

Auxiliary IP Blocks for Early Dependability Analysis

of Small Processor based Systems

J. Barboza, J. Basualdo, J. Perez Acle

Facultad de Ingeniería

Universidad de la República

Montevideo, Uruguay

Abstract—Fault injection experiments are a powerful aid to

identify and fix problems in the design of fault tolerance

mechanisms, particularly when performed at early development

phases. For this purpose, it is important not only to classify the

faults, but also to understand the different faulty behaviors.

When an embedded system is considered, a common approach

for analyzing the faulty behavior is to exploit the execution trace

features often available in medium to high size processors. This

paper proposes two IP modules intended to facilitate fault

injection experiments in small processor systems: a memory

saboteur and a bus event recorder. The former allows the

injection of SEU and stuck-at faults, both at a specific memory

location and at the address or data bus level. The latter provides

an alternative to the use of a full execution trace solution, which

is often not available in small processors. The IP blocks were

used to inject the faults and to analyze the behavior of a

submodule of an implantable pulse generator running on an

FPGA-hosted openMSP430 processor system. The IP blocks, the

fault injection environment and the results of the fault injection

campaigns are presented. The event traces captured by the event

recorder IP played a fundamental role to understand the faulty

behavior.

Keywords—dependability analysis; fault injection; saboteur;

openMSP430; MSP430; memory saboteur; bus event recorder

I. INTRODUCTION

Fault injection has been extensively used for the
dependability validation of embedded systems, both for fault
removal and fault forecasting [1]. When the objective is fault
forecasting, the expected outcome of the injection campaign is
to classify the faults and obtain the fault coverage provided by
the detection and tolerance mechanisms.

On the other hand, when fault injection is performed at the
earlier development phases, usually the predominant objective
is fault removal. In this case, fault injection is the first step of
a verification-diagnosis-correction process. The faulty
behavior must be understood in order to identify and fix what
is wrong in the detection and tolerance mechanisms under
development. This raises the need for more observability on
the fault injection experiment.

When the system under analysis includes a
microprocessor, an inexpensive solution to analyze the faulty
behavior is the use of the debug and execution trace resources
offered by medium to high size modern processors. These
tools, particularly the second one, provide a deep insight of the

behavior of the faulty system without sacrificing execution
speed. However, execution trace tools are usually not
available in small processors and slower solutions must be
used.

Here we present a bus event recorder instrumentation IP
designed to facilitate emulation-based fault injection
experiments in small processor systems. With a proper
selection of the event matching conditions, the resulting log
enables a thorough understanding of the faulty behavior. We
also present a memory saboteur that allows for the injection of
SEU and stuck-at faults, both at a specific memory location
and at the address or data bus lines.

Both IP blocks were used to inject faults and to analyze the
resulting behavior of a module of an implantable pulse
generator under development. The module runs on an FPGA-
hosted openMSP430 processor system. The event traces
captured by the event recorder IP played a fundamental role to
understand the faulty behavior. The event traces also allowed
to evaluate if the faulty behavior could be harmful for the
patient using the implantable device.

The following Section briefly presents some of the most
commonly used instrumentation IPs for fault injection and
fault effect observation. In Section III we describe the
proposed instrumentation IPs. Section IV details the
experimental setup and presents the preliminary results of a
fault injection campaign. Finally in Section V some
conclusions are presented.

II. BACKGROUND

Different fault injection techniques are commonly used to
assess the effectiveness of fault detection and fault tolerance
mechanisms [2]. Here we concentrate in the emulation-based
technique [3], i.e., a prototype of the system under evaluation
is synthesized, usually inside an FPGA, together with the
instrumentation needed to inject the faults and to observe its
effects.

Some of the most usual solutions for this instrumentation
are briefly described in the following subsections.

