
On the Functional Test of the Cache Coherency Logic in Multi-core Systems

J. Perez Acle R. Cantoro, E. Sanchez, M. Sonza Reorda
Facultad de Ingeniería 

Universidad de la República 
Montevideo, Uruguay

Politecnico di Torino 
Dipartimento di Automatica e Informatica

Torino, Italy

Abstract

Multi-core  systems  are  becoming  particularly 
common, due to the high performance they can deliver. 
Their performance strongly depends on the availability 
of effective cache controllers, able to guarantee (among 
others)  the  coherence  of  the  caches  of  the  different 
cores.

This  paper  proposes  a  method  for  the  test  of  the 
cache  coherence  logic  existing  within  each  core  in  a 
multi-core  system, resorting to  a  functional  approach; 
this means that the method is based on the generation of 
a  suitable  test  program,  to  be  run  in  a  coordinated 
manner on the cores composing the system. The method 
is able to detect  hardware defects affecting this logic. 
The  method  was  validated  on  a  LEON3  multicore 
system.

1.Introduction

Multi-core  systems are  increasingly  popular  in  the 
applications where high performance is required, due to 
the  interesting  mix  of  performance,  flexibility  and 
power  they  offer.  However,  the  complexity  of  the 
devices  implementing  such  multi-core  systems, 
combined with the increased sensitivity to faults of new 
technologies,  asks  for  new  techniques  able   to 
effectively  detect  possible  faults  affecting  their 
hardware structure, both at the end of the manufacturing 
process, and during the operational life (in-field test).

A common solution lies on resorting to Design for 
Testability (DfT) techniques, such as scan test or Logic 
BIST.  However,  these  techniques  may  sometimes  be 
inadequate:  firstly,  these  solutions  may  often  not  be 
exploited  during  the  operational  life,  for  example 
because they require an external tester (not available for 
in-field  testing);  secondly,  because  IP  producers  tend 
not  to  disclose  details  about  the  DfT  architectures, 
avoiding  to  impair  IP  protection;  thirdly,  because 
sometimes  DfT  is  inadequate  to  achieve  sufficient 
defect coverage, that can only be obtained by running 
the test in the same operating conditions (e.g., in terms 
of speed) and configuration of the application. For all 
these  reasons,  a  functional  test  approach  based  on 
developing  suitable  test  programs  to  be  executed  by 
each  core  and on observing the results  produced  is  a 
suitable  solution.  This  approach  is  also  known  as 
Software-Based Self-Test (SBST) [1].

Caches  are  one  of  the  most  critical  components 
within  multi-core  systems,  since  their  behavior  can 
seriously affect  the performance of the whole system. 
Previous papers  [4][5][6]  already described  how their 
data and tag parts can be effectively tested resorting to a 
SBST approach. In some cases, their test can be made 
easier by exploiting the special instructions provided by 
some  Instruction  Set  Architectures  to  directly  access 
their content [15].

Additionally,  multi-core  systems  require  proper 
coherence protocols, able to guarantee that the content 
of the caches of the different cores is always up-to-date, 
so that each time a processor accesses a piece of data, it 
always  accesses  a  correct  and  coherent   value. 
Validation  of  cache-coherent  multiprocessors  is  a 
challenging  task,  often  performed  through  extensive 
simulation  of  randomly  generated  sequences  of 
operations [2][7]. On the other side, it is also crucial to 
check  whether  any  hardware  defect  affects  the  cache 
coherence  logic.  In  [7]  we  focused on the test  of  the 
coherence logic of a cache controller implementing the 
MESI protocol.  In that paper,  we  only considered the 
logic  corresponding  to  the  Finite  State  Machine 
implementing  the  protocol,  neglecting  the  rest  of  the 
involved control circuitry.

