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We propose a novel approach to the grouping of dot patterns by the good continuation law. Our model is
based on local symmetries, and the non-accidentalness principle to determine perceptually relevant
configurations. A quantitative measure of non-accidentalness is proposed, showing a good correlation
with the visibility of a curve of dots. A robust, unsupervised and scale-invariant algorithm for the detec-
tion of good continuation of dots is derived. The results of the proposed method are illustrated on various
datasets, including data from classic psychophysical studies. An online demonstration of the algorithm
allows the reader to directly evaluate the method.
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1. Introduction

The Gestalt school of psychology (Wertheimer, 1923; Metzger,
1975; Kanizsa, 1979; Wagemans, Elder, et al., 2012; Wagemans,
Feldman, et al., 2012) proposed the existence of a short list of
grouping laws governing visual perception. Among them, the law
of good continuation can be stated as ‘‘All else being equal, elements
that can be seen as smooth continuations of each other tend to be
grouped together” (Palmer, 1999, p.259). Fig. 1 exemplifies this
law; a perceptual organization of this image would result in a three
part configuration: a line, an arc of circle, and a zigzag, all formed
by dots. Unfortunately, this law, as the other Gestalt laws, was
enunciated only qualitatively, without a formalization into a
predictive framework.

Since it was first enunciated by Wertheimer (1923), the Gestalt
law of good continuation has been extensively studied in vision
science. Various aspects of this law have been examined, including
amodal completion and contour integration of basic oriented and
unoriented elements. In this work we concentrate on the case of
unoriented elements.

The advantage of working with unoriented elements (such as
dots), is that the grouping and masking processes are not influ-
enced by the appearance of the basic elements. Experiments using
dot patterns have been explored by many works in psychophysics.
Notably in the early works of French (1954), Uttal, Bunnell, and
Corwin (1970) and Uttal (1973) but also in more recent works
(Mussap & Levi, 2000). Uttal studied the influence of length, dot
spacing, curvature and outlier noise in the perceptual grouping of
dot structures. Regularity in dot patterns was analyzed by
Feldman (1997b) and Kubovy, Holcombe, and Wagemans (1998).
In the famous work of Glass (1969), superposed random dot pat-
terns were used to show the importance of local interactions in
the building of global percepts.

The particular case of perceptual grouping by good continuation
in dot patterns is also covered in a vast literature. Prinzmetal and
Banks (1977) use dot patterns to prove the existence of the
good continuation phenomenon. Early algorithmic proposals for
modeling the phenomenon (Caelli, Preston, & Howell, 1978; van
Oeffelen & Vos, 1983; Smits, Vos, & Van Oeffelen, 1984; Smits &
Vos, 1986) consisted in convolving the dot patterns with a
Gaussian kernel to detect groups of dots by thresholding the result
of this convolution. This idea, formalized in the CODE algorithm of
van Oeffelen and Vos (1983), found relative success and was fur-
ther extended in psychophysics (Compton & Logan, 1993; Logan,
1996) and also in computer vision, as will be discussed below.
More recent approaches analyze the curvature of the curves
generated by successive dots. In Feldman (1997a) the probabilistic
properties of successive angles in a perceived chain of dots was
studied. Pizlo, Salach-Golyska, and Rosenfeld (1997) proposed a
clever pyramidal system to account for local–global interactivity.
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Fig. 1. Good Continuation law: human perception tends to group elements on a
smooth, continuous order. Image extracted from Kanizsa (1980).
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Another approach to the study of the good continuation law is
through the following simple experiment: dots are arranged along
a virtual circular contour that produces a linear interpolation when
the number of points is small, and a curvilinear interpolation when
the number is large (van Assen & Vos, 1999). The exact number of
dots needed to pass from one type of interpolation to the other is
studied with psychophysical experiments. In a similar line, Gori
and Spillmann (2010) take a collinear arrangement of dots, and
modify the spacing between given pairs, studying the boundary
between the perception of an irregular alignment and its splitting
into multiple segments.

The law of good continuation applied to oriented elements has
also been extensively studied in psychophysics, notably in Field,
Hayes, and Hess (1993), who use Gabor patterns (Machilsen &
Wagemans, 2011; Demeyer & Machilsen, 2012) or line segments
(Feldman, 2007) as the oriented elements.

