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Abstract. Signal level quantization, a fundamental component in dig-ital 
sampling of continuous signals such as DPCM, or in near-lossless 
predictive-coding based compression schemes of digital data such as 
JPEG-LS, often produces visible banding artifacts in regions where the 
input signals are very smooth. Traditional techniques for dealing with this 
issue include dithering, where the encoder contaminates the input signal 
with a noise function (which may be known to the decoder as well) prior to 
quantization. We propose an alternate way for avoiding banding artifacts, 
where quantization is applied in an interleaved fashion, leaving a portion 
of the samples untouched, following a known pseudo-random Beroulli 
sequence. Our method, which is sufficiently general to be ap-plied to other 
types of media, is demonstrated on a modified version of JPEG-LS, 
resulting in a significant reduction in visible artifacts in all cases, while 
producing a graceful degradation in compression ratio.

1 Introduction

Predictive coding is one of the oldest, yet still most popular tools for signal sam-
pling, coding and compression [1,2]. The basic idea is to encode data sequen-
tially so that the value of a new sample is encoded differentially with respect
to a causal prediction computed from previously encoded samples. This helps in
decorrelating the signal, and the prediction errors to be encoded usually exhibit
a distribution that is sharply peaked at 0 [3], for which efficient entropy coding
methods such as Golomb-Rice are available [4,5,6].

The usual method for improving compression rates in predictive coding is
to allow a small distortion in the encoded signal by quantizing the prediction
errors in steps of size ∆ = 2δ + 1, where δ is a positive integer [7]. For small
values of δ, this method is often referred to as near-lossless compression, since
the maximum per-sample distortion is guaranteed to be no more than δ.

There is, however, an important drawback of quantization which applies to all
forms of digital representation of signals, including PCM, DPCM, and modern
predictive coding: when the signals being encoded are very smooth, the quanti-
zation error sequence is highly correlated, creating “bands” or “staircases” which
significantly affect the perceived quality of the reconstructed signals (see figures 1
and 3). In the case of predictive coding, this has the additional effect of being
fed back into the predictor itself, creating more complex and perhaps even more
annoying artifacts.
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Fig. 1: 2D banding effect. This artifact is more evident (and detrimental to the
visual quality) in areas with slowly varying intensity, such as the toy example
shown in this figure. Top to bottom, left to right: undistorted image, proposed
method (IQ) with δ = 4 and no dithering, JPEG-LS with δ = 4, IQ with δ = 4
and p = 0.9 (The differences in the quantized output between JPEG-LS and IQ
are due to a modified run length coding method in the latter). Note: this figure
is best appreciated on a computer screen.

The technique of dithering was originally introduced in [8] precisely for reduc-
ing banding effects due to quantization in digital signal coding. In short, dither-
ing introduces random noise in the signal, so that long sequences of smoothly
varying samples are broken up, thus effectively avoiding the banding associated
to such regions. Since then, dithering has become ubiquitous in all forms of dig-
ital signal coding, an enourmous body of work has been written on the subject,
with several variants proposed (see [9] for a review for the case of digital images).

More closely related to our work, is the concept of deterimistic dithering,
where the “noise” to be added is a function known both to the encoder and the
decoder. This idea was first proposed in the context of sampling theory in [10],
using deterministic pseudo-random noise sequences to contaminate the input sig-
nal. The contaminated signal is then sampled and quantized (non-predictively)
to one bit per sample. Under certain conditions on the dithering sequence and
the sampling rate, the method is shown to reconstruct a wide range of signals.
This idea was later extended in [11] to non-pseudo-random dithering functions
such as sinusoids, again in a non-predictive sampling context.

As with the preceding cases, our motivation lies in the removal of banding
artifacts due to quantization. However, contrary to all of the above methods,
we break the bands by allowing a pseudo-randomly chosen set of samples to be
encoded losslessly. In this way, not only bands are removed, but the quantization
error feedback that produces them is effectively broken often and, more impor-
tantly, at random positions, thus avoiding the formation of banding patterns
typical of near-lossless predictive coding.
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We apply this technique to a simplified version of the JPEG-LS standard [6],
with clearly positive results in terms of overall mean squared error (MSE) and
visual quality, both perceived subjectively, and as given by the Structural SIM-
iliarity (SSIM) image quality index [12], at the cost of a small (and predictable)
increase in file size (measured in average bits per pixel – BPP). Moreover, the
technique allows one to vary the amount of dithering, thus allowing the user to
select different trade-offs between visual quality and compressibility.