The purpose of this paper is to propose a method to 
generate a proper test program to be run on a multi-core 
system  in  order  to  check  whether  the  circuitry 
implementing the cache coherence protocol is affected 
by any hardware fault. The test program is derived from 
the  functional  specifications  of  the  circuitry  under 
evaluation  only,  and  can  therefore  be  reused  on  any 
circuit  implementing  the  same  coherence  protocol. 
Interestingly, since the proposed technique is based on a 
test program, it is well suited to be adopted by system 
companies  for  both  Incoming  Inspection  [3],  and  in- 
field test (since it is possible to activate the test at any 
time during the operational phase).

In order to practically validate our approach and to 
better quantify its cost in terms of memory occupation 
and  execution  time,  some  experimental  results  were 
gathered  using  a  multi-core  system  based  on  the 
LEON3 processor [9].

2.Background

Nowadays, multi-core systems usually include multi- 
level  caches.  Each  cache  has  a  corresponding  cache 
controller, implementing not only the functions required



to  properly  operate  the  cache  by  itself,  but  also  to 
guarantee the coherence of the shared data allocated at a 
given time on the different processors’ caches.

In  particular,  the  Cache  Coherence  Logic  (CCL) 
mainly aims at avoiding the case in which two copies of 
the  same  memory  block  allocated  in  two  different 
caches do not contain the same values.  To avoid this 
problem,  several  mechanisms  exist.  One  of  the  most 
popular, which is considered in this paper, is based on 
spying the addresses flowing on the bus (snooping), so 
that a block in a cache is invalidated if the value of the 
same  block  has  been  changed  in  another  processor 
cache. Hence, a key role in the cache coherence logic is 
played  by  the  Validity  Bit  (VB)  associated  to  each 
cache line. The VB is substituted by several bits when 
the adopted cache coherence protocol is more complex, 
like in the case of the MESI protocol [10].

In this paper, we consider a Cache Coherence Logic 
implementing  a  simpler  protocol,  such  as  the  one 
adopted for the data cache of the LEON3 processor core 
[9]. In such a case a Validity Bit is associated to every 
cache line; in addition, the cache implements the write- 
through, no allocate mechanism. If the processor is used 
in a multi-core configuration, the cache coherence logic 
continuously  snoops  the  bus  transfers:  if  another 
processor executes a write operation on a block which is 
also stored in the local memory, the block is invalidated 
(i.e., VB is forced to 0) thus forcing every further access 
to the block to access the memory. VB is forced to 1 
each  time  a  new  block  is  uploaded  into  the  cache 
memory.

Based on the above discussion, the CCL is mainly 
composed of the following elements:
 the VBs (one for each cache line)
 a set  of  comparators,  whose  inputs  are  the  external 

address bus and the tag fields associated to the cache 
set corresponding to the address currently on the bus

 some control logic, able for example to interact with 
the bus and understand when to sample the address 
value during a memory write operation.

In the next section we will propose an algorithm able 
to  test  these  three  pieces  of  circuitry  by  executing  a 
proper test program and checking the system behavior.

3.Proposed approach

It is described here the algorithm proposed to test the 
cache coherence logic in a multi-core system; for sake 
of simplicity the usage of the algorithm in a dual-core 
system where each core includes a direct mapped cache 
is  initially  discussed:  These  assumptions  will  be 
removed in the  second part  of  this  section.  It  is  also 
assumed that a previous test has been run, able to test

the cache itself including the cache controller circuitry 
not corresponding to the coherence logic.

The algorithm targets stuck-at faults. The test of the 
targeted logic requires first exciting each fault, and then 
observing the fault effects.  We will deal with the two 
issues separately. It is important to note that the basic 
function of the CCL is to invalidate a given cache line 
when another processor executes  a write operation on 
the memory block it stores, i.e., to properly modify the 
value of  the corresponding  VB. Hence,  observing the 
effect of any fault in the CCL once it has been excited 
means observing the value of the corresponding VB.

In  order  to  perform  this  set  of  operations,  in  the 
following the different memory operations involved in 
the CCL testing are described. They require the use of 
two  processor  cores:  P0  and  P1.  P0  is  the  target 
processor core, whose CCL we want to test, whereas P1 
is  a  support  processor  intended to execute  operations 
that invalidate the data in the P0 cache module.