In the computational domain, many algorithms inspired by the
good continuation law have been developed. Early proposals tried
to define a global vision mechanism detecting multiple Gestalts
(Grossberg & Mingolla, 1987; Carpenter & Grossberg, 1987).
Sha’asua and Ullman (1988) applied, in a remarkable early algo-
rithm, the good continuation law to identify salient image features.
A saliency map is obtained by iterative local computations on the
image edge elements that minimize an energy favoring smooth
and long curves. Parent and Zucker (1989) proposed a rigorous
and clever approach to inferring curves as a labeling problem,
based on local interactions that favor co-circularity (which is a
form of local symmetry, a notion that our method also exploits).
The image elements are convolved with oriented filters formed
with Gaussians, to determine tentative tangent orientations. In
Gigus and Malik (1991), the convolution with oriented Gaussians
is also exploited, simply taking the maximum filter responses. This
has the algorithmic advantage of being non-iterative, although per-
formance might be affected. In Herault and Horaud (1993) the
problem of figure-ground segmentation is posed from a combina-
torial optimization perspective, and it is solved with simulated
annealing. Another groundbreaking work is the Tensor Voting
approach introduced by Guy and Medioni (1993), which proposes
a saliency measure that involves the summation of vector votes
emitted by each element. The votes encourage co-circularity and
proximity of the elements. Unlike the other approaches, this
framework specifically incorporates the detection of curves of
unoriented elements. Perona and Freeman (1998) pose the figure/-
ground segmentation as a factorization of a matrix representing
the affinity between elements. Williams and Thornber (1999) pro-
vide a very good review of existing approaches and introduce a
new one, where the saliency measure is given by the number of
times a random walk passes by an edge, and where the transition
probability matrix is also given by an affinity matrix. In general, all
of these methods are based on finding combinations of local inter-
actions that favor curve smoothness, length and elements
proximity.

In this work, we propose a new model and algorithm for the
grouping by good continuation (restricted to unoriented elements)
using a simple model that favors local symmetries, and with a
detection control based on the non-accidentalness principle. This
allows the method to be general in the sense that it can capture
smooth curves of any shape and scale, and is robust to the presence
of outliers and noise. It is also unsupervised because detections are
given by their statistical significance, which requires only a single
parameter, namely the number of false detections that would be
allowed in an image of random noise. In an earlier work, a prelim-
inary version of the algorithm was introduced to the image
processing community (Lezama, Grompone von Gioi, Randall, &
Morel, 2014). Here we present a reformulated theory to achieve
scale invariance and we establish a link with psychophysics.

The proposed algorithm consists of two main steps: building
candidate chains of points, and validating them. Candidate chains
of points are built by considering triplets of points formed by join-
ing nearest neighbors. Once valid triplets have been obtained, a
graph representation is produced where each node corresponds
to a triplet. A classic path finding algorithm is run on this graph
to obtain paths between all pairs of triplets. Finally, the paths
found are validated as non-accidental or rejected using thresholds
obtained with the a contrario approach (Desolneux, Moisan, &
Morel, 2008). It will be shown that the number of false alarms
(NFA) defined in that theory provides an effective measure of the
meaningfulness of a good continuation configuration. The potential
use of the method is evaluated on data from classic psychophysical
experiments and image processing applications.

This article is organized as follows: Section 2 presents our pro-
posed mathematical model of good continuation chains. Section 3
describes an efficient algorithm for detecting good continuation
configurations in dot patterns. The mathematical model and the
algorithm are then evaluated in Section 4. Finally, Section 5
presents the conclusions of this study.
2. Mathematical model

Let us consider a set of N planar points. The aim is to find a
mathematical model that can predict when an ordered subset of
points lie on a smooth curve that is salient relative to the back-
ground of the other points, see Fig. 2(a). Each ordered subset of
points (a sequence of points) will be called a chain; each set of
three consecutive points in a chain will be called a triplet. The
proposed model is based on the simple idea that the better the
symmetry of the triplets, the better the saliency of the sequence.
Ideally, the third point in a triplet should be symmetric to the first,
relative to the middle point, in the position marked with an X on
Fig. 2(b). Symmetric triplets also enforce a second Gestalt grouping
law: proximity (Wagemans, Elder, et al., 2012). A regular spacing of
the points along the curve favors their perceptual grouping; inver-
sely, an irregular spacing (Wertheimer, 1923; Gori & Spillmann,
2010) would tend to stop the curve at larger gaps.

