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Abstract—Cognitive Radio Networks have emerged in the last
years as a solution of two problems: spectrum underutilization
and spectrum scarcity. The main idea is to dynamically re-
allocate unused licensed frequency bands to secondary users. The
focus of this work is on the analysis and characterization of a
dynamic spectrum sharing mechanism where primary users have
strict priority over secondary ones. We present some tools and
criteria that can be used in order to improve the mean spectrum
utilization with the commitment of providing to secondary users a
satisfactory grade of service and a small interruption probability.
Our proposal is based on the application of the fluid limit
technique to analyze a stochastic complex system. We support
our analysis with representative simulated examples.

Keywords—Cognitive Radio Networks, Fluid Limit, Spectrum
sharing

I. INTRODUCTION

Nowadays, with the rapid development of wireless commu-
nications, the demand on spectrum has been growing dramat-
ically resulting in the spectrum scarcity problem: unlicensed
bands are too crowded while licensed bands are vastly under-
utilized [1][2][3]. Cognitive Radio Networks (CR) has been
proposed as a promising technology to solve that problem by
an intelligent and efficient dynamic spectrum access [4][5].
In this new paradigm we can identify two classes of users:
primary (PU) and secondary (SU). PUs are the licensed users,
they have allocated a certain portion of spectrum. SUs (also
called cognitive users) are devices which are capable of
detecting unused licensed bands and adapt their parameters
for using them.

One challenge today is to distribute the spectrum holes
efficiently and fairly. Another goal is to guarantee quality
of service (QoS) to the SUs. In this work, we consider a
scenario with C subchannels to be distributed between SUs
and PUs, and where PUs have strict priority. That is to say,
if a PU arrives when all the subchannels are in use, one
of the SUs will be deallocated immediately. An example of
an application is a cellular network that employs frequency
division duplexing where the operator has C frequency bands
(subchannels) to be assigned to its users (PUs). Another
example is the digital TV spectrum bands. In both scenarios,
if there are free subchannels, the SUs could use them with
the constraint that their communications can be interrupted at
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any time. In the last example, each TV channel has its own
frequency band, so we assume that when a PU arrives while
a SU is using its subchannel, and there are free subchannels,
this SU must be moved instantly to another band, without any
consequence to its service. If there isn’t a free subchannel
(the C subchannels are busy), the SU’s communication will be
interrupted with consequences to its QoS. In a cellular network,
PUs can use any of the C subchannels, then, the mobility of
the SUs is unnecessary. Our model takes into account only
the number of subchannels that are being used by PUs and
SUs. Therefore, if there are free subchannels, the case when a
PU arrives to a specific subchannel and a SU must be moved
instantly to another free subchannel will be modeled as if the
PU arrives to a free subchannel.

We are interested in SUs whose service cannot be in-
terrupted with high probability (like a phone call or other
interactive services). For these services it is preferable to let
the connection be rejected to avoid the situation where the
connection is established and then interrupted. These decisions
(enter or not) represent a mechanism that can be adopted by
the SUs as an admission control policy.

In this paper we analyze two features of these type of
systems: the mean spectrum utilization and the probability that
the SUs services can be interrupted. Associated with this last
issue we analyze a possible admission control policy in order
to reduce this probability.

We model the cognitive radio network as a two dimen-
sional continuous time Markov Chain (CMTC). A fluid model
approach is used to analyze the stochastic system with an
ordinary differential equation (ODE) that approximates it. One
of the main results is that the position of the ODE’s fixed
point is decisive in defining an effective operating point of
the system. In addition we show that in many cases, a SU’s
admission control mechanism is required in order to ensure a
low probability of service interruption.

There are some related works that use fluid model ap-
proaches applying to CR. Some representative examples are
[6]1[7] and [8]. In particular, in [6] the authors use a fluid model
to study SU’s queuing delay performance. In [7] they study the
coexistence of two wireless networks with different priorities
and compare throughput and delay obtained in both networks.
On the other hand, in [8], they focus on the collaborative sens-
ing within the SUs and its impact in its QoS. In these papers
the authors analyze the delay and throughput in different CR



scenarios, so their results can be complementary to ours.

The paper is organized in the following way. In section II
we describe our model of spectrum sharing in CR networks.
Section III presents the fluid model and in section IV we show
our analysis and characterization of the behavior of the system.
Finally, we conclude and discuss future work in section V.