A. Injecting faults

Saboteurs are often used as the means to inject a fault at
some point in a circuit. They were initially introduced in [4]
for simulation-based fault injection, and are extensively used

This work was partially supported by grant POS_NAC_2013_1_11657
from the Agencia Nacional de Investigación e Innovación, Uruguay .

also in emulation-based fault injection. A serial saboteur is a
block inserted in the path between a driver output and its
corresponding receivers. Additional block inputs are needed to
control if the output is modified according to some fault
model, or if it is left equal to the input for normal behavior

This scheme can be directly exploited, for example, to
implement permanent stuck-at faults on a bus line.

More elaboration is needed when trying to inject faults in
individual memory locations. The direct solution of adding a
saboteur for each location is either unfeasible because of the
excessive area cost involved, or directly impossible if the
memory is implemented using the memory blocks embedded
inside the FPGA. In this situation a global saboteur can be
inserted at the memory output bus. The controller that drives
the saboteur control inputs must evaluate the memory address
and control signals in order to activate the fault only when the
location under attack is being accessed.

SEU faults can be faced by triggering a read-modify-write
cycle at the injection time. This approach can be used to inject
faults in individual flip-flops [5] or at memory locations [6].
Another approach consists in providing additional logic to the
saboteur controller described above in order to activate the
fault at the injection time and de-activate it if a new write
operation to the location under attack is detected. This latter
approach is the one we used, as described below.

B. Observing faulty behavior

The simplest solution for observing fault injection
experiments of a processor based system would be waiting
until the program reaches the exit point and observing the
memory to check if the results produced by the program were
affected by the fault. This is not enough because the normal
execution flow is modified by effect of the injected fault;
consequently, additional program exit points must be
identified. Moreover, a timeout mechanism must be used
because the faulty execution flow, or even the internal
processor logic, can remain in an endless loop.

A low cost solution to implement an environment like the
one described above is to use a watchdog or timer as a timeout
mechanism, and the debug features offered by almost all the
processors to capture the exit points and observe the final
memory contents.

However, if I/O activity is involved, and especially if there
are safety requirements associated to it, I/O operations must be
observed to decide if the faulty behavior is safe or not. Also,
when the main goal is to fix possible detection or tolerance
problems, a more detailed view of the execution flow is
needed. In these situations the execution and/or bus activity
trace tools available in most processors are a valuable tool.

Examples of the execution/bus activity trace features
available in modern processors are the ARM CoreSight On-
chip Trace and Debug Architecture [7] available in ARM
based System on Chip designs, and the AHB Trace buffer
peripheral available for the Leon3 processor [8].

Smaller processors usually do not provide full trace
capabilities, or in the best case they have a very limited

capacity. For example, the Enhanced Emulation Module [9]
available on some MSP430 processors from Texas provides
advanced debugging including breakpoint conditions triggered
by program or data access conditions, but the trace depth is
limited to the 8 instructions that precede a breakpoint.

III. PROPOSED IP MODULES DESCRIPTION

A. Saboteur

A saboteur, like the one described at the end of Section
II.A. Injecting faults, was developed targeting an openMSP430
processor system [12]. The openMSP430 processor core [10]
is a processor compatible with the Texas Instruments MSP430
family and is available at the Opencores repository [11].

The saboteur can inject faults at the address and data bus
lines, and also at a specific memory location.

For the faults injected at a bus line, the supported fault
models are permanent stuck-at-0 and stuck-at-1 and are
configured by a mask specifying the affected bit positions. For
the memory location faults the same fault models plus SEU
(bit-flip) faults are supported. Additional configuration is
needed to specify the affected memory address. In the case of
SEU faults, the time at which the fault must be injected should
also be specified.

The SEU faults remain active since the configurable
injection time until the module detects a write operation on the
same memory location.

Fig. 1. Connection and main structure of the Saboteur.

The saboteur architecture consists of a fault injection
controller and two saboteur blocks to be inserted in the
memory address and data output buses. Fig. 1 is a block
diagram, showing only one of the saboteurs for clarity. For
each saboteur, the fault injection controller generates a mask
with value “1” at the positions where a fault must be injected
or all zeroes at the times no fault must be injected. An
additional control signal indicates the type of fault that must
be injected. The saboteur is purely combinatorial and produces
the proper modification according to the fault type indicated
by the controller.