To obtain a perceptually plausible model, the evaluation of a
chain of points will be based on the non-accidentalness principle,
proposed as the rationale underlying perceptual thresholds
(Witkin & Tenenbaum, 1983; Rock, 1983; Lowe & Binford, 1981;
Albert & Hoffman, 1995). In a nutshell, an observed structure is
relevant if it would rarely occur by chance. Quoting D. Lowe, ‘‘we
need to determine the probability that each relation in the image
could have arisen by accident, PðaÞ. Naturally, the smaller that
this value is, the more likely the relation is to have a causal



1 This is due to the fact that, given a continuous random variable Xwith CDF FX , the
random variable Y ¼ FX ðXÞ is uniform in ½0;1�.
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Fig. 2. Definition of the good continuation event. (a) A candidate chain is defined by
an ordered sequence of points. (b) Three consecutive points in a chain define a
triplet, ða; b; cÞ in this case. Ideally, the triplet should be symmetric. That is, the third
point c should be symmetric to the first point a, relative to the middle point b. The
ideal third point is represented by X. (c) The symmetry precision of a triplet is
measured by the distance r from the third point c to the ideal point X. The scale-
invariant error is expressed as the probability that, among the n points in the local
window of radius R, the nearest point to X be at most at a distance r.
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interpretation” (Lowe, 1985, p.39). The a contrario framework
(Desolneux et al., 2008), a formalization of this principle, is used
to provide automatic detection thresholds, compatible with per-
ception, and to handle noise points. Given a random model for
the data, the a contrario methodology consists in evaluating the
expectation of the occurrence of an error as small as the one
observed, relative to an ideal structure. If this expectation is
small, the event is termed non accidental and thus perceptually
meaningful. This methodology has already been applied in several
computer vision problems. Among them, there was a previous
attempt at detecting good continuations of image edges (Cao,
2004); even if related, the main source of information for this
detector was the orientation of the edges, while no orientation is
associated to points in our case.

We will evaluate the probability of observing a chain of points
where all of its triplets have a given degree of symmetry. This
probability is evaluated in a random background model assuming
that the points in the image were randomly distributed. The imper-
fection of a triplet translates into the distance r between the
observed third point and its ideal symmetric position X, giving
the local context. To provide scale-invariance, this error will be
evaluated relatively to the context contained in a circular local
window L with radius R, where R ¼ k � ja� bj is proportional to
the triplet size, see Fig. 2(c).

Given that n points were observed in L (not counting the first
two of the triplet, as they define the local window of the first
triplet), our random or a contrario model H0, used to evaluate
accidentalness, is that these points are independent and uniformly
distributed in L. In other words, our a contrariomodel assumes that
the n points result from a spatial uniform Poisson process in L. This
a contrario model H0 is not intended to model the statistics of the
sought structure; quite the opposite, it models random data where
the sought structure is not present, and is used to calibrate
rejection thresholds.

Under these assumptions, we would like to translate the error
of each triplet into probabilistic terms. Let us call q the distance
between the ideal point X and its nearest point in L under H0.
We will evaluate the precision of a triplet by the probability
Pðq 6 rÞ, for the observed radius r. It is simpler to compute its
complement, Pðq > rÞ, which implies that all the n points in L fall
outside the disk of radius r; given that L is a disk of radius R,

Pðq > rÞ ¼ 1� pr2
pR2

� �n
. Finally, the error associated to a triplet is

e ¼ Pðq 6 rÞ ¼ 1� 1� r2

R2

� �n

: ð1Þ

This quantity would be zero only for the ideal symmetric triplet
(r ¼ 0), and a small value corresponds to a near symmetric triplet.
If only one point is observed in the local window L (not counting
the points a and b that define the triplet), this error measures the
deviation of the triplet from the ideal symmetric configuration.
When more points are present, the error grows, reflecting the lower
relevance of the triplet due to crowding. Note that r only appears in
the ratio r

R, thus making the measure independent of its absolute
value and ensuring the scale-invariance of the criterion.

