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LIE ALGEBRAS OF CURVES AND LOOP-BUNDLES ON

SURFACES

JUAN ALONSO, MIGUEL PATERNAIN, JAVIER PERAZA,

AND MICHAEL REISENBERGER

ABSTRACT. W. Goldman and V. Turaev defined a Lie bialgebra struc-

ture on the Z-module generated by free homotopy classes of loops of an

oriented surface (i.e. the conjugacy classes of its fundamental group).

We develop a generalization of this construction replacing homotopies

by thin homotopies, based on the combinatorial approach given by M.

Chas. We use it to give a geometric proof of a characterization of simple

curves in terms of the Goldman-Turaev bracket, which was conjectured

by Chas.

1. INTRODUCTION

Goldman [Gol86] and Turaev [Tur91] defined a Lie bialgebra structure

on the Z-module generated by the free homotopy classes of loops of an

oriented surface M (i.e. the conjugacy classes of π1(M)). The bracket is

defined by

(1) [X, Y ]π1(M) =
∑

p∈α∩β

ǫ(p;α, β){αpβp}

where α and β are representatives of X and Y respectively, intersecting at

most at transversal double points, the number ǫ(p;α, β) = ±1 denotes the

oriented intersection number of α and β at p, and {αpβp} is the conjugacy

class of the element αp ·βp ∈ π1(M, p) where αp and βp are the elements of

π1(M, p) that correspond to reparametrize α and β to start (and end) at p.

Turaev showed in [Tur91] that there is a colagebra structure that gives

rise to a Lie bialgebra. Chas in [Cha04] proposed a combinatorial model

for this bialgebra structure. The aim of this paper is to develop a general-

ization of the Goldman-Turaev construction replacing homotopies by thin

homotopies.

Key words and phrases. loop spaces, Goldman bracket.
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Let M be an oriented surface endowed with any Riemannian metric. We

denote by E(M) the set of classes of piecewise geodesic curves in M mod-

ulo endpoint-preserving thin homotopies, which we shall define with preci-

sion in section 2.1. For each x ∈ M we define Lx(M) as the elements of

E(M) that start and end at x. It will be easy to notice that this is a group

under concatenation, and π1(M,x) is a quotient of it.

Let S(M), the space of strings of M , be the set of conjugacy classes of

Lx(M) in E(M), i.e. g, h ∈ Lx(M) are conjugate if there is p ∈ E(M)
such that p−1gp = h. Let S(M) be the free abelian group generated by

S(M). In this paper we shall define a bracket [ , ] on S(M) following the

lines of Chas in [Cha04]. Then we shall show

Theorem 1.1. (S(M), [ , ]) is a Lie algebra.

It is also possible to give a coalgebra structure and show that S(M) is a

Lie bi-algebra using the same techniques, though we will not present this

construction explicitly. We will see that the Goldman-Turaev structure on

M is the quotient of S(M) obtained by taking regular (non-thin) homot-

pies. This fact will emerge naturally from our construction of the bracket,

and the case for the co-bracket is analogous. The Goldman algebra is rele-

vant in the study of spaces of representations of the fundamental groups of

2-manifolds, which in turn, can be regarded as moduli spaces of flat connec-

tions on orientable 2-manifolds ([Jef05]). Our construction may also play a

role in the study of the space of all connections but this aspect is not going

to be treated here.

Chas and Krongold obtained an algebraic characterization of homotopy

classes of simple curves in terms of the bracket ([CK10]) and the cobracket

([CK16]) . (See also [CG16] and [CK21]). In the present paper we give a

geometric proof of a different characterization of simple curves in terms of

the bracket, which was conjectured by Chas in [Cha04]. For other related

results see [CP10], [CP12] [Cha15a] [Cha10], [CMP19], [Cha15b].

A string X is primitive if every representative g ∈ Lx(M) (for any

x ∈ M) of X is primitive in the sense of group theory: if there is no

h ∈ Lx(M) such that g = hn with n > 1. A piecewise geodesic closed

curve will be called simple if it has no stable self-intersections, i.e. if there

is a small perturbation that has no self-intersections (namely, that is simple

in the usual sense).

We shall show the following theorem:

Theorem 1.2. Let M be an oriented surface. A primitive X ∈ S(M) has a

simple representative if and only if [X,X−1] = 0.
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The geometric group theory approach of our proof of Theorem 1.2 may

have some independent interest beyond the result itself. The aforemen-

tioned proof includes some tools, namely, the notion of α-oriented sub-

groups (see section 4.3), which could be useful in other contexts.

