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Abstract. Genomic prediction is a still growing field, as good predic-
tions can have important economic impact in both, agronomics and
health. In this article, we make a brief review and a comprehensive anal-
ysis of classical predictors used in the area. We propose a strategy to
choose and ensemble of methods and to combine their results, to take
advantage of the complementarity that some predictors have.

Keywords: Parametric · Non parametric · Genomic · Selection ·
Prediction · Fusion

1 Introduction

Beef consumers increasingly demand meat of high and consistent quality. As a
consequence, research has focused on understanding muscle biology to control
quality traits. In the past two decades, molecular genetics has changed dramati-
cally animal production research. Genome sequencing has facilitated the identi-
fication of polymorphisms (here we focus on Single Nucleotide Polymorphisms:
SNPs), that can be used as genetic markers in animal breeding. Genes involved
in the physiological regulation of energy, body weight, triglyceride synthesis and
growth are candidates that may have effects on economically important carcass
and meat quality traits ([7] [6]). On the other hand, such avalanche of informa-
tion has increased in a considerable way the complexity of the analysis, making
obvious that the usual statistical methods may not be enough ([10] [18]). In this
paper we try to predict the carcass weight from genomic information. A review of
the state of the art in genetic prediction shows the interest in performance com-
parison between lineal regression models as Bayesian Ridge regression, Bayesian
Lasso, Bayes A, B and C with non-linear models as Bayesian Regularized Neural
Networks (BRNN), Reproducing Kernel Hilbert Spaces Regresion (RKHS) and
Support Vector Machine Regression (SVR).
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In [16], the superiority of nonlinear regression methods versus linear ones is
analyzed in the case of wheat genomic prediction. In [11] a comparison between
Best Linear Unbiasd Prediction (BLUP) and SVR shows discrepancy between
prediction accuracies obtained by cross-validation procedures and correlation
ones, beeing more accurate BLUP when a limited set of training samples are
available. In [13], a comparison of five methods to predict genomic breeding val-
ues of dairy bulls from genome-wide SNP markers is done. Fixed regression using
least squares (FRLS), BLUP, bayesian regression (BayesR), partial least squares
regression and SVR are compared in Australian Selection Index and protein
percentage prediction. Although the selected methods have inherent differences
in the underlying assumptions, they show similar performances (except FRLS,
which is not recomended). In [14] methods with large conceptual differences also
reached very similar predictive performances, although re-ranking of methods
was observed depending on the analyzed phenotype. In [19] the effects of feature
selection methods on prediction performance for different methods was observed.
The authors found that feature selection and prediction algorithms should be
carefully selected depending on the phenotypes. A nice review of kernel-based
whole-genome prediction of complex trait is presented by [12]. They concluded
that research involving analysis of raw phenotypes coupled with enviromental
variables needs more attention. In recent works, like [17], the impact of pre-
dictive modes averaging is analyzed. It is proposed to combine several RKHS
models with different t-kernels, but no improvements were found compared with
one kernel models. Although several works compared different approaches for
genomic prediction (born in breeding animal, statistics and machine learning),
they use performance measures, as the prediction error, that are global statistical
averages, which can hide the differences and complementarities between meth-
ods. In particular, these differences are what can make it worth a combination
of methods. In pattern recognition, it is well known that the best scenario is to
combine when individual methods have similar performance but bring diversity,
i.e. different behavior in different individuals [1,2,8,9].

In this paper we study the behavior of a set of known approaches for genomic
prediction of carcass weight in Aberdeen Angus cattle from Uruguay. A com-
parative analysis of the behavior of the different methods in the sample space
is presented. We propose a method to choose a subset of predictors, once their
performances are computed. The proposed analysis aims to provide knowledge
of the specific problematic, but also give elements for a greater understanding
of the similarities and differences between approaches and to know in advance if
it is worthy to use an ensemble of methods.

2 Methodology

Data Set Characterization. The database used comprise several phenotypic
measures [15] from a total of 705 Aberdeen Angus animals of different age-sex
categories. The animals came from ten commercial herds and were slaughtered
in different slaughter houses. The database is complex, due both to the amount
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of data and the diversity thereof. Apart from genotypic variables, it includes
environmental effects such as age, sex and origin. To avoid dealing with fixed
effects, we just considered the individuals of the most numerous herd. The trait
analyzed here is carcass weight. A total of 160 SNPs were selected for genotyping
from the bibliography and public genomic databases. They are located in can-
didate genes that take part in metabolic pathways and physiological processes
related to energy expenditure, triglyceride and fatty acid synthesis, body weight
and growth. After removing SNPs with minor allele frequency lower than 0.05
(to avoid bias of the data), and individuals with more than 20% of missing values
or with no phenotype, there were 79 SNPs and 93 individuals left.