Consider a chain C of k points a1; a2; . . . ; ak. The error ei of each of
the k� 2 triplets ðai; aiþ1; aiþ2Þ can be evaluated by Eq. (1), and the
worst case value, emax ¼ maxfe1; e2; . . . ; ek�2g, is associated to the
whole chain. The event we are considering is a chain C of k� 2
triplets, each with error emax or less relative to the ideal symmetric
triplet. We will evaluate now the probability of this event under H0.

Let us consider a random triplet under H0, with the third point
selected as the nearest one to the ideal symmetric point. By con-
struction of the error measure, when Eq. (1) is evaluated on points
following the same model H0, the error defined by Eq. (1) becomes
a random variable E with uniform distribution in ½0;1�.1 Thus,
PðE 6 aÞ ¼ a for any a 2 ½0;1�. We are now in a position to evaluate
a random chain of k� 2 triplets under H0. The corresponding errors
are E1; E2; . . . ; Ek�2 and the worst error is Emax ¼ maxfE1; E2; . . . ; Ek�2g.
Now, under the a contrario Poisson assumption, the probability of
each triplet is independent from the previous ones, so the probability
of all errors being lower than emax is

PðEmax 6 emaxÞ ¼ P E1 6 emax \ E2 6 emax \ � � � \ Ek�2 6 emaxð Þ
¼ PðE1 6 emaxÞ � PðE2 6 emaxÞ � � � � � PðEk�2 6 emaxÞ
¼ ek�2

max: ð2Þ

Notice that this is not the probability of observing the exact chain C,
but the probability of observing, under H0, chains whose triplets
have all error emax or less relative to ideal symmetric triplets. This
term can take the value zero only for straight chains with
equally-spaced points, where each one of the triplets would be per-
fectly symmetric. Inversely, irregular curves necessarily have values
near to one.

The fundamental quantity in the a contrario methodology is the
number of false alarms (NFA) of an event, defined as the number of
tests, times the probability of the event (Desolneux et al., 2008).
The NFA for a chain of points in good continuation is computed as

NFAðCÞ ¼ Ntests � PðEmax 6 emaxÞ: ð3Þ

The NFA is an upper bound on the expected number of chains with
the same error as C or smaller, to be observed by chance in the a
contrario model H0. A large NFA means that such an event is to be
expected under the a contrario model and therefore is irrelevant.
On the other hand, a small NFA corresponds to a rare event and
therefore arguably a meaningful one. Geometrically, a perfectly
aligned and equally-spaced curve would have NFA ¼ 0 and small
values correspond to regular curves. On the other hand, irregular
curves necessarily have large NFAs, near Ntests.

The number of tests Ntests counts the chains considered as
potential good continuations. The proposed method will generate
candidates starting at each of the N points and every one of its b
nearest neighbors will be tried as a second point. Using these
two points, the ideal point X is constructed (see Fig. 2(b)) and
the closest point to it is selected as the third point of the triplet.
Iteratively, the last two points of the previous triplet are used to
construct the ideal point X for the next one. This process is
repeated until a maximal chain length of

ffiffiffiffi
N

p
is reached. The

assumption here is that a smooth 1D subset of a 2D set of N points
would be typically limited to

ffiffiffiffi
N

p
points. Each of the intermediate

chains is also tested as a potential meaningful chain. Thus, the



2 All the results shown in this article use b ¼ 5 and k ¼ 4.
3 http://dev.ipol.im/jlezama/ipol_demo/lgrm_good_continuation_matlab/
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number of tests is bN
ffiffiffiffi
N

p
. Finally, the NFA of the event ‘‘having k

points in good continuation configuration with error emax or less” is

NFA ¼ bN
ffiffiffiffi
N

p
� ek�2

max: ð4Þ
Given an observed set of N points and a candidate chain of k points,
wewill consider the latter event as an e-meaningfulgood continuation
when the corresponding NFA is lower than e. It can be shown
(Desolneux et al., 2008) that the expected number of events with
NFA < e is bounded by e in the a contrario model H0. This justifies
the definition and name of theNFA, as it controls the average number
of accidental (thus false) detections. Following Desolneux et al.
(2008), we will always fix e ¼ 1 to ensure an unsupervised
detection, as having less than one false detection on average is
tolerable in our case. (See the evaluation section for a confirmation
of this fact.)

