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ABSTRACT

Soybean producers suffer from caterpillar damage in many areas of the world. Estimated average economic
losses are annually 500 million USD in Brazil, Argentina, Paraguay and Uruguay. Designing efficient pest control
management using selective and targeted pesticide applications is extremely important both from economic and
environmental perspectives. With that in mind, we conducted a research program during the 2013-2014 and
2014-2015 planting seasons in a 4,000 ha soybean farm, seeking to achieve early pest detection. Nowadays pest
presence is evaluated using manual, labor-intensive counting methods based on sampling strategies which are
time consuming and imprecise. The experiment was conducted as follows. Using manual counting methods as
ground-truth, a spectrometer capturing reflectance from 400 to 1100 nm was used to measure the reflectance of
soy plants.

A first conclusion, resulting from measuring the spectral response at leaves level, showed that stress was a
property of plants since different leaves with different levels of damage yielded the same spectral response. Then,
to assess the applicability of unsupervised classification of plants as healthy, biotic-stressed or abiotic-stressed,
feature extraction and selection from leaves spectral signatures, combined with a Supported Vector Machine
classifier was designed. Optimization of SVM parameters using grid search with cross-validation, along with
classification evaluation by ten-folds cross-validation showed a correct classification rate of 95%, consistently on
both seasons.

Controlled experiments using cages with different numbers of caterpillars - including caterpillar-free plants -
were also conducted to evaluate consistency in trends of the spectral response as well as the extracted features.

Keywords: Soy plant, defoliation, point spectrometer, spectral signature, UAV, multispectral camera, biotic
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1. INTRODUCTION

Damages produced by caterpillar in soy plantations is nowadays a major concern for producers since it incurs
in significant losses, but also for environmental issues. Indeed, with the increase of soybean production, the
application of pesticides and fertilisers has become a source of major impact on soil and potable water when
plantations are close to rivers, since it causes the appearance of toxins and toxic algae. Recently in Uruguay, for
instance, the government is paying important attention to this issue. From then on, the capability of precisely
spotting the presence of caterpillars in soy plantations has become a major issue.

In this work, we propose a method to detect the presence of caterpillar in soy plants indirectly, by inferring
the stress the plants are suffering as a consequence of defoliation. While the final goal is to perform this
detection remotely by capturing images with an UAV, this paper is focused on field measurements using a
point spectrometer. There are two fundamental reasons to follow such approach: First, the cost of hyperspectral
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cameras is still too high, as well as drones having the capability to use them as payload; second, the acquisition of
a continuum spectral reflectance is extremely useful to understand which are the main features that differentiate
a plant under stress (either biotic or abiotic) from a healthy one.

All field experiments were performed using a so-called point spectrometer∗ This spectrometer has a field
of view of 30o, so the captured spectral reflectance is computing by integrating over a neighbourhood of the
spotted region. The reflectance spectrum captured by the instrument ranges from 340nm to 1170nm. For each
wavelength λ, the spectral reflectance ρ(λ) is measured as the ration between the reflected light and the incident
light, that is

ρ(λ) = 100
Gr(λ)

Gi(λ)
,

where Gr(λ) and Gi(λ) are the reflected and the incident spectral intensity, respectively. It follows that a
fundamental step prior to taking measurements is to calibrate the incident light. This calibration is performed
by measuring the reflectance on a white, Lambertian surface.

Our team was composed by engineers and data scientists, an agronomist with deep knowledge of the farm,
and an experienced entomologyst. This allowed us to spot the regions where caterpillars were present, and to
establish the ground truth.

The paper is organised as follows. In Section 2 we discuss previous work. Then, in Section 3 we describe the
data acquisition protocol, both for the acquisition of the soy plants’ spectral signature, as for the multispectral
images capture from the drone. Section 4 is devoted to the analysis of the acquired data. It will proven that by
extracting a set of features from their signatures, soy plants under stress can be automatically detected with an
accuracy of 95%. A controlled experiment using cages that isolate the plants with and without caterpillars will
be described in Section 6. We conclude in Section 7, where a discussion on the results of our experiments and
future work are presented.

2. PREVIOUS WORK

Recently, in 2010, a book edited by Jones and Vaughan (“Remote sensing of vegetation”1) presents a large variety
of technical information related to the use of hyperspectral cameras in drones for pests and diseases detection,
and nutrient management. The book “Hyperspectral remote sensing of vegetation and agricultural productivity”,
edited by Thenkabail, Lyon and Huete in 2011,2 is nowadays the most complete and in depth reference on the
field.

There exists a myriad of successful studies to many cultures and plagues, however, to our knowledge, no
previous work on the detection of caterpillar in soy plantations has been reported in the literature. In this
section we briefly summarise a few previous works that we consider to be the most relevant to our investigation.

McKinion et al. (2009)3 show that plagues in cotton, in particular Lygus lineolaris or Palisot de Beauvois,
can be controlled at an early stage using NDVI followed by a clustering or a segmentation stage. The study
concludes that, based on experiments performed on 1200 ha in Mississippi, USA, the application of such a system
may reduce the use of pesticide in 40%.