2 Background

2.1 Predictive coding

Let xn
1 denote a sequence of n data samples to be encoded, where xj

i is the sub-
sequence from i to j; the sub-index may be omitted when i = 1. Coding of a new
sample xj is done by first computing a prediction of its value in terms of past
samples, x̂j = f(xj−1), and then encoding (using some sort of Entropy coding)
the prediction error ej = xj − x̂j . Since both the encoder and the decoder have
access to the same information, the above procedure can be replicated at the
decoder, so that only errors need to be transmitted.

Usual predictors include adaptive linear functions, f(xj−1) =
∑p

k=1 akxj−k,
and simple fixed predictors such as the constant (x̂j = xj−1), and linear (x̂j =
2xj−1−xj−2) ones. The latter two are popular in “low complexity” compression
algorithms such as JPEG-LS, as they require very little hardware resources. In
order to compensate for the simplicity and fixed nature of these predictors, an
adaptive component is usually included in the form of a bias correction term
bj = 1

j−1

∑j−1
i=0 ei. In this way, the final error ej = êj + bj , where êj is the

output of the fixed predictor, has an empirical distribution centered at 0, which
results in compression gains. As fixed predictors tend to exhibit different biases
depending on the local shape of the sequence, bias correction is often made
context dependent, where by context we mean some function of the past few
samples which captures the shape of the signal near the sample being encoded.

2.2 Near-lossless coding

In this setting, prediction errors are quantized in steps of size ∆ = 2δ + 1, for
a maximum absolute per-sample distortion of δ between the original signal xn

and the one reconstructed at the decoder, which we denote by yn. The quantized
error ẽj is obtained from ej via,

ẽj = q(ej) = sign(ej)

[
|ej |+ δ

1 + 2δ

]
,

where [·] denotes rounding to nearest integer. However, since both decoder and
encoder must have the same data available when processing the j-th sample, on
both sides the prediction x̂j must be now based on the reconstructed samples
yn−1, x̂j = f(yj−1), and not on the original ones, xk−1. Therefore quantization
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Fig. 2: Interleaved quantization encod-
ing/decoding scheme. Here f stands for
the predictor, q for the quantization
block, q−1 for the inverse quantization
block, q−1(êj) = 2δêj , and z for a de-
lay block, whose output is its input de-
layed by one time step for j > 1, and 0
for j ≤ 1 (time indexes are ommited for
simplicity).

Fig. 3: Banding effect on lossy predic-
tive coding of 1D signals, and the effect
of dithering. Here xj = j−1, x̂j = xj−1,
and δ = 3. The last curve, shown in
cyan, corresponds to a pseudo-random
interleaved quantization of the predic-
tion errors with a quantization proba-
bility of p = 0.7.

affects not only the transmitted errors, but also the prediction itself. In regions
of the input signal where |xj − xj−1| � δ for many consecutive samples, the
corresponding regions in the reconstructed signal yn will be “flattened out”, as
small consecutive errors will be quantized to 0. To illustrate the above situation,
consider the simple zero order predictor x̂j = f(yj−1) = yj−1. In this case, the
unquantized error will be ej = xj − x̂j = xj − yj−1. Now, if ej = xj − yj−1 < δ
we have that ẽj = 0, in which case yj = yj−1. This error feedback loop goes on
until |x̂j−xj | ≥ δ, at which point a jump of size ∆ will occur. This is illustrated
in Figure 3, along with the proposed method, to be discussed next.

3 Interleaved quantization

We propose a simple modification to the lossy scheme presented in Section 2.2
where only a fraction 0 ≤ p < 1 of the prediction error samples are quantized.
As can be seen in Figure 3 (cyan line), this is enough to break the staircase (1D
banding) effect observed when no dithering is performed.

There are many possible ways to define the locations where quantization will
occur. The algorithm that we present here, coined interleaved quantization (IQ)
chooses such locations by generating a pseudo-random Bernoulli sequence wn

where wj ∈ {0, 1}, with P (wj = 1) = p, and then quantizes the errors ej at those
locations j for which the corresponding wj = 1. Although not truly random,
the sequence wn is sufficiently irregular to avoid generating visible artifacts in
yn. The key point here is that, given a fixed pseudo-random number generator,
and a fixed seed, both the coder and the decoder know the exact places where
quantization is, or is not, performed, without the need for encoding such places
explicitly. Other forms of interleaving are also possible. For example, the value
of δ applied to each sample could be drawn uniformly between 0 and δmax . A
block diagram of the above procedure is presented in Figure 2.