The faults corresponding to specific memory locations are
injected at the output data bus. The fault injection controller
monitors the memory address and control signals: when a read
access to the configured address is detected, the mask is
activated so that the faulty value is produced by the saboteur

block; when a write operation is detected and there is an active
SEU type fault, the fault is de-activated and remains inactive
until reconfiguration.

The saboteur block is shown in Fig. 2 and Table I. It
receives the mask and fault type from the controller and
applies the proper bitwise operation according to the fault
type. Note that when no fault is being applied the controller
generates an “all zeroes” mask so that all the gates leave the
input unmodified.

Fig. 2. Structure of the Injector block.

TABLE I. LOGIC USED FOR EACH TYPE OF FAULT

Fault type Logic operation Input Output

SEU XOR
1 0

0 1

Stuck-at '1' OR
1 1

0 1

Stuck-at '0' AND
1 0

0 0

B. Event recorder

For the fault injection experiment to be representative, it is
desirable to maintain the system under study with a minimum
of changes. For this reason, in order to be able to capture a log
of the program behavior during each run, a new peripheral was
developed –the Event Recorder. This peripheral allows
obtaining such a log while running the system at normal speed
and without modifying the firmware code.

The Event Recorder captures the occurrence of pre-
configured events in the OpenMSP430 buses and then stores
them in an internal memory (FIFO). The events that can be
configured are read or write transfers with matching values in
address or data bus. Once a capture takes place, signals of
Program memory and Data memory buses corresponding to
the last bus transfer are stored. Additionally, together with
these signals, a time-stamp word and a bit mask (indicating the
event that triggered the capture) are also stored. The time-
stamp must be generated by an external timer.

This new peripheral is managed completely through the
peripheral bus. This allows the user to configure and read the
Event Recorder either from the program executed by the
microcontroller or through the debugging unit using GDB
debugger.

The hardware description of this block was written using
VHDL. After synthesizing for an Altera Cyclone III chip, the
following summary was obtained:

 Total logic elements: 1.626 / 15.408 (11 %).

 Total memory bits: 26.624 / 516.096 (5 %). This can be
adjusted by modifying the size of the FIFO.

 Maximum operation frequency: 93.46 MHz.

1) Internal structure
The peripheral is basically composed by 5 main blocks as

shown in Fig. 3.

Buses interface: This block connects the peripheral bus to
the Control registers and Data output registers blocks. Besides
that, it uses latches for storing the last transaction carried out
on the program memory and data memory bus.

Control registers: Besides implementing the registers
which are mapped in peripheral space, this block contains the
set of registers that stores the events to be captured. The
number of events is configured at compile time.

Comparator: This is a combinatory block which compares
the data of the last bus transaction (coming from the Buses
interface) with the content of the registers implemented in the
Control registers block. When a coincidence occurs, the data
of the buses is sent to the FIFO block, along with a bit mask
identifying the event that triggered the capture and a write
enable signal connected to the FIFO through an edge detector.

Fig. 3. Main structure of the Event Recorder.

FIFO: This FIFO memory stores the comparator output
when the write enable signal is activated. The size of the FIFO
is configurable at compile time.

Output data registers: This block is intended to make the
content of the FIFO accessible from the peripheral bus; it
divides the FIFO output into 16 bits words which are mapped
in peripheral space.

2) General operation of the peripheral
To correctly configure and read the Bus Event Recorder,

the following steps must be performed:

a) Enabling peripheral writing

Since this peripheral is aimed to be part of a fault injection
system, it is necessary to avoid possibly undesirable
reconfigurations during the injection experiments. This is due
to the fact that, in presence of a fault, the program being
executed could behave in an unexpected way, performing
writing operations in the Bus Event Recorder addresses.

In order to reduce the probability of this occurring, a
mechanism that allows enabling and disabling writing
operations was implemented. A password has to be written in
a certain peripheral address so as to enable writing in the
peripheral, and similarly, a different password can be written
to disable writing. The address, as well as the passwords, is
configurable before compiling the project.