3. Algorithm

This section describes an efficient but heuristic algorithm for
searching meaningful chains of dots using the model presented
in the previous section. Given an input of N planar points, the can-
didate chains are obtained by exploring the b nearest neighbors of
each point to construct candidate triplets and then by connecting
paths between every two triplets. To find the paths, a graph repre-
sentation of the triplets is constructed and the Floyd–Warshall
algorithm is used. The Floyd–Warshall algorithm is a classic graph
analysis algorithm that finds the shortest paths between all pairs of
nodes in a graph. Each path found is a candidate chain that is
finally evaluated using the NFA, Eq. (4), and the most significant
chains are kept using a redundancy reduction step, described
below. This process is described in Algorithm 1.

Algorithm 1. Good continuation detection
The algorithm requires two parameters: the number of nearest
neighbors b used for exploration, and k, the proportion of the local
window size to a triplet’s size2 (see Section 2). Lines 1 to 11 of Algo-
rithm 1 build the list T of triplets to be considered. Note that each
triplet is stored with its error e.

A pair of triplets will be called adjacent when they share two
points in such a way that they can form a chain of four points. (Tri-
plets that share two points but form a ‘‘Y” shape are not adjacent.)
We define a graph where triplets are the vertices and adjacent tri-
plets s and t share an edge with value es þ et , the sum of their errors
(lines 12 to 19). This is a heuristic step, without any probabilistic
interpretation, justified on what follows. Once the adjacencies
are determined, the Floyd–Warshall algorithm is used to compute
the path with shortest distances between every two vertices (line
20). Finally, all the candidate chains provided by Floyd–Warshall
are evaluated for significance using Eq. (4) and the ones with
NFA < e are kept (lines 21 to 25). The heuristic is necessary to be
able to benefit from the efficiency of the Floyd–Warshall algorithm,
which works with additive distances.

The resulting paths are the best in the sense of the smallest sumP
iei along the path. Notice that the ‘‘distance” used is not Eucli-

dean, but the sum of the triplet errors (thus the common bias
toward small objects in shortest path methods is not present here).
There is no theoretical guarantee that paths with minimal NFA
(smallest ek�2

max) are all contained in minimal paths for the Floyd–
Warshall algorithm. However, our simulations show that this
approximation is acceptable.

The computational complexity of the Floyd–Warshall algorithm

is OðjV j3Þ, where jV j is the number of vertices in the graph, i.e., the
number of triplets. In terms of computation time, this is the bottle-
neck of the proposed algorithm. The result is a non-linear algo-
rithm, but fast enough to perform example simulations with
some thousand points in tens of seconds on a laptop computer.

Once all the good continuation events are found, we are inter-
ested in keeping only non-redundant detections. Note that a good
continuation event might mask another smaller event contained
in itself (e.g. a subset of the points in a meaningful chain can be
also meaningful). We shall say that an event A masks an event B,
if NFAA < NFAB and the chains share at least two points. The latter
is just a simple criterion to allow crossing chains, which share one
point; future work will focus on this point to develop a principled
criterion. Obtaining a list of only the most meaningful events,
defined as those that are not masked by any other event, can be
done by following the simple steps: First, the meaningful chains
are ordered by their NFA (lowest first). A second list is created
which in the beginning contains only the most meaningful chain.
Then, the first list is traversed, checking if each chain is masked
with any of the chains in the second list. If a chain is not masked,
it is added to the second list. The resulting second list gives the
non-redundant good continuation chains.
4. Evaluation

In this section we will perform a detailed analysis of the NFA
obtained with our model through multiple examples, showing its
applicability as a quantitative perceptual measure. Next, we will
present some results using the heuristic algorithm for dot patterns
taken from the good continuation literature. Finally, we will show
its application to image analysis. The reader is invited to try the
online demo of this algorithm to evaluate the method directly.3

http://dev.ipol.im/jlezama/ipol_demo/lgrm_good_continuation_matlab/
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4.1. Evaluation of the NFA on selected chains