3.1 Excitation phase

We first  need  to  check  whether  any  stuck-at  fault 
exists, affecting the VBs.

In the following, the required operations developed 
for  this  purpose  are  detailed.  Every  step  details  the 
processor required to execute the listed operations and 
the expected behavior in the targeted cache:

0. P0 - cache flush; all validity bits are initialized to 0;
1. P0 - upload each cache line with a known block (thus 

turning all VBs to 1); for every line a read operation is 
performed and a cache miss is expected;

2. P0 - access the block which was uploaded in each line 
in the previous step, checking that a hit is triggered; if 
not, the corresponding VB is affected by a stuck-at-0;

3. P1 - invalidate the P0 cache (thus turning all VBs in 
P0 to 0);

4. P0  -  access  the  block  which  was  uploaded  in  each 
line,  checking  that  a  miss  is  triggered;  if  not,  the 
corresponding VB is affected by a stuck-at-1. In the 
absence of faults, all VBs turn back to 1, and a cache 
miss is expected.

Each of the above steps (apart from step 0) consist of n 
read or write  operations,  being  n  the number of  cache 
lines,  each  accessing  to  a  memory  location  which  is 
supposed to be stored in a different cache line. Details 
about the rules to compute these addresses can be found 
in [4].  Hence,  the  above steps  require  4n  instructions, 
plus the cache invalidation instruction (flush in the case 
of the LEON3 assembly code).

Secondly,  we  need  to  check  whether  the  CCL  is 
affected  by  any  fault.  In  a  direct  mapped  cache,  the 
CCL is basically composed of a comparator; each time 
a processor core accesses the memory, this comparator 
compares the address on the bus with the content of the



…
…

…
…

tag field of the corresponding cache line. For testing the 
comparator  we  can  exploit  the algorithm proposed  in 
[9].  Such an algorithm specifies  a  set  of  2m+2  input 
vectors  that  should  be  applied  to  the  2m  comparator 
inputs (as shown in Fig. 1), guaranteeing that they allow 
achieving full stuck-at fault coverage, independently of 
the specific comparator implementation.

Applying each of these test patterns to a comparator 
in the CCL requires the following steps:
1.P0 - upload in a suitable cache line a memory block, 

so that the value of the tag field matches the required 
value (input B); this can be achieved by executing a 
read access to a suitable location in memory;

2.P1 - execute a write operation on the block uploaded 
at  the  previous  step;  this  implies  that  the  required 
value is written to the bus, and thus applied to the A 
input of the comparator.

Depending  on  the  test  vector,  the  comparator  is 
expected  to  produce  a  match  or  mismatch; 
correspondingly, the related VB in P0’s cache is forced 
to 0 or left at 1.

The  algorithm  can  be  easily  extended  to  a  core 
including a k ways set associative cache. In this case the 
CCL includes k comparators, and the algorithm should 
be repeated to test each of them.

# A B

 an  internal  timer,  devoted  to  measure  the  test 
program execution time

 the  debug  infrastructure  usually  provided  by  the 
processor,  able  to  trace  and  communicate  to  the 
outside the bus activity for a given period [12]

 an  ad  hoc  module  added  to  the  system  and  in 
charge of monitoring the bus activity [13].

3.3 Analytical performance analysis

The main component of the test time required by the 
algorithm is related to memory accesses. Their number 
can be estimated as follows.