Theorem 1.2 will allow us to prove a conjecture posed by Chas ([Cha04]):

Corollary 1.3. Let M be a compact oriented surface with boundary. A

primitive free homotopy class X of M has a simple representative if and

only if [X,X−1]π1(M) = 0.

Proof. Let p : M̃ → M be the universal covering of M . Let D ⊂ M̃ be a

fundamental polygon as in [Cha04]. Since M has boundary we can choose

on M̃ a metric of constant non positive curvature.

The fundamental group is freely generated by the set T of those g ∈
π1(M) such that gD ∩ D 6= ∅. Let Lx,0(M) ⊂ Lx(M) be the subgroup

of Lx(M) generated by those elements of the form hg = [p ◦ αg] where

αg is a geodesic (corresponding to the chosen metric) joining x to gx for

each g ∈ T . Denote by S0(M) the set of strings corresponding to the

loops in Lx,0(M). Note that π1(M) is isomorphic to Lx,0(M) via the stan-

dard quotient, i.e. taking non-thin homotopies. As we mentioned below

Theorem 1.1, this quotient is a Lie algebra homomorphism, thus it gives

an isomorphism between the subalgebra of S(M) generated by S0(M) and

the Goldman-Turaev algebra on the free homotopy classes of M . Then we

apply Theorem 1.2 to strings in S0(M) to conclude this proof. �

2. THE LOOP BUNDLE

2.1. Definitions of thin homotopies and the spaces of loops. Let I be the

unit interval and M a Riemannian manifold. We begin by recalling some

standard notations. A path in M is a continuous function from I to M , and

we say that two paths a, b : I → M are equivalent modulo reparametriza-

tion if there is an orientation preserving homeomorphism σ : I → I such

that a◦σ = b. Denote by Ω0 the quotient set under this equivalence relation.

If a(1) = b(0) we define ab and a−1 as follows: ab(t) = a(2t) if t ∈ [0, 1/2]
and ab(t) = b(2t− 1) if t ∈ [1/2, 1]; a−1(t) = a(1− t) for every t ∈ [0, 1].
Let ex ∈ Ω0 be the contant path at x, i.e. ex(t) = x for every t ∈ [0, 1].

In order to define what we call thin homotpy between piecewise geodesic

paths we need to consider another preliminary equivalence, which amounts

to collapse constant sub-paths. Let a be a non-constant path in M . We

shall define a minimal form ar for a as follows: let Ii ⊂ I be the maximal

subintervals in which a is constant, and let σ : I → I be a surjective non-

decreasing continuous function, constant in each Ii and strictly increasing
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in I −
⋃

i Ii. Then there is ar : I → M such that a = ar ◦ σ, which is

non-constant on any subinterval of I (this map is obtained by a universal

property of quotients). Different choices of the function σ give rise to min-

imal forms that are equivalent modulo reparametrization, and moreover, if

two paths a and b are equivalent, so are any of their minimal forms ar and

br. This allows us to define the minimal class of an element of Ω0 (as the

class of any minimal form of any representative), and take a quotient Ω1

where we identify two elements of Ω0 if they have the same minimal class

(extending the definition to constant paths in the trivial way). The product

and inverse are well defined on Ω1, and the classes of constant paths are

units for the product.

Let Ω ⊂ Ω1 be the set of classes of either constant paths or paths that are

piecewise geodesic, i.e. a finite concatenation of geodesic segments. Notice

that for α ∈ Ω there are well defined notions of endpoints α(0) and α(1), of

image α(I), and of length l(α). Throughout the paper we will refer to the

elements α ∈ Ω as curves, and say that α is a closed curve if α(0) = α(1).

In the set Ω we consider the equivalence relation generated by the identi-

fications αaa−1β ∼ αβ. This is what we call equivalence under thin homo-

topies. With the formal definition in hand, we recall the concepts from the

introduction: Let E(M) denote the quotient set of Ω under thin homotopies,

and let Lx(M) be the projection onto E(M) of the set of closed curves start-

ing and ending at x. Note that Lx(M) is a group under concatenation whose

identity element, idx, is the equivalence class of ex, the constant path at x.