To analyze the effect of curvature, dot density and dot regularity
in the NFA of a chain, we considered the dot pattern examples of
Uttal (1973). We analyzed the NFA obtained from each curve using
Eq. (4). To isolate the NFA evaluation from the candidate search
heuristic, the chains were specified manually; in the next subsec-
tion we shall analyze the result of the complete detection process.
To demonstrate the perceptual plausibility of the NFA, we added
two types of noise: a surrounding outlier noise and inlier noise
implemented as a random jitter on the position of the points.
Fig. 3. NFAs for the curves used in Uttal (1973). The points have been obtained by scanni
right side, the lines indicate the manually selected path; the NFA obtained for each curv
meaningful, while the ones with NFA value higher than 1 (black) are not considered mea
or the curvature of the underlying curve is bigger.

Fig. 4. NFAs for the curves of Fig. 3 plus 20 outlier noise points. On the right side, the line
notation. Curves with NFA value lower than 1 (red) are considered meaningful, while the
the NFA increases (less meaningfulness) in the presence of noise, sometimes above the m
with the perception of the curves in the figures on the left.

Fig. 5. NFAs for the curves of Fig. 3 with Gaussian jitter (r ¼ 3% of image width) on the
NFA obtained for each curve is shown in E notation. Curves with NFA value lower than 1 (
are not considered meaningful. The NFA is degraded because the local symmetries are de
general, for those cases the NFA is above the meaningfulness threshold.
The left side of Fig. 3 shows the original figures scanned from
Uttal (1973). We will refer to the first row of the original curves
as dataset 1, and to the second and third rows as datasets 2 and
3, respectively. In each dataset, curves are numbered from #1 to
#6. To recover the position of the dots we used a Harris corner
detector (Harris & Stephens, 1988) on the scanned images. On
the right side of the figure, the NFA obtained for each of the curves
is shown. Note how the NFA increases as the curvature increases or
as the length of the curves decreases, correctly indicating their
lower meaningfulness. Minor variations in the NFA can be due to
small errors in the dot positions from the scanning and dot
1.6e−11 2.1e−11 1.1e−10 2.5e−08 3.3e−06 2.5e−04

3.2e−083.8e−08 7.0e−051.0e−04 9.8e−03 1.5e−01

5.8e−08 2.2e−06 6.8e−03 3.7e−01 1.8e+00 8.2e+00

ng the figure and running a Harris corner detector (Harris & Stephens, 1988). On the
e is shown in E notation. Curves with NFA value lower than 1 (red) are considered
ningful. Note that the NFA associated to each curve increases as it contains less dots

7e−10 5e−8 1e−5 4e−4 2e−2 2e+0

6e−7 3e−3 4e−18e−1 1e+1 4e+1

1e−5 1e−1 2e+1 1e+2 1e+2 2e+2

s indicate the manually selected path; the NFA obtained for each curve is shown in E
ones with NFA value higher than 1 (black) are not considered meaningful. Note how
eaningfulness threshold. The NFA as a quantitative predictive measure is consistent

2e−32e−3 5e−3 7e−2 6e−1 1e+0

2e−4 4e−3 3e−23e−2 3e+05e+0

5e−47e−43e−1 4e−1 1e+0 3e+1

points position. On the right side, the lines indicate the manually selected path; the
red) are considered meaningful, while the ones with NFA value higher than 1 (black)
teriorated. In some cases a human observer might prefer to split the curve in two. In
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detection processes. If we set the meaningfulness threshold to
e ¼ 1 (one false alarm in average in noise), curves #5 and #6 of
dataset 3 are not meaningful. (On Figs. 3–5, the curves with
NFA < 1 are drawn in red, while the curves with NFA P 1 are in
black.) This is because the angle in the middle (which will deter-
mine the precision of the event because it forms the worst triplet)
is too acute. In this case, our model would prefer to split the curve
into two straight segments. This can be seen in the actual result of
the algorithm in Fig. 6, which shows the most significant curves.
Still, for a human observer, it is possible that a higher-level group-
ing process produces the junction of both segments.