In particular, for the application described in this paper, the
address was set to 0x01C6 (base address + 0x0006), the
enabling password to 0x5555 and the disabling password to
0xAAAA.

b) Events to capture
The types of event that the Bus Event Recorder is able to

capture are listed in Table II. For example, the first row type
of event is activated when writing to the Memory Data Bus at
an address matching a pre-configured value.

TABLE II. TYPES OF EVENT

Transfer type Matching condition Bus

WRITE Address Data Memory Bus

WRITE Data Data Memory Bus

READ Address Data Memory Bus

READ Data Data Memory Bus

READ Address Program Memory Bus

READ Data Program Memory Bus

For each event that the peripheral must capture, two write
operations must be done to configuration registers. First,
CTRL 1 register (base address) must be written with the event
identifier, a flag indicating whether the event associated with
this identifier is active and the type of event to be captured.
Second, CTRL 2 register (base address + 0x0002) must be
written with the matching value for address or data.

These steps must be repeated for each event that must be
configured. Once the event configuration is finished, it is
recommended to disable the peripheral writing as explained
above.

c) Reading captured events
Before reading a captured event, it is necessary to perform

a writing operation on base address + 0x0008. This action
extracts the previous event from the FIFO allowing for the

reading of a new event. The event can be read through the
peripheral bus in a range of 18 addresses mapped on
peripheral space.

In addition, the system has a status flag register which
indicates the amount of events in the FIFO. Empty and full
flags are also available.

IV. EXPERIMENTAL SETUP

The device under study was a sub-module of a system
based on the microcontroller MSP430 which is intended to be
used in an implantable pulse generator (IPG). The IPGs are a
class of biomedical equipment which best-known example is
the cardiac pacemaker. The chosen sub-module was that
responsible for managing the therapy delivered to the patient,
for which its dependability features are critical. This sub-
module was implemented in an FPGA-hosted OpenMSP430
microcontroller and the IP modules described above were
integrated to the system. Finally, the FARM model [1] was
used to perform the fault injections campaigns.

A. System emulation and IP modules integration

As the system to be evaluated is based on a MSP430
microcontroller, the OpenMSP430 was used to emulate it.
This project is compatible with the family of the
microcontroller used by the system

The program memory size of the OpenMSP430 was
configured to 24 Kbytes and the data memory size to 10
Kbytes in order to adapt the system to the firmware
requirements. A ROM was used for storing the program code
so as to better emulate the actual system, which uses flash
memory for this purpose. The clock frequency was set to 20
MHz so as to work just like the actual system.

Two Saboteur modules were used, one for each memory
(program and data). The Saboteur modules as well as the
Event Recorder were connected to the peripheral bus so as to
be able to configure and read them. The Saboteur modules
were connected to the corresponding address bus and between
the output data of the memory and the data bus of the
OpenMSP430. On the other hand, the Event Recorder was
connected to the program and data memory buses of the
microcontroller.

In addition, a new timer A was implemented so as to
provide the Event Recorder with a time-stamp. This timer is
also used to establish a timeout for the fault injection runs.
Taking this into account, the interrupt request output of the
timer was connected to the NMI input of the OpenMSP430. In
this way, it is possible to interrupt the program execution and
lead the program counter to a known address (NMI ISR) in
case the program execution takes an unpredictable behavior.

The hardware description was synthesized in an Altera
Cyclone III FPGA. The firmware of the system under study
was compiled with GCC tools and it was loaded and debugged
into the platform using GDB. The OpenMSP430 UART serial
debug interface was used to send the GDB commands to the
on-chip debug unit.

Even though the IP modules were used with a particular
system based on the OpenMSP430 and they were configured
through the debugging interface of this processor, it is worth
to point out that their configuration interfaces can be easily
adapted to any other external communication interface and
therefore used in systems based on other microprocessors. In
case of the Event Recorder, for using it with another
processor, it is also necessary to modify the Comparator block
so as to adapt it to the structure of the new processor buses.

