Recorder addresses.  

In order to reduce the probability of this occurring, a 
mechanism that allows enabling and disabling writing 
operations was implemented. A password has to be written in 
a certain peripheral address so as to enable writing in the 
peripheral, and similarly, a different password can be written 
to disable writing. The address, as well as the passwords, is 
configurable before compiling the project. 

In particular, for the application described in this paper, the 
address was set to 0x01C6 (base address + 0x0006), the 
enabling password to 0x5555 and the disabling password to 
0xAAAA. 

b) Events to capture 
The types of event that the Bus Event Recorder is able to 

capture are listed in Table II. For example, the first row type 
of event is activated when writing to the Memory Data Bus at 
an address matching a pre-configured value. 

TABLE II.  TYPES OF EVENT 

Transfer type Matching condition Bus 

WRITE Address Data Memory Bus 

WRITE Data Data Memory Bus 

READ Address Data Memory Bus 

READ Data Data Memory Bus 

READ Address Program Memory Bus 

READ Data Program Memory Bus 

 

For each event that the peripheral must capture, two write 
operations must be done to configuration registers. First, 
CTRL 1 register (base address) must be written with the event 
identifier, a flag indicating whether the event associated with 
this identifier is active and the type of event to be captured. 
Second, CTRL 2 register (base address + 0x0002) must be 
written with the matching value for address or data. 

These steps must be repeated for each event that must be 
configured. Once the event configuration is finished, it is 
recommended to disable the peripheral writing as explained 
above. 

c) Reading captured events 
Before reading a captured event, it is necessary to perform 

a writing operation on base address + 0x0008. This action 
extracts the previous event from the FIFO allowing for the 

reading of a new event. The event can be read through the 
peripheral bus in a range of 18 addresses mapped on 
peripheral space. 

In addition, the system has a status flag register which 
indicates the amount of events in the FIFO. Empty and full 
flags are also available. 

IV. EXPERIMENTAL SETUP 

The device under study was a sub-module of a system 
based on the microcontroller MSP430 which is intended to be 
used in an implantable pulse generator (IPG). The IPGs are a 
class of biomedical equipment which best-known example is 
the cardiac pacemaker. The chosen sub-module was that 
responsible for managing the therapy delivered to the patient, 
for which its dependability features are critical. This sub-
module was implemented in an FPGA-hosted OpenMSP430 
microcontroller and the IP modules described above were 
integrated to the system. Finally, the FARM model [1] was 
used to perform the fault injections campaigns. 

A. System emulation and IP modules integration 

As the system to be evaluated is based on a MSP430 
microcontroller, the OpenMSP430 was used to emulate it. 
This project is compatible with the family of the 
microcontroller used by the system 

The program memory size of the OpenMSP430 was 
configured to 24 Kbytes and the data memory size to 10 
Kbytes in order to adapt the system to the firmware 
requirements. A ROM was used for storing the program code 
so as to better emulate the actual system, which uses flash 
memory for this purpose. The clock frequency was set to 20 
MHz so as to work just like the actual system. 

Two Saboteur modules were used, one for each memory 
(program and data). The Saboteur modules as well as the 
Event Recorder were connected to the peripheral bus so as to 
be able to configure and read them. The Saboteur modules 
were connected to the corresponding address bus and between 
the output data of the memory and the data bus of the 
OpenMSP430. On the other hand, the Event Recorder was 
connected to the program and data memory buses of the 
microcontroller. 

In addition, a new timer A was implemented so as to 
provide the Event Recorder with a time-stamp. This timer is 
also used to establish a timeout for the fault injection runs. 
Taking this into account, the interrupt request output of the 
timer was connected to the NMI input of the OpenMSP430. In 
this way, it is possible to interrupt the program execution and 
lead the program counter to a known address (NMI ISR) in 
case the program execution takes an unpredictable behavior. 

The hardware description was synthesized in an Altera 
Cyclone III FPGA. The firmware of the system under study 
was compiled with GCC tools and it was loaded and debugged 
into the platform using GDB. The OpenMSP430 UART serial 
debug interface was used to send the GDB commands to the 
on-chip debug unit.  



 

 

Even though the IP modules were used with a particular 
system based on the OpenMSP430 and they were configured 
through the debugging interface of this processor, it is worth 
to point out that their configuration interfaces can be easily 
adapted to any other external communication interface and 
therefore used in systems based on other microprocessors. In 
case of the Event Recorder, for using it with another 
processor, it is also necessary to modify the Comparator block 
so as to adapt it to the structure of the new processor buses. 

As mentioned in Section III.A. Saboteur, the Saboteur is 
intended to inject faults on memory and also on the 
address/data buses lines. This module can also be used for 
injecting faults in the register file of the processor, provided 
register file buses are accessible. 

B. Fault injection campaigns 

1) F (Faults) 
The fault space assigned to the experiments performed in 

this work includes only stuck-at faults (either at '0' or '1') in 
program memory space. 

Each stuck-at fault is determined by three elements: the 
memory address to be attacked, the bit number within this 
address and the type of fault (stuck at '0' or '1').  

Matlab was used for generating a vector of 5.984 faults. 
The elements that characterize each fault were generated as 
follows: 

 Addresses: The address of each fault was generated 
using a uniform distribution between 0xA000 and 
0xF230 which is the memory space filled by the 
firmware code. There are no repeated addresses. 

