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ABSTRACT
This paper proposes an extension of a method for time-frequency analysis of nonstationary harmonic
signals: the Fan Chirp Transform (FChT). In its original form, the FChT considers that each fundamental
frequency (along with the higher harmonics) of the signal may vary linearly in a period of time. This
model, however, may be considered poor for some types of signals, especially those whose fundamental
frequencies vary rapidly with time. By allowing quadratic frequency variation, this article presents a
solution to this problem, which may be considered the next step of the FChT. The proposed technique is
assessed in the context of music signals.

0 INTRODUCTION

Analyzing the frequency content of a signal is one
of the most essential operations in Signal Processing.
To do that, one usually considers the signal under analy-
sis to be time-invariant, and computes its Fourier Trans-
form. However, this is not appropriate when the sig-
nal has rapid fluctuations in frequency, such as the ones
produced by pitch variations in speech signals.

Many methods have been proposed to analyse those
type of signals, such as the Short-Time Fourier Trans-
form (STFT), the Wigner Distribution, the Wavelet
Transform, and so on [1], [2], [3]. Among them, the Fan

Chirp Transform (FChT) was introduced in [4], origi-
nally devised for speech processing. The goal of this
transform is to provide a representation as concentrated
as possible of the energy of a harmonic linear chirp in
the time-frequency plane.

When it comes to music, it makes no sense to an-
alyze the signal as a whole. Its frequency content is
changing with each musical note, which in turn depends
on how it is played by the musician. It is important to
consider such frequency fluctuations in time in order to
have a more precise description of the time-frequency
content of a music signal. Because of that, music-
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oriented time-frequency transformations, such as si-
nusoidal modeling [5], [6] and the Constant-Q Trans-
form [7] have become powerful tools. In [8], the FChT
was applied to the analysis of music signals by means
of the Short-Time Fan Chirp Transform (STFChT).

For some applications, there is a certain interest in
exploring the sparsity provided by the FChT, especially
in higher harmonics. Works as [9] and [10] take this
advantage into account when computing the sinusoidal
modeling and extracting the main melody of a music
signal, respectively.

The present work still focuses on audio analysis,
but allows that the fundamental frequency of the sig-
nal varies quadratically in time instead of only linearly
as in previous works. This new approach is expected to
yield better resolution for signals with rapid frequency
fluctuations such as vibratos.

The next section details the FChT and discusses its
FFT-based implementation. In Section 2, the FChT
with nonlinear warping is introduced. Some experi-
mental results are shown in Section 3 while conclusions
and future work are presented in Section 4.

1 THE FAN CHIRP TRANSFORM
This section defines the FChT and briefly discusses

its implementation and use in real signals.

1.1 Definition
As said before, the FChT provides an acute repre-

sentation of harmonically related linear chirp signals. It
is described in [8] as

X(f,↵) ,
1Z

−1

x(t)φ0
↵(t)e

−j2⇡fφ↵(t)dt, (1)

where φ↵(t) is a linear time warping function given by

φ↵(t) =

✓
1 +

1

2
↵t

◆
t. (2)

Applying the variable change ⌧ = φ↵(t) to Equa-
tion (1), one obtains

X(f,↵) =

1Z

−1/↵

x(φ−1
↵ (⌧))e−j2⇡f⌧d⌧, (3)

where ↵ is the chirp rate parameter, φ−1
↵ (t) is given by

φ−1
↵ (t) = − 1

↵
+

p
1 + 2↵t

↵
, (4)

and one assumes that x(t) = 0 for t  −1/↵ to avoid
aliasing [4].

From Equation (3), it is possible to see that the
FChT is the Fourier Transform of a time-warped ver-
sion of signal x(t). Therefore, the FChT can be calcu-
lated by taking advantage of the fast implementation of
the Fourier transform, the FFT algorithm [8].

1.2 Implementation
This work considers the analysis of audio signals as

the main application. The fan geometry of the FChT
seems appropriate to represent these types of signal, as
long as they are essentially composed by tones, each of
them consisting of a fundamental frequency and higher
harmonics. Nevertheless, this fundamental frequency
can be well approximated by a linear chirp only for a
short period of time, which forces the FChT to be cal-
culated in consecutive short-time signal frames. This is
called the STFChT and can be seen as a generalization
of the spectrogram [8].

The first step of an implementation of the FChT is
the time warping of each frame of the discrete signal
x[n]. This step is performed via a nonuniform resam-
pling. Since one only has access to its samples at time
instants nTs, where Ts is the sampling period, an inter-
polation is carried out [8]. Next, the FFT of the time-
warped signal is calculated.