Prediction Methods. In genome-wide association studies the objective is to
predict an individual’s breeding value (here, carcass weight) from its genotype.
The association between genotypes and phenotypes is modeled in a group of
individuals with phenotypic and genetic information (training set). The model
is then used to predict the individual phenotypes in individuals for whom only
information from genetic markers is available.

The basic prediction model, that seeks to minimize the mean square error
(Ordinary Least Squares (OLS)), has prediction coefficients that are unbiased
estimates with variance dependent on the sample size (n), the number of coeffi-
cients prediction (p) and interdependence between the predictor variables. One
way to address “the curse of dimensionality“ (p large in relation to n) of OLS,
which generates high variance and therefore a large mean square error (MSE),
is applying regularization in the regression. This is done adding a penalty term
in the optimization seeking to balance the goodness of the approximation to
the complexity of the model. Ridge Regression (RR) adds an extra term to the
likelihood function that reduces the regression coefficients in an amount which
depends on the variance of the co-variates. The regularization introduces bias,
but reduces the variance of the estimate, reducing potentially MSE estimation
of the prediction coefficients. Other individual cases of regularization are Least
Absolute Shrinkage and Selection Operator (LASSO) in which the penalty is
the absolute value of the coefficients, instead of the squares of them (as in RR),
which introduces sparcity.

In a Bayesian approach, different penalty methods can be introduced chang-
ing the priors from where the regression coefficients are sampled and the likeli-
hood functions. The Bayesian equivalent of RR, BRR (Bayesian Ridge Regres-
sion), allows to deploy G-BLUP (BLUP using a genomic distance’s matrix),
which is one of the most commonly used models in genomic prediction. A set of
methods that share the same likelihood function but differ in the priors, which
suppose different effects of the markers is known as the Bayesian alphabet ([3]).

The problem becomes almost intractable with large p. An alternative strategy
is to use semi-parametric models as proposed by Gianola [4] as RKHS (Repro-
ducing Kernel Hilbert Space), in which the model is determined by the choice
of a kernel which fixes the space in which the regression is performed, and the
parameter that determines shrinkage similar to that used in RR. An alternative
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method to capture additive, dominance and epitasis integrating linear and non-
linear functions are complex neural networks (NN [5]). One of the distinguishing
characteristics of neural networks is the flexibility to capture complex nonlinear
patterns, the drawback are that increasing p with multiple neurons, increases
strongly the computational requirements and tends to overfitting.

Having a set of tools as described previously, we faced the problem of defining
how to use them efficiently, taking full advantage of the benefits and minimizing
weaknesses. To do this we needed to define a set of measures for evaluating the
performance of complementarity and/or the diversity they bring to the set. In
particular, it lead us to investigate the advantages of assembly methods and how
to make the assemble.

Comprehensive Analysis of Diversity of Predictors. As was shown before,
different strategies have been proposed to deal with gene-trait association and
genetic prediction. The studies showed that there is no method that is always
superior to others in all data sets. These works make focus in MSE and they do
not make a deeper comparative analysis about the diversity between the meth-
ods. They hide how the individual strategies work in the data space and if they
have enough diversity between them that it could be worth embeding. Dealing
with complex data sets where the traits have high dependence on enviroment
introduce specific problems that have to be taken with care and different meth-
ods have to be used. We will discuss the relevance that different methods give to
the variables, making focus in similarities and differences. We propose to study
the relation between the genomic array, using its first two principal components
and the error distribution in the sampling space.

Diversity Meassure in Ensamble. For regression ensembles the ”diversity”
can be measured and quantified explicitly. The MSE can be expressed in a bias-
variance-covariance decomposition for the predictors ensembles. In an assemble
of methods, the predictive error depends on the bias and variance of individual
predictors but also on the covariance between individuals (shown in [2]).

The default method for the assembly of regression methods is the average
of the predictions of the different methods. Given that the average error is a
function of the average bias, variances and covariances between methods. An
improvement in performance would be expected against the individual meth-
ods.The optimal assemble choice is the one that balances the trade-off between
these terms to reduce the overall MSE. Given a set of methods with similar per-
formance in terms of individual MSE or correlation between the predicted and
the real values in the training set, the ones that provide smaller covariance, i.e.
are the most diverse, are worth to be ensemble.