2.2. Reductions and basic properties. A reduction for α ∈ Ω is a factor-

ization of the form α = acc−1d with nontrivial c. We say that α is reduced

if it admits no such reduction. Since the curves in Ω are classes of piece-

wise geodesic (or constant) paths, it is easy to show that every element of

E(M) has a unique reduced representative in Ω (though the proof of unique-

ness may be a bit cumbersome). The reduced form of α ∈ Ω is the unique

reduced curve that is equivalent to α under thin homotopy.

Next we point out some basic facts that will be used without explicit

reference throughout the article. Firstly notice that a curve γ ∈ Ω satisfies

γ = γ−1 only when it is of the form γ = cc−1, thus for a reduced curve γ it

happens only when γ is constant. Next we see that the concept of length in

Ω satisfies the expected properties, namely that:

• l(ab) = l(a) + l(b), and

• if ab = cd with l(a) = l(c), then a = c and b = d.
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For γ, δ ∈ Ω we shall write γ ⊂ δ if we have δ = aγb for a, b ∈ Ω. In

case a is trivial we say that γ is an initial segment of δ, and if b is trivial that

γ is a final segment of δ. Note that if δ is reduced, so must be γ.

We say that two curves γ and δ overlap if an initial segment of one of

them agrees with a final segment of the other, i.e. if we can write either

γ = ab, δ = bc with b non-constant, or γ = ab, δ = ca with a non-constant.

Note that if γ is reduced and non constant, then γ and γ−1 cannot overlap:

for instance, if γ = ab and γ−1 = bc, we get b = b−1 where b is reduced, so

b must be constant.

2.3. Definitions of loop bundle and horizontal lift. Consider the space

E(M) defined in the previous section, and let [α] ∈ E(M) stand for the

equivalence class of α ∈ Ω. Let Ex(M) be the set of the [α] ∈ E(M) such

that α(0) = x; define π : Ex(M) → M by π([α]) = α(1), and observe that

Lx(M) = π−1(x). The group Lx(M) acts on Ex(M) by left multiplication

and for all [α] ∈ Lx(M) and [γ] ∈ Ex(M) we have π
(

[α][γ]
)

= π([γ]);
hence the quadruple (Ex(M),Lx(M),M, π) is a principal fiber bundle over

M , with structure group Lx(M).

Let γ be a path in M , and take p ∈ Ex(M) with π(p) = γ(0). We define

the horizontal lift of γ at p to be the path γ̃ in Ex(M) which is obtained

in the following way. Take β any representative of p (i.e. p = [β]), and

for each s ∈ I set γs to be the path in M defined by γs(t) = γ(st). Then

γ̃(s) = [βγs]. This horizontal lift can be seen as a topological connection

in the bundle (Ex(M),Lx(M),M, π). We will say that a path in Ex(M)
is horizontal if it can be obtained by horizontal lift (see [Mil56], [Tel60]).

Note that the concept of horizontal lift is well defined at the level of curves

(i.e. in Ω1), thus we may speak of horizontal curves.

We define the length of an horizontal curve as the length of the projection.

Observe that the action of Lx(M) preserves the set of horizontal curves, as

well as their lengths (by definition). We should clarify that we are not giving

a metric on Ex(M).

2.4. Conjugacy classes in Lx and the space of strings. Recall that the

space of strings S(M) is the set of conjugacy classes of Lx(M) in E(M),
i.e. g, h ∈ Lx(M) are conjugate if there is p ∈ E(M) such that p−1gp = h.

This does not depend on x because of the following remark.

Remark 2.1. (Change of basepoint) If x, y ∈ M and γ0 : I → M has

γ0(0) = x and γ0(1) = y, let p0 = [γ0] and define the maps ψ : Ex(M) →
Ey(M) by ψ(p) = p−1

0 p and φ : Lx(M) → Ly(M) by φ(g) = p−1
0 gp0.

Then φ is an isomorphism of groups, and (ψ, φ) is an isomorphism of fiber

bundles over M , commuting with the horizontal lift.
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We say that a closed curve α is cyclically reduced if α is reduced and it

cannot be factorized as cac−1 with non trivial c. For a cyclically reduced

curve γ, we say that β ∈ Ω is a permutation (or cyclical permutation) of γ if

there are r, s ∈ Ω such that γ = rs and β = sr. If s and r are non constant

we say that β is a non trivial permutation of γ. Note that permutation is an

equivalence relation among the cyclically reduced curves in Ω.