The main difficulty here is to find the appropriate
value of ↵. For doing so, an exhaustive search is per-
formed, where all the admissible values of fundamen-
tal frequencies f0 and chirp rates ↵ are considered.
An auxiliary function ⇢(f0,↵), called salience plane,
is created to help with this task. This function con-
sists on an harmonic accumulation performed for every
(f0,↵) pair. If f0 actually represents an existing fun-
damental, then the energy at its partials is significant
and, therefore, a higher value of ⇢(f0,↵) is expected.
Likewise, if the correct ↵ value is applied, the sparsity
of ⇢(f0,↵) is maximum, i.e., the peak value obtained
is the higher possible one. For any other ↵ value, the
energy of the peak (corresponding to the existing fun-
damental) would be spread among adjacent bins.

The procedure [8] is briefly described below:

• Many instances of the FChT are calculated for dif-
ferent pre-determined values of ↵.

• A fundamental frequency grid is defined and, for
each f0 and FChT instance, the sum of the har-
monics’ log-magnitudes is calculated as [11]

⇢(f0,↵) =
1

nH

nHX

i=1

log |S(if0,↵)|, (5)

where S(f,↵) is the FChT and nH is a pre-
determined number of harmonics.

• Now, one has a dense plane ⇢(f0,↵) that concen-
trates energy in some points (f0,↵), each of which
represents an audio source with fundamental fre-
quency f0 increasing (or decreasing) at the rate of
|↵|Hz.

• The highest value of the salience plane ⇢(f0,↵)
for each f0 is chosen, yielding a salience function
⇢(f0). The peaks of ⇢(f0) represent, as said be-
fore, audio sources; from them, the chirp rate pa-
rameter ↵ for each source is obtained.
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In practice, there is no such correct ↵ value, since
the proposed model is a first order approximation of the
fundamental frequency. Additionally, because of com-
plexity purposes, only a finite number of parameter val-
ues is tested. These assumptions introduce small errors
to the estimation of ↵.

It is also important to emphasize that it is only pos-
sible to choose one ↵ value to compute the FChT for
each time frame. This way, when the signal involves
various simultaneous sound sources, it can properly
represent one of them at a time, while giving a poor
representation for the remaining ones [8].

The desired time-frequency signal representation is
provided by the STFChT, which is built as the concate-
nation of all previously frame-wise computed FChTs.
By concatenating the salience functions ⇢(f0), one gen-
erates a “summarizing” time-frequency representation
known as F0gram, which shows the temporal evolution
of pitch for all harmonic tones in a music signal [8], and
can give some insights about the estimated ↵ values, as
will be done in the following sections.

2 THE FCHT WITH NONLINEAR TIME
WARPING

The fundamental frequency of a music signal can
sometimes present rapid fluctuations in a short period of
time. In this case, its approximation by a linear function
would be poor, whereas choosing a set capable of rep-
resenting higher variations in frequency could result in
a sparser transformation. In this work, a second-order
polynomial is chosen to approximate the fundamental.

Figure 1 (up) shows an example of the ground-truth
melody (fundamental frequencies) of an opera excerpt
along time, where zero values represent note absences
in the foreground melody. It can be noticed that the
analyzed signal presents rapid fluctuations in frequency
and, as mentioned before, the fundamental frequency
may not be well approximated by a linear function
when considering short periods of time. By adding a
third term to Equation (2) one expects to improve the
representation of the fundamental frequency. One has

φ↵,β(t) =

✓
1 +

1

2
↵t+

1

3
βt2

◆
t, (6)

where β is called the curvature parameter.
Note that, by this definition, the instantaneous fre-

quency is given by

⌫(t) = f
d

dt
φ↵,β(t) = (1 + ↵t+ βt2)f. (7)

This shows that the fundamental frequency will now be
approximated by a second-order polynomial instead of
first-order as before.

This section aims at verifying whether this repre-
sentation is viable and, then, searching for the best
choice of values for parameters ↵ and β. The next step

is to add the nonlinear warping to the current FChT im-
plementation and see whether or when it brings an im-
provement to the time-frequency representation.
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Figure 1: Fundamental frequency of an opera signal
(upper graph) and quadratic approximation in dashed
red for 100 ms of an audio signal in blue (lower graph).

2.1 Parameter Sampling
A 100-ms frame extracted from the frequency track

shown in Figure 1 (up) is zoomed in blue in the bottom
plot, and compared with its second-order polynomial
approximation drawn in dashed red. Both curves are
normalized w.r.t. their frequencies in the middle of the
frame (t = 0 s).