Some of the transfers needed for the execution of the 
test are cache hits and consequently internal to a core, 
while others are cache misses and will compete with the 
other  processors  to  access  the  bus.  In  both  cases  the 
amount  of  necessary  data  transfers  depends  on  the 
number of cores  n, the number of tag bits  ntb  (which 
affects  the  size  of  the  required  comparator),  and  the 
number of  lines  nl  in the cache,  assuming it  is  direct 
mapped. The number of missed read and write transfers 
(i.e., misses) required by the complete test are:

Nmiss = n * (nl * (2 rd + 1 wr) + ntb * 2 wr + 4 rd +
2 wr)

The internal transfers (hits) on each core are:
       pattern                                    1

10…00 00…00
2 01...00  00…00

m-1         00…10  00…00
m 00…01  00…00 
m+1  00…00 10…00 
m+2        00…00  01…00

2m-1 00…00  00…10
2m 00…00  00…01
2m+1 11…11  11…11
2m+2 00…00  00…00

m patterns

Nhit = (nl +2 ) * rd

3.4 Optimizing the test in multiple-core systems

In the previous sub-sections we described how to test 
the possible stuck-at faults affecting the CCL of a target 
processor core, using a second core as a support.

In the case of an n-core system some parallelism can
Figure 1: comparator schema and test patterns.

3.2 Observation phase

The above algorithms allow forcing a known VB to 
0 or 1. In order to observe whether the target VB holds 
the  expected  value  or  not,  the  test  program  should 
execute  an  access  to  the  block  stored  in  the 
corresponding cache line. If this triggers a hit, it means 
that the VB holds the value 1, otherwise (miss) the VB 
holds the value 0. Most of the faults affecting the CCL 
can be labeled as  performance faults, i.e., they do not 
affect the correctness of the result produced by the test 
program, but rather its performance [14].

In order to observe whether a given memory access 
triggers a hit or miss we can adopt different techniques, 
based on the hardware mechanisms available:
 performance  counters  existing  in  the  processor, 

devoted  to  count  the  number  of  hit  and  miss 
situations triggered by a given program [11];

be exploited using each processor to support the test of 
the  following  one.  Processor  P0  plays  the  role  of 
support processor for P1, P1 for P2, and so on.

The total duration of the algorithm will depend on 
the performance of the bus. In an ideal scenario where 
there is no bus contention, the test duration will remain 
constant,  equal to  T  the duration of  the algorithm for 
testing a single core. On the other side, if the memory 
bus  access  is  saturated  the  execution  time  will  be 
dominated  by the  memory  accesses  and  will  increase 
linearly with the number of processors nT.

4.Experimental results

The approach effectiveness has been experimentally 
evaluated  in  a  multi-core  system based  on  the  freely 
available LEON3 processor by Aeroflex Gaisler [10].

A multi-core  system was  implemented  including a 
minimum  set  of  memory  cores,  plus  a  configurable 
number of LEON3 processors. Every processor core is



instantiated with separate  data and instruction caches. 
The configuration for the data caches used in our test 
was 1 way (direct mapped), 1Kbyte/way, 16 bytes/line. 
As  mentioned,  the  data  cache  implements  the  write- 
through policy, with write no-allocate on a write miss.

The  test  program  on  each  processor  requires  the 
execution of 317 assembly instructions for the VB test 
and 412 instructions for the Comparator test part, plus 
some loop instructions for  synchronization.  For every 
processor  core,  the  compiled  test  program  requires 
about 1KB of code memory.

The execution times for both parts of the test (VB 
and Comparator) are reported in Fig. 2 for systems with 
2 to 8 processors. VB test corresponds to the solid line, 
and Comparator test to the dashed one. All values are 
expressed in number of clock cycles. These values show 
that the effects of bus and memory contention do impact 
more significantly on the VB test, where the execution 
time grows more quickly with the number of cores. In 
the  Comparator  test  the  execution  time  grows  more 
slowly, due to the higher amount of parallelization that 
our algorithm achieves.

Figure 2: Test programs execution time (clock cycles) vs. number of 
cores.

Finally,  in  order  to  validate  the  correctness  of  the 
proposed algorithm we analyzed the LEON3 data cache 
controller  RTL source code to identify the parts  of it 
which  implement  the  snoop  mechanism.  The  whole 
system was then simulated using the Mentor Graphics 
ModelSim tool to check that the algorithm behavior is 
the expected one.