 Bit number: This element was generated by a uniform 
distribution between 0x0 and 0xF. 

 Type of fault: The program memory content was 
disassembled and saved in a Matlab file (.m). Once the 
address of the fault and the bit number were generated, 
the memory content was used to get the bit value at that 
location. If the memory contained a '0', the fault type 
set to stuck at '1' and if the memory contained a  '1', the 
fault type was set to stuck at ‘0’. 

The fault vector obtained with this procedure was used to 
configure the Saboteur during each run. 

2) A (Activation) 
The fault activation stage consists in executing a therapy 

routine after the fault was set. This routine includes a system 
integrity check which is performed before delivering therapy 
pulses. When this integrity check fails, the program goes into 
a safe mode, which implies aborting the therapy.  

The therapy was configured with standard parameters 
before the firmware compilation. This therapy has a periodic 
behavior and as a consequence, only the first cycle is 
evaluated during the experiments. 

Four possible exit points of the program were taken into 
account for each run: Normal execution, the program ends 
after the first therapy cycle; Reset, the program gets back to 

the start point; Safe mode, the program goes into safe mode; 
Timeout, the program has an unexpected behavior and the 
timeout expires. 

The hardware breakpoint capability of the OpenMSP430 
was used to set breakpoints at the locations mentioned above. 
This was necessary due to the fact that a ROM was used for 
implementing the program memory, for which software 
breakpoints are not allowed. 

The Event Recorder was used to obtain a trace of the 
program behavior. It was configured to capture the following 
groups of events which are enough for the evaluation of 
system misbehaviors: 

 Writing on the variable that stores the error status of 
the system. 

 End of the first program cycle. 

 Output terminals management. 

 Pulses amplitude setting. 

 Program reset. 

The fault injection experiments are managed through the 
OpenMSP430 debugging interface (by setting the fault to be 
injected, configuring the Event Recorder, starting the program 
execution and getting the results). For this reason, and with the 
aim of automating the experiment, a GDB script was 
developed. The orders of the script are the following: 

1. Connection with the target. 

2. Hardware breakpoints setting. 

3. Event Recorder configuration. 

4. Processor reset (provoked by writing an invalid value 
to the watchdog control register). 

5. Timeout setting. 

6. Saboteur setting. 

7. Start of program execution. 

8. Reading of the events captured by the Event Recorder. 

9. Repeat steps 4 to 8 with a new fault. 

The program execution evaluated in each run includes the 
integrity check routine and the first cycle of the therapy 
pulses. This has a duration of 654.860 clock cycles (32,743 
ms). 

3) R (Readouts) 
The results obtained from the experiment are based in the 

data extracted from the Event Recorder after each run. This 
information is compared with that obtained with a golden run 
(run without faults) in order to determine whether there was a 
misbehavior. 



 

 

It is considered that there was a misbehavior if some of the 
following occurrences took place: 

 The exit point of the program was different from that 
of a normal execution. 

 The order of the captured events was different from 
that of the golden run. 

 Any pulse amplitude was set incorrectly. 

 The output terminals are set incorrectly. 

 The amount of therapy pulses or their duration was 
wrong. 

The faults are classified according the kind of misbehavior 
that they produce: 

 Dormant faults: They had not produced an error in the 
system up to the end of the experiment. 

 Active Detected faults: The system detected the fault 
and consequently had a safe behavior. 

 Active Undetected Safe for the patient: no therapy is 
delivered, it is aborted prematurely, or it is incorrect 
but safe for the patient. 

 Active Undetected Potentially Harmful: the energy of 
the delivered pulses is increased (for instance, 
modifying pulse amplitude or pulse width). 

4) M (Measures) 
Results of the 5.984 experiments were analyzed and 

compared with a golden run. A summary is shown in 
Table III. 

TABLE III.  PRELIMINARY EXPERIMENT RESULTS 

Dormant 

faults 
5.680 

Active 

faults 

Detected 32 

Not Detected 
Safe 268 

Potentially harmful 4 

 

The faults classified as potentially harmful produced an 
unexpected pulse amplitude setting while the therapy was 
being delivered. If the new amplitude is greater than the 
correct one, there could be adverse effects. 

For that reason, these 4 faults were individually analyzed 
in order to check the amplitude that was being set. The 
analysis showed that even though the function that set the 
amplitude was called improperly, the amplitude was finally set 
with the correct value. 

Based on the obtained results, 5,1 % of the injected faults 
produced misbehaviors in the system. Only a 0,07 % provoked 
a potentially harmful misbehavior; however, after analyzing 
them in detail, it was verified that they are not risky. 

The set of faults taken into account during the experiment 
totalizes 3,56 % of the fault space (considering only the stuck-
at faults in program memory).  

V. CONCLUSIONS 

Two IP modules, a saboteur and an event recorder, were 
developed for low cost fault injection on small processor-
based embedded systems. 

Both modules were successfully used to perform fault 
injection experiments on a prototype of an implantable pulse 
generator under development. 

Preliminary results of a fault injection campaign for 
permanent faults in program memory were presented. 

The saboteur provides a flexible solution for fault injection 
in memory and interconnection buses, both for SEUs and 
permanent stuck-at faults.  

The event traces captured by the event recorder IP played a 
fundamental role to understand the faulty behavior for several 
faults and to determine if the faulty behavior can be harmful 
for the patient using the implantable device. 
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