As mentioned before, for this example a second or-
der approximation seems clearly more suitable. For
most signals, though, the fundamental frequency vari-
ation may be subtle enough to be approximated by a
linear function. The main goal here is, however, to an-
alyze such music signals that in fact exhibit this rapid
fluctuations in pitch, like the opera excerpt.

The first step toward the nonlinear warping is to
determine which are the possible values for parame-
ters ↵ and β. A database from MIREX [12] contain-
ing excerpts of polyphonic audio for which the main
melodies’ fundamental frequency had been manually
labeled (one of which depicted in Figure 1) was em-
ployed to aid in this task. Each signal was divided into
100-ms frames1, and the values of ↵ and β that yielded
the best fitting were calculated for each frame. It is
important to point out that the fundamental frequency
frame should be normalized as shown in Figure 1 (bot-
tom) prior to parameter computation.

The obtained set of pairs (↵,β) was then used to
construct a histogram. Parameter ranges were set to
[−4, 4] for ↵ and [−50, 50] for β, partitioned into 22
bins each. The result can be seen in Figure 2. We see

1Since we are interested in following typical pitch variations of
audio signals, a time frame way larger than the 20-ms standard was
chosen in order to bring forth significant values of β.
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that the majority of ↵ and β values concentrate in point
(0,0), but there is still a considerable amount of en-
ergy around it. From the preferential values for pairs
(↵,β) depicted in the histogram, different samplings
can be proposed, of which three examples are shown
in Figure 2. In the first case, the sampling consists of
23 points representing the two main directions of the
(↵,β) plane: ↵ = 0 and β = 0. In the second case,
the sampling consists of the first one added to 12 addi-
tional points around the origin (0, 0). In the third case,
the sampling consists of the 175-point ellipse around
the origin with 90% of the values of ↵ and β. Since an
exhaustive search is performed during the computation
of the FChT, the number of sampling points is directly
related to the computational cost. This fact determined
the adoption of restricted ranges for both parameters.
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Figure 2: Examples of sampling strategies: 1) the cross
denoted by black triangles; 2) the points of the cross
plus the ones denoted by black squares; 3) the first two
samples plus the points denoted by white circles. The
image shows the logarithm of the results.

After choosing an adequate sampling, it is now pos-
sible to proceed to the implementation.

2.2 Implementation
The implementation of the FChT with nonlinear

time warping also requires an exhaustive search. This
time, however, one performs the search over a set of
pairs (↵,β) instead of just ↵ values. Such pairs can be
arranged as an N -element vector, where N is the num-
ber of sampling points chosen. If each position γ in
this vector represents a pair (↵,β), the same method ex-
plained in Section 1 can be employed: compute a dense
plane ⇢(f0, γ) to find the peaks corresponding to audio
sources.

3 EXPERIMENTS AND RESULTS
In order to illustrate the effect of the proposed

change in the representation, two signals were con-
sidered. The first one is a synthetic harmonic signal

frequency-modulated by a sinusoid. Its fundamental
frequency f0 is given by the following expression:

f0 = f1(1− 21/12) sin(2⇡f2t) + f1,

where f1 is the central frequency and f2, the modula-
tion frequency. The values were chosen to mimic a typ-
ical vibrato, as found in singing voice performances,
namely, 500 Hz and 6 Hz, respectively. The second sig-
nal is the opera excerpt introduced in Section 2, which
presents rapid pitch fluctuations with time. For both
signals, the sampling frequency is 44100 Hz.

Figure 3 shows the magnitude of the STFChT of
the synthetic signal for both linear (second column) and
nonlinear (third column) warpings. The STFT for the
same signal is also shown (first column). Three differ-
ent window sizes were chosen for comparison: 1024
samples (first row), 2048 samples (second row), and
4096 samples (third row). This is done in order to en-
able a fair comparison of the methods.

It is possible to notice the effect of the chosen win-
dow size in the resolution of high and low frequen-
cies in the STFT. Increasing the window length yields
higher frequency resolution, which provides a better
representation for slow varying harmonics, as found in
low frequencies. On the other hand, a shorter window
is needed to improve the temporal resolution of rapid
varying harmonics, which can be seen in the high fre-
quency range. This is a classical issue when dealing
with the STFT whose effects are mitigated, as shown,
by the STFChT. As a matter of fact, it is desirable
to have the largest possible window when using the
STFChT, since this means a smaller spread in frequency
due to the windowing process. This upper bound is
restricted by the chosen warping type. The window
length can be increased as long as the frequency vari-
ations within the frame can be properly approximated
by the warping. For instance, when the window length
is increased to 4096 samples, the linear warping is no
longer capable of modeling the evolution of the har-
monics, and a resolution decrease arises especially in
the regions with high curvature. When using the non-
linear warping, one has one more degree of freedom to
model the fundamental frequency variations and can,
therefore, allow the analysis window to have a larger
number of samples. It is important to notice, however,
that the computation of the STFChT is dependent on
the parameter ↵ (and β, for the nonlinear warping case).
They have to be correctly estimated in order to allow a
sparse representation.