For a string X ∈ S(M) we can find x ∈ M and a cyclically reduced

curve α based at x, such that X is the conjugacy class of [α] ∈ Lx(M).
On the other hand, permutation agrees with conjugacy in Ex(M) among

cyclically reduced curves, therefore we have

Remark 2.2. There is a bijection between S(M) and the permutation classes

of cyclically reduced curves.

Throughout the paper, when we take representatives of strings we will

always assume them to be cyclically reduced. If X ∈ S(M) and α is a

representative of it, we define X−1 as the permutation class of α−1. It is

straightforward to check that if α is non-constant then α−1 is not a permu-

tation of α. Thus X 6= X−1 unless X is trivial.

A cyclically reduced curve α is primitive if there is no γ ∈ Ω such that

α = γn with n > 1. The following easy result is well known.

Lemma 2.3. Let α be a cyclically reduced curve. Then α is not primitive if

and only if α has a non trivial permutation α̂ such that α = α̂.

Note that a string X ∈ S(M) is primitive, as defined in the introduction,

if it has a cyclically reduced representative that is primitive.

3. LIE BIALGEBRA STRUCTURE

3.1. Linked pairs. In order to define the bracket in S(M) we need a way of

encoding the intersections of curves in Ω that are stable under local homo-

topy. We do this by adapting the notion of linked pairs from Chas [Cha04]

to our context.

Let α1, α2 and γ in Ω be classes of geodesic segments contained in a

normal ball such that α1(1) = α2(0) =: y and either γ(0) = y or γ(1) = y.

Assume that α = α1α2 is reduced and γ only meets α at y. Take ρ > 0
small enough so that B(y, ρ) is a normal ball and α1, α2 and γ are not

contained in it, and let z1, z2, z be the intersection points of α1, α2 and γ
with ∂B(y, ρ) respectively. Since M is oriented, the orientation of B(y, ρ)
induces an orientation of ∂B(y, ρ) ∼= S1, which is equivalent to giving a

circular order on ∂B(y, ρ).
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We write sign(α, γ) = 1 if either γ(0) = y and the order of the sequence

z2, z, z1 coincides with the circular order of ∂B(y, ρ), or γ(1) = y and the

order of the sequence z2, z1, z coincides with the circular order of ∂B(y, ρ).
Otherwise we write sign(α, γ) = −1. Notice that this sign does not depend

on the choice of ρ.

Informally one could say that sign(α, γ) = 1 if γ is either outgoing at the

“left” side of α or incoming at the “right” side of α, while sign(α, γ) = −1
if one of the reverse situations happens.

Since elements of Ω are piecewise geodesic curves, the intersections be-

tween two elements are either transversal or along an interval. Taking this

into account, we discuss the general forms of these intersections and in-

dicate which ones will constitute linked pairs. A factorization of a curve

α ∈ Ω is a sequence (α1, . . . , αn) such that α = α1 · · ·αn where αi ∈ Ω.

Definition 3.1. Consider the following factorizations (of some curves)

A = (a, η, b)

B = (c, ξ, d)

where a, b, c, d are geodesics contained in normal balls. We say that

(A,B) is a linked pair if any of the following conditions hold

(1) η = ξ = point, d meets ab only at d(0) and c meets ab only at c(1),
and

sign(ab, d) = sign(ab, c)

(2) η = ξ (non constant), if we factorize η = γ1η1γ2 such that γ1 and

γ2 are contained in normal balls, we have that d meets γ2b only at

d(0) and c meets aγ1 only at c(1), and

sign(γ2b, d) = sign(aγ1, c)

(3) η = ξ−1 (non constant), if we factorize η = γ1η1γ2 such that γ1 and

γ2 are contained in normal balls, we have that c meets γ2b only at

c(1) and d meets aγ1 only at d(0), and

sign(aγ1, d) = sign(γ2b, c)

We define the sign of the linked pair as follows: In case (1) we set

sign(A,B) = sign(ab, d), in case (2) we set sign(A,B) = sign(γ2b, d)
and in case (3) set sign(A,B) = sign(aγ1, d).

If all but the orientation (sign) conditions hold we say that (A,B) is an

intersection pair. Notice that the intersections between two cyclically re-

duced curves in Ω can locally be written in the form of intersection pairs.