Yang et al. (2009)4 propose a technique to distinguish stress induced by greenbugs (Schizaphis graminum) and
Russian wheat aphids en wheat based on remote sensing. The study concludes that using a 16 bands radometer
or multispectral camera, it is possible to distinguish the stress caused by these two insects. The work presented
by Backoulou et al. (20115 and 20136) exhibits similar methodologies in wheat to distinguish the stress induced
by Diuraphis Noxia from other stresses causes either biotic or abiotic, and to quantify the difference.

Finally, the group leaded by Susan Ustin at UC Davis has been studying the application of remote sensing
with hyperspectral imaging in general. An interesting work, that dates back to 2002 (see for instance Zhang et
al., 2002;7 Zhang et al., 20038) studies stress detection tomatoes, caused by late blight disease. This study shows
that it is possible to identify, diagnose and classify the infection degree by sensing the tomato plants’ canopy.

∗In our case, we use a BLUE-Wave Spectrometer, from StellarNet Inc., USA.



3. DATA ACQUISITION CAMPAIGN
3.1 Collection of spectral signatures with a field spectrometer
Two kind of experiments were performed using the point spectrometer. In the first one, we spotted, respectively,
a set of 79 and 92 healthy and stressed plants due to caterpillar defoliation, and we built a labeled database
for each class. In each plant, three leaves with different defoliation levels were chosen, and for each one three
spectrometer measurements were captured. A first observation was that, for each plant, all the spectral responses
were almost identical, and therefore stress was actually a property of each plant.

The second kind of experiment was performed on a more controlled environment, using cages covered with
a white tulle. Two cages were used to cover a pair healthy plant, seemingly free of any caterpillar; other two
cages were used to cover healthy plants, also seemingly free of caterpillars, where we added about YY stage-ZZ
caterpillars. Stress measurements were taken before setting the cages, and a couple of weeks later.

3.2 Capture of multispectral images from a UAV
In this experiment, three caterpillar-free plants were chosen and isolated with the same kind of cages described
above. Then, a different number of caterpillars were manually introduced in each of them. A couple of weeks
after the cages were a set caterpillars were introduced, we flew over the region with a drone having a camera with
blue, red and near infrared channels. The goal was to see wether the defoliation stress due to the caterpillars
could be seen in the NDVI images with the naked eyes or not. Note that this fact is of major concern, since in
an uncontrolled situation, the producers could immediately spot those regions infected by caterpillars, and then
apply pesticides only on those regions.

4. DATA PROCESSING AND CLASSIFICATION
The purpose of this section is to propose an automatic detection method for plants under stress via their spectral
signature. A typical reflectance spectral responses of healthy and caterpillar stress-induced plants is shown on
Figure 1. The most noticeable difference in the shape of the spectral signatures can be seen on the regions
marked in red, green and black. In the red region (number 1), we can see the presence of a dip in the response
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Figure 1: Typical reflectance of healthy and caterpillar defoliated plants. Note the differences, specially in
regions marked as 1, 2 and 3.

of the stressed plant, that is not present in the healthy one. In the green region (number 2) we can see that the
slope is significantly different between both signatures. Globally, for the healthy plants, the slope is positive,
while the stressed plant exhibits zero slope or even slightly negative. Finally, for the region marked in black
(number 3), the valley seems to be more pronounced than for the healty one.



4.0.1 Feature extraction for spectral signature classification

In order to do automatic detection of caterpillar-induced stress, we need to quantify the features described in
Section 4. There is a wide variety hyperspectral vegetation indexes, and studies of their relationships with
agricultural crop characteristics (see for instance9,10). In the following we present the features that are extracted
to design a classifier. Some of them are based on the literature, while others were specifically designed for our
problem by carefully inspecting systematic differences between curves of the two classes.

Index 760

This index is defined as
I760 =

ρ760 − ρ720
ρ760 + ρ720

,

where ρλ denotes reflectance at λ nm.

Normalized Difference Vegetation Index

This index is very popular in agriculture. It is defined as

NDV I =
ρ(850)− ρ(670)

ρ(850) + ρ(670)
,

where the wavelengths are also expressed in nm.

Derivative in the region 780nm–880nm

This index captures the slope observed in the green region (Number 2) in the previous section. In order to measure
it, the curve is first smoothed to avoid localized variations. Then, the index is computed as the maximum or
the mean derivative. Another possibility consist in fitting the smoothed curve with a straight line using least
squares.

Fitting the dip with a parabola

The goal is to fit the curve with the equation ax2 + bx+ c = 0 in the dip within the red region (number 1). The
feature we consider is the quadratic term a. Figure 2 shows an example. It is worth mentioning that the range
used to fit the parabola is the one defined by the closest inflexion points.
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Figure 2: Parabola fitting of the dip within the red region (number 1) Figure 1.