The analysis obtained with the nonlinear warp-
ing, shown in Figure 3, exhibits a sparser representa-
tion compared to the linear warping, especially around
peaks and valleys of the partial contours. Not surpris-
ingly, the higher order model can approximate with
more detail the actual frequency variations. Some ar-
tifacts can be observed in this representation due to the
estimation of ↵ and β values from a discrete set.
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Figure 3: STFT (first column), STFChTs with linear (second column, L) and nonlinear (third column, NL) warp-
ings of a synthetic signal. The following window sizes were used: 1024 (first row), 2048 (second row), and 4096
(third row) samples.
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Figure 4: F0gram graphics for the STFChTs with linear (first column, L) and nonlinear (second column, NL)
warpings of a synthetic signal. The following window sizes were used: 1024 (first row), 2048 (second row), and
4096 (third row) samples.

Such behavior can also be outlined through the cor-
responding F0gram graphics, shown in Figure 4. As
before, the linear (left column) and nonlinear (right col-
umn) warping cases are presented with window sizes of
1024 samples (first row), 2048 samples (second row),
and 4096 samples (third row). The fundamental fre-
quency, estimated as the maximum value for each time
instant, is shown in white on top of the F0gram. The

time-frequency resolution of the representation has a
noticeable impact on the accuracy of the fundamental
frequency estimation. In particular, the linear warping
for a 4096 samples window fails to properly follow the
actual fundamental frequency contour.

Figure 5 shows the magnitude of the STFChT of
the chosen real music signal for both linear (middle)
and nonlinear warpings (bottom). Again, the magnitude
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Figure 6: STFChT with linear (higher row) and nonlinear (lower row) warpings of an opera signal.
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Figure 5: STFT (upper graph) and STFChT with linear
(middle graph) and nonlinear (lower graph) warpings of
an opera signal.

of the STFT (up) is shown for comparison. The win-
dow size used for the these images was 2048 samples,
which, considering a sampling frequency of 44100 Hz,
correspond to approximately 46.4 ms. Since this signal
presents rapid enough pitch fluctuations, a time frame
of around half the duration proposed in Section 2.1 was
applicable to highlight the main differences between the
three representations. As previously stated, it is possi-
ble to see that the representation shown in the lower im-
age (STFChT with nonlinear warping) exhibits higher

resolution.
Figure 6 shows the F0grams for both the STFChT

with linear (up) and nonlinear warpings (bottom). Both
methods seem to correctly estimate the fundamental
frequency of the signal (not represented here), but it
is possible to notice that, for the nonlinear case, the
F0gram graphic is slightly sparser.

Another important aspect to consider is the process-
ing time of the nonlinear method. For the nonuniform
case and the third type of sampling, for example, since
the search is done over a larger amount of samples, the
time needed to calculate the FChT is approximately 5
times higher. A further analysis of the complexity is
still in progress. This time difference should be taken
into account in order to balance this issue and the ben-
efits the nonlinear warping can bring to the representa-
tions of signals with fast pitch variations.

4 CONCLUSION
The presented work is an expansion of the formerly

proposed FChT that improves the time-frequency res-
olution of signals that present rapid pitch fluctuations
with time.

Among other applications, the FChT can be used
in systems for melody detection, denoising, and sound
source separation [8]. The proposed modification can
improve the performance of the FChT as a result of a
finer time-frequency resolution.

It is important to point out that, for complexity rea-
sons, a relatively sparse grid should be employed with
the modified STFChT, which can eventually lead to
slightly worse resolution in linear segments than the
conventional transform with finer ↵ grid would yield.
Moreover, the parameter ranges must be blindly cho-
sen, when there is no a priori information on the sig-
nals. A possible solution to this issue could be guiding
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the obtained parameters in an adaptive way, in order to
take into consideration only currently plausible values
of ↵ and β in the exhaustive search.

It should also be mentioned that the required pro-
cessing time is higher for the nonlinear warping and
thus its application should be restricted to those situ-
ations in which fast frequency variations call for better
tracking. Future work must include a strong effort to
alleviate the computational requirements inherent to the
proposed method.
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