As mentioned in Section III.A. Saboteur, the Saboteur is
intended to inject faults on memory and also on the
address/data buses lines. This module can also be used for
injecting faults in the register file of the processor, provided
register file buses are accessible.

B. Fault injection campaigns

1) F (Faults)
The fault space assigned to the experiments performed in

this work includes only stuck-at faults (either at '0' or '1') in
program memory space.

Each stuck-at fault is determined by three elements: the
memory address to be attacked, the bit number within this
address and the type of fault (stuck at '0' or '1').

Matlab was used for generating a vector of 5.984 faults.
The elements that characterize each fault were generated as
follows:

 Addresses: The address of each fault was generated
using a uniform distribution between 0xA000 and
0xF230 which is the memory space filled by the
firmware code. There are no repeated addresses.

 Bit number: This element was generated by a uniform
distribution between 0x0 and 0xF.

 Type of fault: The program memory content was
disassembled and saved in a Matlab file (.m). Once the
address of the fault and the bit number were generated,
the memory content was used to get the bit value at that
location. If the memory contained a '0', the fault type
set to stuck at '1' and if the memory contained a '1', the
fault type was set to stuck at ‘0’.

The fault vector obtained with this procedure was used to
configure the Saboteur during each run.

2) A (Activation)
The fault activation stage consists in executing a therapy

routine after the fault was set. This routine includes a system
integrity check which is performed before delivering therapy
pulses. When this integrity check fails, the program goes into
a safe mode, which implies aborting the therapy.

The therapy was configured with standard parameters
before the firmware compilation. This therapy has a periodic
behavior and as a consequence, only the first cycle is
evaluated during the experiments.

Four possible exit points of the program were taken into
account for each run: Normal execution, the program ends
after the first therapy cycle; Reset, the program gets back to

the start point; Safe mode, the program goes into safe mode;
Timeout, the program has an unexpected behavior and the
timeout expires.

The hardware breakpoint capability of the OpenMSP430
was used to set breakpoints at the locations mentioned above.
This was necessary due to the fact that a ROM was used for
implementing the program memory, for which software
breakpoints are not allowed.

The Event Recorder was used to obtain a trace of the
program behavior. It was configured to capture the following
groups of events which are enough for the evaluation of
system misbehaviors:

 Writing on the variable that stores the error status of
the system.

 End of the first program cycle.

 Output terminals management.

 Pulses amplitude setting.

 Program reset.

The fault injection experiments are managed through the
OpenMSP430 debugging interface (by setting the fault to be
injected, configuring the Event Recorder, starting the program
execution and getting the results). For this reason, and with the
aim of automating the experiment, a GDB script was
developed. The orders of the script are the following:

1. Connection with the target.

2. Hardware breakpoints setting.

3. Event Recorder configuration.

4. Processor reset (provoked by writing an invalid value
to the watchdog control register).

5. Timeout setting.

6. Saboteur setting.

7. Start of program execution.

8. Reading of the events captured by the Event Recorder.

9. Repeat steps 4 to 8 with a new fault.

The program execution evaluated in each run includes the
integrity check routine and the first cycle of the therapy
pulses. This has a duration of 654.860 clock cycles (32,743
ms).

3) R (Readouts)
The results obtained from the experiment are based in the

data extracted from the Event Recorder after each run. This
information is compared with that obtained with a golden run
(run without faults) in order to determine whether there was a
misbehavior.

It is considered that there was a misbehavior if some of the
following occurrences took place:

 The exit point of the program was different from that
of a normal execution.

 The order of the captured events was different from
that of the golden run.

 Any pulse amplitude was set incorrectly.

 The output terminals are set incorrectly.

 The amount of therapy pulses or their duration was
wrong.

The faults are classified according the kind of misbehavior
that they produce:

 Dormant faults: They had not produced an error in the
system up to the end of the experiment.

 Active Detected faults: The system detected the fault
and consequently had a safe behavior.

 Active Undetected Safe for the patient: no therapy is
delivered, it is aborted prematurely, or it is incorrect
but safe for the patient.