II. STOCHASTIC MODEL

In this section we introduce our stochastic model for the
number of primary and secondary users in the system. We also
model the possibility of admission control decisions when a
SU arrives to the system (SUs shall decide, depending on the
state of the system, whether to enter or not). Without loss of
generality, we associate one user with one channel.

The model assumptions are the following:

e  X;(¢): number of PUs at time ¢
e  X(¢): number of SUs at time ¢

e  (: total number of channels, therefore, the state space
is {(X1,X2)/0<X; <C,0<X; <C,X;+X2 <C}

e Ay, Uy: arrival and leaving rates for PUs respectively
(independent Poisson arrivals and exponentially dis-
tributed service times)

e Ay, Up: arrival and leaving rates for SUs respectively
(independent Poisson arrivals and exponentially dis-
tributed service times).

e a(X;,X;): admission decision in each state
@(X1,X2) € {0,1}). If a(X;,X;) =1 and a SU
arrives, it will enter, and when a(X;,X;) =0, it will
not.

Thus the stochastic process (X;(¢),X;(f)) has transition rates
q((X1,X2), (X{,X})), from state (X;,X>) to state (X{,X}), de-
fined by:

o g((X1,X), X1+ 1,X))=A, if X1+ X, <C

o q((X1,X%), (X1 — 1,X2)) = Xy

o q((X1,%), (X1, X2+ 1)) =a(X|,X2) A, if X; +X, <C
o q((X1,X),(X1,X2— 1)) = o Xa

e g((X1,X), (X1 +1,Xo — 1)) =4, if X; +Xo =C and

X, # 0, a PU arrives when all the channels are in use,
as a result, one of the SUs is deallocated immediately.

When ) # W it is not possible to obtain a closed form
expression of its stationary distribution (see for example [12],
[13] and the references therein). Although it can be computed
numerically depending on a(X;,X,), we formulate the corre-
sponding fluid limit in order to characterize the system and
study the influence of admission control decisions in a more
feasible and efficient way.

III. FLUID MODEL

In this section we formulate a fluid model that approxi-
mates the original one and allows us to study and characterize
the evolution of the system when the number of channels as
well as the arrival rates are arbitrary large.

Using a convenient scaled Markov Chain, let N be the
scaling factor, then:

e  XN(r): number of PUs at time ¢
e  XN(r): number of SUs at time ¢
e CN: total number of channels

e  A;N: arrival rate for PUs

e  A,N: arrival rate for SUs

e  : leaving rate for PUs

e  l: leaving rate for SUs

Based on [11], we consider the process xN,xy) =
1/N(XN,XL). This process can be decomposed in the follow-

ing way:
0+ o

where Q(-) is called the drift and MM () is a Martingale.
Q(-) in a generic point (x,y) is Q(x,y) = L y)4(xy) (()) =
(x,3)).q((x,y), (¥',y")) where (x',y’) are all possible states.

a0}

(X7 (1), X3 (1)) = (X{'(0 Y (s))ds+

When N goes to infinity, M];:,(t> converges to zero in
probability. Then, (X} (z), X2 (t)) converges in probability to a
deterministic process described by an ODE. Let (x;(7),x2())
be the limit process. In the next section we will show that this
fluid model can provide a good approximation to the original

system.

IV. ANALYSIS AND CHARACTERIZATION
A. Spectrum Sharing without SU’s admission control

First of all, we assume that a(x;,x;) = 1 for all (x1,x).
The idea is to study the behavior of the system without
any intervention (if a SU arrives and there is at least one
unoccupied channel, the SU will enter).

We can observe that some transitions of the system (fluid
model) have rates that are discontinuous functions. Using the
idea of [9], generally it is possible to determine a piecewise-
smooth (PWS) system (i.e. a dynamical system in which the
vector field is discontinuous in the domain of interest, but with
a controlled form of discontinuity). That is to say, considering
Ix=f(x),f:E-RUECR'URDE Rii=1...5is a
finite set of different regions), a PWS system is when f is
smooth on R; and can be discontinuous only on the boundaries
of R;. In [9], they also prove that the sequence of CMTC
converges to the trajectories of this hybrid dynamical system.