Fig. 4 shows the same curves of Fig. 3 with 20 random points
added to each one. The aim of this extended dataset is to show
how the NFA correctly models the masking/unmasking perception
process. The NFA of the curves is less meaningful in the presence of
noise, but it is still meaningful where the structure can still be
1e−15 2e−13 4e−11

4e−11 3e−8 7e−5

1e−9 2e−6 3e−4 2e−3

4e−10 5e−8 1e−4

6e−7 2e−4 1e−1

1e−5 8e−3 2e−15e−1
8e−1

2e−5 5e−42e−3

2e−4 3e−3 4e−3

1e−47e−42e−2

Fig. 6. Result of the algorithm for the dot patterns of Figs. 3–5. The examples are group
meaningful curves (NFA < 1), the NFA value is printed for each detection. In red are show
green the third most meaningful one, when exist. Note that in some cases the algorithm
detected curves) are in accordance with the perceptual analysis of the dots: the bigger
perceived. On the other hand, when the noise is sufficient to
mask the structure, (notably in datasets 2 and 3 where the struc-
ture has fewer points), the structure becomes statistically as well
as perceptually indistinguishable from noise, and the NFA goes
above 1. This observation is in line with the original conclusions
of Uttal (1973), although the experiment setup is by no means
the same.

The datasets of Fig. 5 aim at showing the effect on the NFA of
the irregular placement of dots. Starting with the original curves
of Fig. 3, we added isotropic random displacements to each dot.
The random displacements are Gaussian distributed, centered at
each dot and with a 4 pixels standard deviation (as a reference,
inter-dot distance is approx. 20 pixels). The results show a degra-
dation of the NFA with respect to the original curves. This was to
be expected because the local symmetry is strongly violated. In
particular, the results of the dataset 1, curve #6 and dataset 2,
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ed by the type of noise: none, outlier and inlier noise. When the algorithm detects
n the most meaningful detections, in blue the second most meaningful ones, and in
detects no meaningful curve. The value of the NFA (or the meaningfulness of the

the (inlier or outlier) noise, the less meaningful the curve.



Fig. 7. Result of the good continuation detection algorithm for images scanned
from the following articles: (a) & (b) van Oeffelen and Vos (1983); (c) Pizlo et al.
(1997); (d) & (e) Caelli et al. (1978); (f) Kanizsa (1980); (g) Kanizsa (1991); (h)
Metzger (1975). On each scanned image in the left column, a Harris corner detector
was run to find the dots. The right column shows the Harris detections in blue, and
the good continuation configurations found by our method as curves connecting a
set of dots. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. Result of the algorithm using dot patterns adapted from the ‘‘yellow apple”,
‘‘banana” and ‘‘tamarillo” edge patterns from Williams and Thornber (1999). The
first row shows the superposition of the three original patterns, where the
orientation information was dropped and the figures were rescaled and displaced.
In the second and third row 100 and 1000 random points are added, respectively.
The red curves are the groupings of dots found by the algorithm. Note how the
detection decreases as the noise increases, as expected. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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curves #5 and #6 have now NFA values above the meaningfulness
threshold of 1. When looking at those curves, a human observer
might find it easier to interpret them as two separate pieces of
curves instead of a single one.
4.2. Results of the heuristic algorithm

In this subsection we shall discuss the results of the complete
algorithm, which includes the heuristic for searching for candidate
chains and their evaluation using the NFA. Fig. 6 shows the result
of the good continuation detection algorithm described in Section 3
for the dot patterns of Figs. 3–5. The figure is divided in three
groups according to the type of noise: no noise, outlier noise, and
inlier noise. Only the curves with NFA < 1 are displayed.

In the noise-free examples, the algorithm finds the original
curve in most cases. One exception is dataset 2, curve #3, where
the algorithm prefers the curve that is formed by leaving out the
last dot. Note that points have some position noise due to the scan-
ning and dot detection. What is happening is that the precision of
the last triplet is such that the NFA would increase rather than
decrease if it were included, so the most significant curve leaves
that dot out. Indeed, the detection algorithm keeps only the most
significant curves. In dataset 3, when the angle is too strong, the
individual segments are more meaningful than the entire curve,
resulting in two curves (red and blue).