5.Conclusions

This  paper  proposes  a  method  to  detect  possible 
faults  affecting  the  hardware  implementing  the  cache 
coherence logic integrated in each cache controller of a 
multi-core system.

The  proposed  approach  is  based  on  a  functional 
approach,  i.e.,  on the execution of  a carefully  written 
test  program  executed  by  different  cores  in  a 
coordinated manner. The method achieves by

construction a full fault coverage of the static faults in 
the  addressed  logic,  and  is  suitable  to  be  used  both 
during  end-of-manufacturing  test  and  for  in-field  test 
(e.g., when safety-critical systems are considered).

We experimentally evaluated the proposed approach 
on a system integrating a variable number of LEON3 
cores,  showing  its  cost  in  terms  of  execution  time, 
which grows linearly (and slowly) with the number of 
cores.

References
[1] M.  Psarakis,  et  al.,  “Microprocessor  Software-Based  Self- 

Testing”, IEEE Design & Test of Computers, vol. 27, no. 3, pp. 
4-19, May-June 2010

[2] B. O'Krafka, et al., “MPTG: a portable test generator for cache- 
coherent  multiprocessors”,  14th IEEE  Annual  International 
Phoenix Conference on Computers and Communications, 1995, 
pp. 38-44

[3] M.L. Bushnell, V.D. Agrawal, “Essential of Electronic Testing”,
Kluwer Academic Publishers, 2000

[4] S. Di Carlo, et al, “Software-Based Self-Test of Set-Associative 
Cache Memories”, IEEE Transactions on Computers, vol. 60 n. 
7, pp. 1030-1044

[5] M. Riga, et al., “On the functional test of L2 caches”, 18th IEEE 
International  On-line  Testing  Symposium (IOLTS),  2012,  pp. 
84-90

[6] W. J. Perez, et al., “Software-Based Self-Test Strategy for Data 
Cache Memories Embedded in SoCs”, 11th IEEE Workshop on 
Design  and  Diagnostics  of  Electronic  Circuits  and  Systems, 
2008. DDECS 2008., pp.1-6

[7] E. Sanchez, M. Sonza Reorda, “On the functional test of MESI 
controllers”,  12th  IEEE  Latin  American  Test  Workshop 
(LATW), 2011

[8] X. Qin, P. Mishra, “Automated generation of directed tests for 
transition  coverage  in  cache  coherence  protocols”,  Design, 
Automation  &  Test  in  Europe  Conference  &  Exhibition 
(DATE), 2012

[9] H. Grigoryan, et al., “Generic BIST architecture for testing of 
content addressable memories”, 17th IEEE International On-
Line Testing Symposium (IOLTS), 2011, pp. 86-91

[10] http://www.gaisler.com/index.php/products/processors/leon3

[11] IA-32 Intel Architecture Software Developers Manual

[12] M.  Hatzimihail,  et  al.,  “A  Methodology  for  Detecting 
Performance  Faults  in  Microprocessors  via  Performance 
Monitoring  Hardware”,  IEEE  International  Test  Conference, 
2007, paper 29.3

[13] M. Grosso, et al., “An on-line fault detection technique based on 
embedded  debug  features”,  Proc.  IEEE International  On-Line 
Testing Symposium, 2010, pp. 167–172

[14] W. J. Perez, et al., “A Hybrid Approach to the Test of Cache 
Memory  Controllers  Embedded  in  SoCs”,  IEEE  International 
On-Line Testing Symposium, 2008, pp. 143-148

[15] T.-Y. Hsieh, et al., “Tolerance of Performance Degrading Faults 
for  Effective  Yield  Improvement”,  IEEE  International  Test 
Conference, 2009, Lecture 3.1

[16] G.  Theodorou,  et  al.,  “Software-Based  Self-Test  for  Small 
Caches in Microprocessors”, IEEE Transactions on Computer- 
Aided Design of Integrated Circuits and Systems, 2014