Let us give an informal explanation. If we restrict our
attention to a two regions system, we have f; and f> the
velocity vectors, both continuous in R; and R, respectively
and let v be the boundary between R; and R,. If we are in a
point x of ¥ and n(x) is the normal vector to ¥ at x, we find
the following behaviors of a solution starting in x depending
on the value of n’ (x)f(x) and n” (x)f>(x):

- transversal motion: if n’(x)f(x) and n’ (x)f>(x) are non
zero and have the same sign.
- sliding motion: if n” (x )fl(

> O and n” 7) f2
- tangential crossing: if n (x)f;

=0 orn'(



For the deterministic approximation of our system we note
points in the state space by (xj,x»), with the state space
{(x1,%2) : x1 +x2 < C}. In order to be in the context of [9] it
is useful to artificially extend our processes besides the region
{x1 +x2 <C}, assuming that in the region {x| +x, > C} the
vector field is (A} — yx1, —A; — tpxy). This leads to a different
behavior of the fluid limit in the region {x; +x; = C}, where
the deterministic system is driven by the ODEs:

Ifxi+x—-C<0 (R)):
xX] = A1 — lixg
xh =N — lhx;
else, if x; +x2 —C =0 () and the sliding motion condition
is verified:

{ Xy =2 — Mixg

x’z =N + U1x

and if x; +x; —C >0 (Ry):
J,C/l = A — X
Xy =—A1 — loxo

Proposition 1. Considering a(x1,x;) =1 for all (x1,x;), and
let R1, Ry be the above defined zones:
a. If % + I% < C, the ODE’s fixed point (x],x5) will
be in Ry (x] = %;1 X5 = %) and the mean system
e . MM
utilization will be TR

b. If % + % > C, the ODE’s fixed point will be on y

(x] = % x;=C— % ) and the mean system utilization
will be C.

Sketch of the proof: Being f; and f, the velocity vectors,
both continuous in R; and R; respectively:

A — A —
Silx1,x) = (); _ﬁ;;) falx,x2) = <_il —uﬁj)é)

and let n(x;,x;) be the normal vector to the surface ¥ :
x1 +x2 —C =0, therefore n” = (1,1) ¥(x1,x2) € ¥ and it points
to R;.

Using the results of [9], n’ fi(x) =0 < A + A — pjx; —
x, =0 and n’ fr(x) = 0 & —ux; — Uaxp = 0. Therefore,
for studying n’ f;(x) we have several cases depending on the
position of the line A; + A, — yx; — tpxp = 0. It is clear that
it depends on the values of A, A2, y; and .

All possible cases, for different values of the parameters,
can be categorized in two groups represented by the Cases
1 and 2 showing in Fig. la and 1b. In those figures, the
continuous line represents 7, the dotted line is A; + Ay —
Hi1x1 — Upxo = 0 and the vectors are f; and f> in Ry and R,
respectively. According to the above explanation, n’ fi(x) > 0
if Aj+ A2 — Uyx; — tpxp >0, f1 and n are tangent in the points
over the line A; + Ay — p1x; — axo = 0 and n’ fi(x) < O if
A1+ Ay — fixy — toxy < 0. On the other hand, n’ f>(x) < 0 in
R, independently of the parameters A; and ;.

In Group 1, represented by Case 1, the ODE’s fixed point is

located in Ry (Proposition 1.a). It is easy to note that x] = %,
Xy = % In Group 2, represented by Case 2, the fixed point is

=My =C—x].

on y and its value is xj = Z1, x;
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Fig. 1: Vector field for Case 1: N=100, 4, =2, L, =1, u; =35,
U =4 and Case 2: N=100, A, =2, 1, =4, u; =4, up =5.
The continuous line represents y and the dotted line is A; +
Ay — Uix) — poxa =0

In Fig. 2 and 3 we show two examples of Group 1 and 2.
In each one, in the left graphic we show the simulation of one
trajectory of the scaled Markov process and the trajectory of
the ODE. On the other hand, in the right we show for the same
simulation the evolution on the plane of the Markov Chain and
the ODE. In Fig. 2 the fixed point is in R; and in Fig. 3 it
is on ¥ (the boundary between R; and Rj). It is important
to note that in both cases, for large time values, the scaled
number of users in the stochastic process is around the ODE’s
fixed point (x},x5), in other words Nl_i>n42m (XN (c0),Xd (00)) =

(x},x3), being (XN (c0), XV (c0)) the system in stationary regime
(a related proof of this is done in [10]). As a result, the mean
system utilization is x] +x; (H—: + % < C and C in Group 1
and 2 respectively).