The orientation conditions say that an intersection pair (A,B) is a linked
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pair exactly when the intersection between the underlying curves is stable

under small perturbations. We shall refer to linked pairs of type (1), (2) or

(3) according to which one of the conditions they satisfy in Definition 3.1,

and we do the same for intersection pairs.

Next we turn to the intersections of cyclically reduced curves in Ω in a

global sense, i.e. in a way that takes account of multiplicities.

If α is a closed curve, we say that P = (ξ, η) is a cyclic factorization

of α if either α = ξ1ηξ2 with ξ = ξ2ξ1 or α = η1ξη2 with η = η2η1.
There is a slight abuse of notation here, as the decompositions ξ = ξ2ξ1
or η = η2η1 are needed for recovering α, and are indeed intended as part

of the definition, though we drop them from the notation to make it less

cumbersome. If α is cyclically reduced and β is a permutation of it, then

there is a bijection between the cyclic factorizations of α and those of β.

Notice though, that in order to talk about cyclic factorizations of a string,

we need to choose a curve representative first. The reason for this choice of

definition is that we want to keep track of the position of the sub-curves (ξ
and η) with respect to a chosen parameter-basepoint (which is well defined

in Ω). This detail will make a difference for strings that are not primitive.

Definition 3.2. Let α, β ∈ Ω be cyclically reduced closed curves. A linked

pair between α and β is a pair (P,Q) of cyclic factorizations P = (α1, η)
and Q = (β1, ξ) of α and β respectively, such that if we write

• α1 = bα̂1a and β1 = dβ̂1c, where a, b, c, d are geodesics contained

in normal balls, and

• A = (a, η, b) and B = (c, ξ, d),

then (A,B) is a linked pair.

Notice that the concatenations aηb and cξd are well defined, so the above

definition makes sense. Moreover, they are sub-curves of some permuta-

tions of α and β respectively, thus saying that (A,B) is a linked pair means

that there is a stable intersection between α and β, or the strings they repre-

sent. Defining P and Q as cyclic factorizations keeps track of the position

of the intersection segments relative to the parameter-basepoints of α and

β, so intersections that repeat count as different linked pairs. This amounts

to counting multiplicity, just as is usual in differential topology for the in-

tersection between transversal smooth paths. Notice also that taking a per-

mutation of α or β induces a natural bijection between the sets of linked

pairs.

We define the length of a linked pair as l(P,Q) = l(η) = l(ξ), i.e. as the

length of the intersection segment. The type of (P,Q) shall be the type of

(A,B) in Definition 3.2.
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3.2. Definition of the string bracket. In this section we define the bracket

following closely the presentation in [Cha04]. Since the definition of the

co-bracket involves no new ideas we omit it. Recall that S(M), the space

of strings, is the set of conjugacy classes of Lx(M). Also recall that S(M)
is the free abelian group generated by S(M), in which we shall define the

bracket.

For X ∈ S(M) and an integer n > 0, let Xn be the conjugacy class

of [α]n, where [α] represents X . Define also l(X) = l(α) where α is a

cyclically reduced representative ofX , noting that different choices of such

representative have the same length. Since α is cyclically reduced, we have

that l(Xn) = nl(X).

Although we will not present the definition of the co-bracket, we give the

main definition in which it is based, for the sake of completeness.

Definition 3.3. Let X be a string. We define LP1(X), the set of linked pairs

of X , as the set of linked pairs of any two representatives of X .

By the discussion at the end of the previous section, the choice of rep-

resentatives of X in Definition 3.3 does not affect LP1(X). It is possi-

ble to show, similarly as in [Cha04], that this definition reflects the stable

self-intersections of X , at least when X is primitive, in a 2 to 1 corre-

spondence: each stable self-intersection corresponds to two linked pairs

of the form (P,Q) and (Q,P ). Non-primitive closed curves have stable

self-intersections, in the sense of the self-intersections of a transversal per-

turbation, that do not arise from linked pairs. Since we will not focus on the

co-bracket, we shall not prove these assertions. Next we turn to the case of

linked pairs between two strings, that will be the key for the construction of

the bracket.

Definition 3.4. LetX and Y be strings. Define LP2(X, Y ), the set of linked

pairs of X and Y , as the set of linked pairs (P,Q) between representatives

of Xn and Y m for n,m ≥ 1, where l(Xn−1) ≤ l(P,Q) < l(Xn) and

l(Y m−1) ≤ l(P,Q) < l(Y m). (With the convention that l(X0) = l(Y 0) =
0).