5

A simplified analysis, which leaves the (positive) effect of “breaking the stair-
cases” observed above aside, reveals that, for an IQ scheme with probability p,
the output of the encoder can be seen as an interleaved coding of two sources: one
corresponding to a lossy signal, and other to a lossless one. Therefore, if Llossy

is the codelength obtained for a given case with the fully lossy scheme (p = 1),
and Llossless is the one obtained in the lossless case, the resulting code length for
the IQ scheme Liq should be close to pLlossy + (1− p)Llossless. Also ignoring the
“staircase breaking effect”, and with similar arguments, the distortion Diq in the
image reconstructed by IQ should be close to pDlossy + (1 − p)Dlossless. As will
be shown in Section 4, these simplified results are indeed quite accurate. In this
way, p serves as an additional parameter to select a particular rate-distortion
trade-off.

We applied the IQ idea to a simplified version of JPEG-LS which we will
refer to as “IQ” in the sequel. Its main difference with JPEG-LS lies in the way
that it switches to run coding mode, which in IQ is analogous to the lossless
case, whereas JPEG-LS takes into account quantization (a reasonably complete
description of JPEG-LS is not possible given the space constraints; please refer
to [6] for technical details on its definition). As JPEG-LS uses a very simple,
fixed (2D) predictor together with a context-dependent bias correction term,
the effect of quantization fits well within the simplified analysis of Figure 3, as
the results below show.

4 Results and discussion

The primary purpose of our algorithm is to improve upon the visual artifacts
produced by current near-lossless prediction-based image coding techniques. Fig-
ures 4 and Figure 5 are examples for which such artifacts are clearly visible, even
for small target distortions, on a very low dynamic range medium such as paper
or even an ordinary computer monitor. It is important to underline that such
effects are much more noticeable, at even smaller target distortions, on current
commercial displays aimed at consumers in general. For a numerical evaluation
of our method, we applied the IQ algorithm to a grayscale version of the “Kodak
dataset” 1; 2. In Figure 6 we report these results in terms of the traditional Rate-
Distortion curve, based on mean squared error (MSE), and on a Rate-Quality
curve, with the “quality” given by the Structural SIMiliary index [12]. In both
cases, we compare our results against the classic (lossy, and not predictive, but
transform-based) JPEG [13], and JPEG-LS [6], focusing on the near-lossless
region (δ ≤ 5).

As can be seen in Figure 6(left), from a traditional quadratic Rate-Distortion
perspective, the proposed interleaved quantization does not offer any advantages
over JPEG-LS; it essentially coincides coincides (as expected) with JPEG-LS for
p = 1, and moves upwards (this is worse) as p decreases. Also as expected, both

1 Publicly available at http://r0k.us/graphics/kodak/
2 Additional examples, as well as the source code, are available at
http://iie.fing.edu.uy/~nacho/demos/iq/.

http://r0k.us/graphics/kodak/
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Fig. 4: Sample grayscale results. Here we show a grayscale version of the
“kodim03” image from the Kodak dataset. The above pictures correspond to
the near-lossless compression of kodim03 for δ = 10 and no interleaved quan-
tization p = 1.0 (0.86 bpp), and its absolute error with respect to the original
undistorted image. The bottom row shows the same image, and its error, when
compressed using interleaved quantization with p = 0.9 (0.96 bpp). In this case,
the artifacts are dramatically reduced at a slight bitrate increase of 0.1 bpp.

give better R-D tradeoffs than JPEG in the low-distortion region shown. In
terms of the Rate-SSIM curve shown in Figure 6(right), however, IQ improves
over JPEG-LS in the very low distortion region, with several configurations lying
below and to the right of the JPEG-LS curve (that is, higher SSIM at the same
bitrate). At some point (here, below 3.00bpp), also as expected, both IQ and
JPEG-LS lose by a significant margin to the classic JPEG algorithm, which is
optimized for non-near lossy operation. Although these numerical results may
seem dissapointing, we argue that the gain in terms of visual quality, as evidenced
in figures 4 and 5, is much larger. Also, it is important to bear in mind that one
of the advantages of near-lossless compression lies in its guaranteed maximum
distortion, something which may be advantageous, from a legal standpoint, over
traditional methods such as JPEG (example, medical imaging for diagnosis).
In this sense, our method retains such advantages, while producing less visual
artifacts, and at a small decrease in compression rate.
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Fig. 5: Color example. Without quantization (left column) the banding effect
is already noticeable for δ = 5, is clearly visible for δ = 10. Leaving only 10%
unquantized already improves the visual quality significantly, as can be seen on
the right column. Note: this example is best appreciated on a computer screen.
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