Based on the above analysis, it is proposed as a criterion for the ensamble
to seek “diversity” measured by the covariance between methods: (i) Select the
two methods with less covariance, (ii) in an iterative way select the method with
less covariance with respect to the already selected provided that the covariance
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Table 1. Correlation Matrix of Predictors and the real value y: MMR: Multiple Marker
Regression, RR:Ridge Regression, BC: Bayes C, BB2: Bayes B with π = 10−4, RK:
Regression Kernel in Hilbert Spaces, NN: Neural Networks

y MMR RR BC BB2 RK NN

y 1.00 -0.13 0.20 0.15 0.18 0.16 0.19
MMR -0.13 1.00 -0.11 -0.18 -0.20 -0.16 -0.04

RR 0.20 -0.11 1.00 0.88 0.70 0.77 0.76
BC 0.15 -0.18 0.88 1.00 0.92 0.96 0.75

BB2 0.18 -0.20 0.70 0.92 1.00 0.98 0.63
RK 0.16 -0.16 0.77 0.96 0.98 1.00 0.71
NN 0.19 -0.04 0.76 0.75 0.63 0.71 1.00

is lower than a threshold, (iii) weighted average of the indiviual predictions is
given as result.

3 Results

Relationship Between Errors and Genetic Structure. To investigate if the
prediction error was related to the genomic relationship between each individual
and the rest of the population, a Principal Component Analysis of the genomic
matrix of the population was done. PCA is also helpful to investigate if there
is a hidden substructure in the population, which could introduce confounding
effects in our analyisis. We suppose that if the error of a predictor is related with
the genetic composition of the individuals, then individuals with the same type of
errors would cluster together. Although different bayesian approches were used,
in Figure 1 only BayesC is shown because the predictors were highly correlated
(≈ 99%).

No obvious clusterization is observed in Figure 1. From the individual error
point of view, there are some variations on the individual errors between meth-
ods, but in general the error structure remains the same, but for the multi marker
regression. This predictor was negatively correlated with the real values and with
the other predictors in the testing set (Table 1), so it is no longer considered in
the analyisis.

Combining Predictors. Although the differences between the error structure
of the predictors were slight (Fig. 1), the algorithm proposed in 2 was used to
investigate if there was a way of embedding predictors that predicted better than
the predictors individually.

The first chosen predictors were NN and BB2, for having the smallest positive
covariance. Then, the correlation between the mean of those predictors (mNN-
BB2) was computed and as a result of that RK was chosen. The predictor was
computed as m2RK = (2 ∗mNN −BB2 +RK)/3, to avoid underweighting the
first chosen predictors. Then, the correlation between m2RK and the remaining
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Fig. 1. Principal Component Analysis of Genomic Array. Errors in carcass weight
prediction are represented with a color gradient

predictors was computed and RR was chosen. The new predictor m3RR was com-
puted in the same way as the previous one. The correlation between the remaining
predictor BC and the new one was 90%, so BC was not integrated to the predictor.
The correlations of the previous steps were between 70% and 80%.

Three different combinations of the predictors were evaluated: The mean of them,
the weighted mean using the correlations between each predictor (w-mean) and the

Table 2. Mean Squared Error. BRR: Bayesian Ridge Regression (= G-BLUP), BA,
BB, BC and BL: Bayes A, B, C and LASSO, mean was taken over RR, BB2, RK, NN,
m2RK = (mNN+BB2)/2

MMR RR BRR BA BL BC BB BB2 RK NN mean w-mean m2 m2RK m3RR

0.80 0.72 0.58 0.57 0.57 0.60 0.58 0.57 0.57 0.85 0.58 0.58 0.60 0.57 0.59



Genetic Prediction in Bovine Meat Production 17

Fig. 2. Correlation between the predicted values using the different predictors and the
real value (left) and distribution of the squared errors (right). Results from testing set.

real value and the predictor resulting from the algorithm ( m3RR ). The new estima-
tors have almost the same MSE than the lowest observed value (0.57), and a slightly
better correlation with the real value. The best correlation found between the classical
predictors was the one of the Ridge Regression predictor (Fig. 2), but it has one of
the worst MSE (0.80, Table 2). The new predictor has the best correlation with the
phenotype and almost the lowest MSE.

4 Conclusions

A comprehensive analysis of the performances of the main methods used in genetic
prediction of complex traits of high economic impact was done.

Based on the evaluation of diversity among the indivuduals, an ensemble strategy
was proposed and evaluated. In particular, it was found that bayesian predictors have
low complementarity, while BayesC (or any of the others), Ridge Regression, RKHS
and Neural Networks have the highest degree of complementarity. By comparing several
ways of combining the predictors, obtained by taking diversity into account, we found
that the proposed criteria is consistent.

As it is not possible to know in advance which of the methods would work better,
as they do not require much computation after the predictors are computed, and as the
shown combinations work at least as well as the best predictor, it is worth to combine
the methods.

Further reserch has to be done in order to obtain the best weights for combining
these predictors, without loosing interpretability of the results.
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