Again, different choices of representatives for the strings in Definition

3.4 yield sets LP2(X, Y ) that are in natural bijection.

Remark 3.5. The powers are necessary: Consider α and β, closed geodesics

starting and ending at the same point x and meeting transversally at x. Let

X be the conjugacy class of [α] and Y the conjugacy class of [β][α2]. There

is no linked pair between X and Y but there is a linked pair between X3

and Y . Note that the core segment of the linked pair is α2.
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On the other hand, it can be shown that LP2(X,X) = LP1(X), i.e. the

powers are not needed in the case X = Y . We shall see later, in Lemma

3.13, that LP2(X, Y ) captures the notion of stable intersections between X
and Y . It is not inmediate from Definition 3.4 that LP2(X, Y ) is finite, the

proof of this fact will be based in the following result.

Proposition 3.6. Let U = {α1, . . . , αn} be a finite set of piecewise geo-

desic curves. There are factorizations αi = ai,1 · · · ai,ni
such that whenever

ai,j ∩ ak,l 6= ∅, either

(1) ai,j and ak,l meet only at one endpoint.

(2) ai,j = ak,l
(3) ai,j = a−1

k,l

Proof. Subdivide any factorization of the curves αi until the desired proper-

ties are obtained. This will happen because of the transversality properties

of the geodesics.

�

Given strings X and Y , Proposition 3.6 allows us to find a finite set of

curves that works as an alphabet for writing some representatives of X and

Y , as well as all the core curves of the intersection pairs between (powers

of) these representatives. Thus we can write the cyclic factorizations that

make up the elements of LP2(X, Y ) as words in this alphabet.

Lemma 3.7. For any strings X and Y , LP2(X, Y ) is finite.

Proof. Using Proposition 3.6 as indicated above, this becomes a straight-

forward adaptation of Lemma 2.9 of [Cha04].

�

Definition 3.8. Let X and Y be strings and (P,Q) ∈ LP2(X, Y ). Write

P = (α1, η) and Q = (β1, ξ) as in the definition of linked pairs, and let α
and β be the representatives of X and Y that satisfy the following:

• If (P,Q) is of type (1) or (2), then

αn = α1η and βm = β1ξ

(where n,m ≥ 1 are the powers of X and Y that correspond to

(P,Q) in Definition 3.4).

• If (P,Q) is of type (3), then

αn = α1η and βm = ξβ1

(for the same n,m ≥ 1).
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In any of the above cases, define (X ·(P,Q) Y ) to be the conjugacy class

of [α][β].

We say that (X ·(P,Q) Y ) is the dot product of X and Y at (P,Q). Notice

that α and β are the representatives of X and Y that we get by choosing

parameter-basepoints at the “ending” of the linked pair’s core curve. They

are indeed loops based at the same point, so the concatenation [α][β] is well

defined.

Definition 3.9. Let X and Y be strings, we define their bracket as

[X, Y ] =
∑

(P,Q)∈LP2(X,Y )

sign(P,Q)(X ·(P,Q) Y )

Then we extend the definition to S(M) so that the bracket is bilinear.

3.3. Linked pairs and differentiable curves. Our next goal is to show

the correspondence between linked pairs and stable intersections, which

will lead to the relationship between the bracket in Definition 3.9 and the

Goldman-Turaev bracket given by equation (1). This will in turn allow us

to prove Theorem 1.1, i.e. that Definition 3.9 gives a Lie algebra.

Let C be a compact one dimensional complex on an oriented Riemannian

surface M whose edges are geodesic arcs, and consider a basepoint x ∈
C. Let C̃ be the universal covering of C. Then the following lemma is

straightforward.

Lemma 3.10. Lx(C) ∼= π1(C, x) and Ex(C) ∼= C̃.

Moreover, these correspondences give an isomorphism of fiber bundles

(Ex(C),Lx(C), C, π) ∼= (C̃, π1(C, x), C, π)

where π1(C, x) acts on C̃ by deck transformations.

Let S(C) be the set of strings contained in C, and note that the string

bracket of Definition 3.9 can be restricted to S(C), the free abelian group

on S(C). We will denote this bracket by [ , ]C .

For any set V ⊂M let Vε denote an ε-neighborhood of V . The following

lemma is well known, see [Gor81] for a very general construction.