 Active Undetected Potentially Harmful: the energy of
the delivered pulses is increased (for instance,
modifying pulse amplitude or pulse width).

4) M (Measures)
Results of the 5.984 experiments were analyzed and

compared with a golden run. A summary is shown in
Table III.

TABLE III. PRELIMINARY EXPERIMENT RESULTS

Dormant

faults
5.680

Active

faults

Detected 32

Not Detected
Safe 268

Potentially harmful 4

The faults classified as potentially harmful produced an
unexpected pulse amplitude setting while the therapy was
being delivered. If the new amplitude is greater than the
correct one, there could be adverse effects.

For that reason, these 4 faults were individually analyzed
in order to check the amplitude that was being set. The
analysis showed that even though the function that set the
amplitude was called improperly, the amplitude was finally set
with the correct value.

Based on the obtained results, 5,1 % of the injected faults
produced misbehaviors in the system. Only a 0,07 % provoked
a potentially harmful misbehavior; however, after analyzing
them in detail, it was verified that they are not risky.

The set of faults taken into account during the experiment
totalizes 3,56 % of the fault space (considering only the stuck-
at faults in program memory).

V. CONCLUSIONS

Two IP modules, a saboteur and an event recorder, were
developed for low cost fault injection on small processor-
based embedded systems.

Both modules were successfully used to perform fault
injection experiments on a prototype of an implantable pulse
generator under development.

Preliminary results of a fault injection campaign for
permanent faults in program memory were presented.

The saboteur provides a flexible solution for fault injection
in memory and interconnection buses, both for SEUs and
permanent stuck-at faults.

The event traces captured by the event recorder IP played a
fundamental role to understand the faulty behavior for several
faults and to determine if the faulty behavior can be harmful
for the patient using the implantable device.

References
[1] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E.

Martins, and D. Powell, “Fault injection for dependability validation: a
methodology and some applications,” IEEE Trans. Softw. Eng., vol. 16,
no. 2, pp. 166–182, 1990.

[2] Y. Yu and B. W. Johnson, “Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation,” A. Benso and P. Prinetto,
Eds. Kluwer, 2003, pp. 7–39.

[3] P. Civera, L. Macchiarulo, M. Rebaudengo, M. S. Reorda, and M.
Violante, “FPGA-based fault injection for microprocessor systems,” in
Proceedings 10th Asian Test Symposium, 2001, pp. 304–309.

[4] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault injection
into VHDL models: the MEFISTO tool,” in Proceedings of IEEE 24th
International Symposium on Fault- Tolerant Computing, 1994, pp. 66–
75.

[5] J. Perez Acle, M. S. Reorda, and M. Violante, “Early, accurate
dependability analysis of CAN-based networked systems,” IEEE Des.
Test Comput., vol. 23, no. 1, pp. 38–45, Jan. 2006.

[6] J.-M. Daveau, A. Blampey, G. Gasiot, J. Bulone, and P. Roche, “An
industrial fault injection platform for soft-error dependability analysis
and hardening of complex system-on-a-chip,” in 2009 IEEE
International Reliability Physics Symposium, 2009, pp. 212–220.

[7] ARM CoreSight On-chip Trace and Debug Architecture,
http://www.arm.com/products/system-ip/debug-trace/

[8] J. Gaisler, E. Catovic, M. Isomaki, K. Glembo, and S. Habinc, “GRLIB
IP core user’s manual. Version 1.3.7 - B4144,” 2014.

[9] “SLAA263F–September 2005–Revised July 2015 - Application Report -
Advanced Debugging Using the Enhanced Emulation Module (EEM)
With IAR Embedded Workbench 5.60,” 2005.

[10] O. Girard, “OpenMSP430,” 2009.

[11] OpenCores community for development of hardware IP cores as open
source, http://opencores.org/

[12] J. Basualdo, M. Vazquez, and F. Viera, “SATELITEST: Test de
inyeccion de fallas en satelite ANTEL-SAT.” Montevideo, p. 140, 2014.