Dip shape factor

This feature is, to some extent, redundant with the previous one. The idea is to measure the ration between the
depth of the dip and the region where it was fitted. It is computed as the ration x/y, where x and y are defined
as shown in Figure 3.
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Figure 3: Factor de forma del dip

Clusters visualisation

In order to visualise the separation between the samples corresponding to healty and caterpillar stress-induced
plants, we chose three indices among the set of indices defined above. Of course, as long as the number of samples
is large enough, the larger the number of indices, the largest the is the separation. Here the three selected indices
were chosen with the only goal to show that for our problem, classification seems to be well posed. Figure 4
illustrates the two set of samples in the subspace defined by (dip ratio, maximal derivative in 780–880nm, NDVI).
The blue points correspond to samples of healthy plants, while the orange ones correspond to caterpillar stress-
induced plants. It seems clear that both clusters are almost linearly separable. The classification results obtained
in Section 5 will show that, using all features and a nonlinear boundary, a good separation can be obtained.

5. RESULTS: AUTOMATIC CLASSIFICATION OF PLANTS FROM SPECTRAL
FEATURES

Now that we have defined a set of features that seem to be well adapted to the differences in the spectral
signatures between healthy and stressed plants, we address the problem of designing a classifier following a
typical machine learning approach.11,12 The classification method that yielded the best results was C-SVM, a
support vector machine with margin.13 An optimal choice of all parameters was performed using grid search,
and features were chosen in closed loop with the classifier (the so-called wrapper mode methodology14). We train
a classifier using our labeled data, and then we decompose the dataset in a training set and a validation set. To
evaluate the performance of the classifier, we use a 10 folds cross validation technique.

Thus, among the 163 plants that were inspected, only 8 of them were wrongly classified. This amounts to a
more than 95% of classification success.
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Figure 4: Visualisation of healthy and stressed plants in the subspace (dip ratio, maximal derivative in 780–
880nm, NDVI). The blue points correspond to samples of healthy plants, while the orange ones correspond to
caterpillar stress-induced plants.

Classified as healthy Classified as stressed
True healthy 76 3
True stressed 5 87

Table 1: Confusion matrix for a set of 79 healthy plants and 92 caterpillar stress-induced plants.
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6. CONTROLLED EXPERIMENTS USING CAGES

The experiment was conducted as follows. We selected four plants that exhibited very similar conditions, and
we covered them with a tulle cage in order to prevent the flow of caterpillars. In two of them (Caterpillar cage 1
and Caterpillar cage 2), a set of caterpillars were added. The other two cages (Control cage 1 and Control cage
2) were used as control. Before closing the cages, for each of the plants, the spectral response of three leaves
was acquired. Then, nine days later, the same measurements were performed. The goal of this experiments was
to analyse changes in the spectral response in Caterpillar cage 1 and Caterpillar cage 2, compared to changes
in the control cages. Figures 5 and 6 show respectively, the spectral responses in the control cages, and their
conterparts Caterpillar cage 1 and Caterpillar cage 2. The curves in blue correspond to the first measurements,
while the red ones correspond to the measurements acquired nine days later.

(a) Control cage 1 (b) Control cage 2
Figure 5: Control cages. The blue lines are the spectral response of three leaves extracted in the first campaign.
The red lines are the spectral response of three leaves acquired nine days later. See text for details.

Note that the plants stress increased in all four plants. This is certainly due to the presences of first stage
caterpillars that were certainly present within the cages. In any case, it can readily be seen that stress signs are
significantly stronger in Caterpillar cage 1 and Caterpillar cage 2, and that the trend in the features considered
in Section 4 are consistent with our previous observations.

7. CONCLUSIONS AND FUTURE WORK

In this work we have demonstrated that automatic detection of plants suffering from stress induced by the
presence of caterpillar is possible, by means of hyperspectral mesurements. Using a field spectrometer, we
achieved a classification error as low as 95%. These results are extremely encouraging, since they open the path
to effective remote sensing hypespectral imaging to distinguish healthy plants from those infected by caterpillar.
The use of drones is actually a possibility, since a spatial resolution of 2 cm per pixel can be easily achieved.
Moreover, it is important to note that once the relevant bands for the extracted features were detected, a solution
involving the use of multispectral cameras could be possible.

Another interesting conclusion is the fact that, although not surprising, the stress induced by caterpillar is
a property of the plants, and not just of each defoliated leave. Measurements on leaves of the same plant with
different degrees of defoliation yielded the same spectral response.

In the near future, we plan to develop a methodology to classify different kinds of stress, mainly into biotic
and abiotic. We already have some preliminary results that are very promising. We also plan to follow the path
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(a) Caterpillar cage 1 (b) Caterpillar cage 2
Figure 6: Caterpillar cages. The blue lines are the spectral response of three leaves extracted in the first
campaign. The red lines are the spectral response of three leaves acquired nine days later. See text for details

of remote sensing detection of soy plants diseases, now that we have shown by means of fields spectrometry that
such a classification is indeed possible.
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