Lemma 3.11. If ε is small enough, there is a retraction χ : Cε → C. It

induces an isomorphism χ∗ : π1(Cε, x) → π1(C, x) for any x ∈ C.

Let S1(M) be the free abelian group generated by the set of conjugacy

classes of π1(M), where the Goldman-Turaev bracket is defined. By Lemma

3.10 we see thatχ induces an isomorphism of abelian groupsχ∗ : S1(Cε) →
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S(C). We shall prove that χ∗ sends the Goldman-Turaev bracket of the sur-

face Cε to [ , ]C .

Proposition 3.11 in [Cha04] can be rephrased as

Lemma 3.12. Let [α] and [β] be representatives of strings in S(C). Then

there are differentiable curves γ and δ in Cε such that

• γ and δ are ε-perturbations of α and β respectively,

• α and β are the reduced forms of χ ◦ γ and χ ◦ δ respectively, and

• γ and δ intersect transversally, in at most double points, and deter-

mine no bigons.

Moreover, γ and δ have minimal intersection among the curves in their

homotopy classes.

We remark that in Lemma 3.12 the curves χ ◦ γ and χ ◦ δ need not be

reduced, but the curves removed in their reduction have length less than

ε, and each one is contained in some geodesic edge of the complex C,

assuming ε is small enough. Now we can relate the linked pairs of two

strings in S(C) with the intersections that are stable under perturbation in

Cε .

Lemma 3.13. Let [α] and [β] be representatives of strings X and Y in

S(C), and let γ and δ be curves given by Lemma 3.12.

Then for each intersection point p of γ and δ there are n,m ≥ 1, curves

a ⊂ γn and b ⊂ δm meeting at p, and a linked pair (P,Q) between αn and

βm that satisfy the following:

If P = (α1, ξ) and Q = (β1, η), then the reduced forms of χ ◦ a and

χ ◦ b can be written as a1ξa2 and b1ηb2 respectively, where a1, a2, b1, b2 are

geodesic segments.

Moreover, this correspondence is a bijection between the intersection

points of γ and δ, and LP2(X, Y ).

Proof. This is done with the techniques of [Cha04]. We consider π : C̃ε →
Cε, the universal cover of Cε. Then C̃ is embedded in C̃ε as a tree, made

of piecewise geodesic curves, since C is piecewise geodesic. Consider also

χ̃ : C̃ε → C̃ the lift of χ, and for each geodesic arc c in the decomposition

of C̃ let V (c) = χ̃−1(c). Then the sets V (c) are homeomorphic to closed

disks, they cover C̃ε, and their interiors are disjoint.

Now, for each p in the intersection between γ and δ, we pick p̂ ∈ C̃ε

projecting to p, and consider γ̂ and δ̂ the infinite lifts of γ and δ that meet

only at p̂ (recalling that γ and δ have no bigons). Let α̂ and β̂ be the respec-

tive reductions of χ̃ ◦ γ̂ and χ̃ ◦ δ̂, which are infinite lifts of α and β. The
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set α̂(I) ∩ β̂(I) is compact, since γ̂ and δ̂ meet only once and are lifts of

closed curves, and it is an arc, since α̂ and β̂ are reduced. We shall write

α̂(I)∩ β̂(I) as a curve in two ways, with possibly different orientations: we

call ξ̂ and η̂ to the curves spanning α̂(I) ∩ β̂(I) with the orientations given

by α̂ and β̂ respectively. It may be the case that α̂(I) ∩ β̂(I) is just a point,

then ξ̂ and η̂ will be constant (this will result in a linked pair of type (1) ).

Let

V = ∪{V (c) : c ∩ α̂(I) ∩ β̂(I) 6= ∅}

Then V is, topologically, a closed disk, and we have α̂ ∩ V = c1ξ̂c2 and

β̂∩V = d1η̂d2, where c1, c2, d1, d2 are pairwise different geodesic segments.

For each geodesic segment c that meets α̂(I) ∩ β̂(I) but is not contained

in it, we define the set B(c) = ∂V (c) ∩ ∂V . Note that B(c) is a segment in

∂V ∼= S1, and that c has an endpoint in B(c) and the other in α̂(I) ∩ β̂(I).
The segments B(c) just defined are pairwise disjoint, and their union is the

relative boundary of V in C̃ε. Taking ε small enough, we may assume that

the ε-neighborhood of α̂ only meets the relative boundary of V at the arcs

B(c1) and B(c2). Thus γ̂ ∩ V is an arc that enters V through B(c1) and

exits through B(c2), meeting no other segment of the relative boundary of

V . Similarly we get that δ̂ ∩ V is an arc that traverses V from B(d1) to

B(d2).