Let us remark that 2L < C is a necessary condition for
sharing the licensed spectrum. If not, most of the time the
channels are going to be occupied by PUs and nothing will be
available to share with SUs.

Remembering the description of the system, if x; +x, =C
and a PU arrives, a SU will be immediately deallocated giving
the channel to the new PU. In this case, the QoS perceived
by the SU will be affected because of the interruption of its
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Fig. 3: Group 2, parameters: N =100, C=1, A} =3, A, =4,
Uy =5and p =35

communication. We can make a first conclusion: the fixed point
of the fluid limit must be out of ¥ (it must be in R;). Even
more it has to be far enough from 7y to avoid a strong impact
on secondary communications, however, it has to be as close
as possible to ¥ to permit more spectrum utilization and a good
SU’s access probability. Another observation is that the fixed-
point’s abscissa (A; /1) isn’t affected with the control action
a(xy,x).

In the cases of Group 1, if the ODE’s fixed point is far
enough from 7, the admission control doesn’t make sense. So,
the first question to be answered is: how can we determine
if it is far enough? Obviously, it fully depends on the QoS
requirement for the SU’s traffic (for example, a criterion
could be to guarantee a low value of probability of service
interruption). On the other hand, if it isn’t far enough, how
can we move the fixed-point? The cases of Group 2 are totally
related with this last question. In these cases, the system in
stationary state works near 7y, so the probability of service
interruption is too large. According to that, the analysis in the
following subsections is going to be concentrated on answering
the above questions.

B. Possible Criteria and Actions

1) Question 1: Is the ODE’s fixed point far enough from y?:
Considering Group 1 cases, it is possible to apply the results
of [10] together with Kurtz’s theorem (see Theorem 2.3 of
Chapter 11 in [14]). Let (x1,x2) be the trajectory of the PWS
dynamical system in R; with initial condition (x;(0),x2(0)), if
Nl_i}gw\/ﬁ [(X7(0),X3'(0)) = (x1(0),x2(0))] = Z(0) with Z(0)

deterministic, then, vVN[(XN (1), XY (1)) — (x1(2),x2(2))] = Z(t)
where Z(¢) is a Gaussian process and its covariance matrix
can be determined explicitly (see [14]). Obs: = means con-
vergence in distribution.

A possible criterion to determine if the ODE’s fixed point
is far enough from y would be to consider a certain confidence
region. If the confidence ellipse resulted is entirely inside R,
certain probability of non-interruption is guarantee. Otherwise,
we should try to move the fixed point.

An example is presented in Fig. 4. It is showed the
theoretical 95% confidence ellipse determined by Kurtz’s
theorem and also a simulated confidence one. We simulated
n =100 independent samples of (X (),X(¢)) considering
the same large ¢ value. The simulated ellipse is obtained from
the empirical covariance matrix. In this particular case, an
admission control is not necessary.

0.9 simulated data H
— — —simulated confidence ellipse
theoretical confidence ellipse
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Fig. 4: Simulated and theoretical 95% confidence ellipses of
(X (t),X¥ (1)), parameters: N =100, 4y =2, L =1, u; =5
and W, =4

2) Question 2: How can we move the ODE’s fixed point?:
A possibility of moving the fixed point is to apply admission
control decisions. As a first step, given the simplicity of
the analytical description and without loss of generality, we
consider the case where the admission control boundary is
a line with equation —x; —x; + 6 =0 for 0 < § < C. That
is to say, a(xy,xy) =1 if x» < —x; + 8 and a(xj,xp) =0 if
Xy > —x1 + 0.The advantage of this basic case is its simple
practical implementation: SUs only need to know the number
of occupied bands to decide whether to enter the system or
not.