In the second group of examples, where outlier noise is present,
the algorithm tends to find the curve when it is still perceived.
Otherwise, there are two reasons for a curve not to be detected.
The first trivial reason is when the NFA is simply too large and
therefore not meaningful, because the triplet’s probabilities
increase as more points are present in the local window (see
Fig. 2(c)). The second reason is that due to the algorithm’s heuristic
of searching among the nearest neighbors, the curve may never be
considered as a candidate, and never be evaluated. This is why for
some curves the NFA as it would be calculated by an ideal observer
is meaningful, but they are not detected by the algorithm. An exam-
ple of this case can be found in dataset 2, curve #4. This effect is
actually perceptually plausible: when there are many points in
the image, the complexity of evaluating every possible combination



Fig. 9. A possible application for the method is the processing of scanned documents. In the left column we show graphs scanned from real documents. In the right column,
Harris corner detections are represented by blue dots and curve detections in red. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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is arguably intractable for human perception. Small detections are
also produced that are not part of the original curves, in dataset 1
curve #6, dataset 2 curve #6 and dataset 3 curves #2 and #4. These
small detections are arguably perceptually salient when looking at
the figures, but their NFA is close to 1, meaning that they are just
slightly meaningful.

In the third group of examples, where random jitter is added to
the points positions, some curves were split at triplets with large
error. In those cases, separate segments of the curve are individu-
ally more meaningful than the whole curve. Such splitings are per-
ceptually plausible. Another interesting case is dataset 1, curve #5,
where the algorithm prefers to leave one point out of the curve.
Again, looking at the input dots this interpretation seems natural.

4.3. Applicability to image analysis

This subsection illustrates the applicability of the proposed
method to image and data analysis by showing results on some
typical data.

Fig. 8 presents examples of detection results on shape analysis.
We took three images from the fruit and vegetables dataset of
Williams and Thornber (1999) and kept only the position of the
oriented elements. The examples are silhouettes of an apple, a
banana and a tamarillo. To demonstrate the scale invariance of
our approach, we scaled each image, so they are at 1/3 and 1/6
scales, respectively. To produce a second dot pattern, we added
100 random points to the figure, to test the robustness of our
approach in differentiating perceptually relevant structure from
noise (second row of Fig. 8). For a final dot pattern, we added
1000 random points, which visually mask the two largest figures
(third row of Fig. 8). In this case, only the contour of the tamarillo
is still detected by the algorithm. The detected structures show a
good match with the perceived structures. The method handled
the masking by noise automatically, as well as the different scale
of the shapes.

Finally, Figs. 7 and 9 show a possible application of the method:
the automatic processing of graphs from scanned documents. The
input points to the algorithm were once again the points obtained
by running a Harris corner detector. Spurious corner detections are
also part of the input, which causes reasonable detections where
text is present. Fig. 7 shows results of the algorithm in dot patterns
obtained from scanning figures from popular articles in the litera-
ture. The examples in Fig. 9 illustrate the potential application to
the automatic vectorization of dotted lines, by combining our
detection algorithm with a Harris point detector.
5. Conclusions

We introduced a new quantitative model for the grouping of
dots under the good continuation Gestalt. Our approach is a for-
malization of the non-accidentalness principle, based on a very
simple model that favors local symmetries. This makes the model
prefer smooth and long curves, where the dots are equally spaced.
The model also accounts for the masking effect produced by sur-
rounding noise points. We presented an algorithm for the detec-
tion of good continuation groupings under this model. In the
evaluation section we presented through examples the theoretical
limits of the model as well as the results obtained with the algo-
rithm. These informal tests show a good match between the quan-
titative measure introduced and human perception.

We envision three different lines of future work. One is the
incorporation of the closure Gestalt to the model. The second is
the utilization of more complex models for the local interactions,
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modeling curvature explicitly, and in line with local interaction
fields studied in the literature. A third line is the formulation of a
coarse-to-fine version of the algorithm that would model a hierar-
chical process of perception and reduce the required computations.
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