Given the fact that the abscissa of the ODE’s fixed point
isn’t affected with the control action a(x,x;), the objective is
to move the fixed point ordinate looking for a better option.
The domain where the ordinate could live is the segment [0, o]



where « represents the “original ordinate”, that is the ordinate
when a(xj,x;) =1 for all (x1,x;). In cases of Group 1 @ = %
Y o B
0 =C—x.
Proposition 2. If it is considered B :—x;—x;+0 =0 as
the admission control boundary, the ODE’s fixed point will

be (%75—%)

but in the other group o =

then, the mean system utilization will be 6.

Sketch of the proof: When there is an admission control
like we explained above, in the PWS system we identify three
zones (R, R; and R3) and two surfaces (¥ and ), so:

If x; +x— 6 <0 (Ry):
x’l =M — uixg
Xy =2 — Xy
else, if x; +x, — 8 =0 (B):
xp =M — lixg
x’z =N + U1x
else, if x; +x,—0 >0 and x; +x, —C <0 (Ry):
xXp =M — mix;
Xy = —HpX2

else, if x; +x, —C =0 (y):
{ Xy =2A1 — Hixg

x’z == + Uix;

and if x; +x; —C > 0 (R3):
Xll = A — X
Xy = —A — Hoxa

Defining f; (velocity vectors) in the same way as in the
previous section, and concentrating in a case from the Group
2 defined before (because the problem is more critical than in
the other one), the most representative cases of study are shown
in Fig. 5a and 5b. They differ in the position of the admission
of SUs border. As we explained before, the abscissa of ODE’s
fixed point is %, therefore the newest fixed point will be in

the intersection of x; = % and B or will be the point (%70).

In order to improve the system efficiency, we can conclude
that the point (%,O) must be included in R; zone like in

Case A (this restricts the position of ). In this situation the
proposition is demonstrated and, looking Fig. 5a it is easy to

notice that the fixed point is (xf = ﬁ—i,xé =0 —x’f). The other
case doesn’t make sense when we are interested in guarantee

certain access probability to SUs.
|

In Fig. 6a and 6b it is possible to observe that the ODE’s
fixed point changes its position, in particular, its ordinate. The
Fig. 6a represents the case (of Group 2) when there isn’t
an admission control algorithm, however in Fig. 6b we can
identify some states of the Markov model where SUs won’t
enter to the system and other states where they will. In this last
case, it is possible to note that the mean spectrum utilization
is 6 =0.8.

The previous proposition can be extended to other types of
admission control boundaries. As a general result, the ODE’s
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(b) Case B, ODE’s fixed point is (0.5,0), 3, :
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Fig. 5: N =100, ; =2, A, =4, u; =4, up =5. Dashed line is
AM— uix; — Upxp = 0 (where (1, I)ng(xl,)Q) =0), and dotted
line is A + Ay — U1x; — Upxo = 0.

fixed point, with an arbitrary access boundary defined by an
equation 6(x;,x2) =0, is going to be located at (x},x}) with

A
xj =7+ and 6(x},x3) = 0.

Now, continuing the example of  as the admission control
border, the question is: what is a reasonable value of §? In
order to answer this, an option is to make a confidence ellipse
for a large ¢ for different values of & and try to find the one
that is tangential to the surface 7. In this case, the hypotheses
of Kurtz’s theorem are not verified, so the confidence ellipse
would only be calculated using simulations. As an example we
made different sets of simulations changing the value of § (see
Fig. 7). The Gaussian assumption was tested for each set using
Mardia’s multivariate skewness and kurtosis test (significance
level=0.05).

Note: These last analysis were done with a case of Group 2,
but is totally applicable to Group 1 cases when it is necessary
to move the ODE’s fixed point.

The case with arbitrary admission control border will be
addressed in future work.
V. CONCLUSIONS AND FUTURE WORK

The main contributions of this work are the analysis and
characterization of a possible model of spectrum sharing in
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cognitive radio networks. We present some tools and ap-
proaches that can be used to improve the average utilization of
the spectrum while ensuring a small probability of interruption
to the secondary users.

We considered a Markov Chain that represents the pop-
ulation of the different types of users in the system. We
formulated the associated fluid model and we studied its
solutions. We proposed a simple admission control criteria
that, for a system with a large number of users, guarantees
with high probability that secondary users in the system will
not have service interruptions. This criteria is suggested by a
theoretical analysis and supported by simulations.

In our ongoing work, we are investigating extensions of
these tools to other scenarios of cognitive radio networks.
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