Let â = γ̂ ∩ V and b̂ = δ̂ ∩ V . They must intersect at p̂, in particular

p̂ ∈ V , since the complementary arcs of γ̂ and δ̂ are in different components

of C̃ε − V . Note that χ̃ ◦ â and χ̃ ◦ b̂ can be reduced, respectively, to

α̂ ∩ V = c1ξ̂c2 and β̂ ∩ V = d1η̂d2. We define the curves a, b, ξ, η in the

statement as the respective projections of â, b̂, ξ̂, η̂.

By compactness, there are n,m ≥ 1 such that â and b̂ are contained in

lifts of γn and δm inside γ̂ and δ̂ respectively. We choose n,m minimal for

these inclusions to be strict. Thus ξ and η induce cyclical factorizations of

αn and βm respectively, namely P and Q. It only remains to show that

(a1, ξ, a2) and (b1, η, b2)

is a linked pair, where a1, a2, b1, b2 are the respective projections of c1, c2, d1, d2.

This is because γ̂ and δ̂ meet transversally, and only once in V , thusB(c1)∪
B(c2) separates B(d1) from B(d2) in ∂V ∼= S1. Using the orientation of

V induced by lifting the one of Cε ⊂ M , the last fact allows us to ver-

ify the sign conditions in the definition of linked pair. It also yields that

sign(P,Q) = ǫ(p, γ, δ), which will be useful later.
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Note that, by the minimality of n and m, we have (P,Q) ∈ LP2(X, Y ).
The reciprocal construction is now straightforward, and so is checking bi-

jectivity.

�

a1

V (a1)

δ̂

γ̂

p̂

V (ak)

❅
❅

❅
❅

�
��

❅
❅

❅
❅

�
�

�
�
��

❅
❅❅

❅
❅

❅❅

�
�

�

C̃

a2 ak

C̃ε

�
��

❅
❅❅

❵❵❵❵❵❵❵❵

V (a2)

FIGURE 1. Proof of lemma 3.13. We depict the simple case

when α̂(I) ∩ β̂(I) does not contain branching vertices of C̃
in its interior. For this figure, a1, . . . , ak denote the geodesic

segments in α̂(I) ∩ β̂(I).

Lemma 3.14. (S(C), [ , ]C) is a Lie algebra.

Proof. Let X, Y ∈ S(C) and let α, β, and γ, δ be as in Lemma 3.12. We

need to show that χ∗([γ, δ]π1(Cε)) = [X, Y ]C , where [γ, δ]π1(Cε) stands for

the Goldman-Turaev bracket between the free homotopy classes of γ and

δ. This is a consequence of Lemma 3.13: If p corresponds to the linked

pair (P,Q), then we have seen that sign(P,Q) = ǫ(p, γ, δ) in the proof of

Lemma 3.13. On the other hand, (X ·(P,Q) Y ) is the conjugacy class of the

image under χ of γ ·pδ, which follows from Definition 3.8 and the properties

of the correspondence between p and (P,Q) given by Lemma 3.13. �

We remark that we have obtained the isomorphism of Lie algebras

χ∗ : (S1(Cε), [ , ]π1(Cε)) → (S(C), [ , ]C)

that we desired.

3.4. Proof of Theorem1.1. We shall check that the bracket on S(M) given

by Definition 3.9 satisfies the axioms of a Lie algebra. It is bilinear by

definition, and we would like to remark that anti-symmetry can be checked

directly, showing that the bijection between LP2(X, Y ) and LP2(Y,X) that

sends (P,Q) to (Q,P ) verifies that

(X ·(P,Q) Y ) = (Y ·(Q,P ) X) and sign(P,Q) = −sign(Q,P )
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It can also be proved by the same method we use for the Jacobi identity,

which we shall check next.

Consider stringsX, Y, Z ∈ S(M), and cyclically reduced representatives

α, β, γ of them. Applying Proposition 3.6 to U = {α, β, γ} we see that the

set C = α(I) ∪ β(I) ∪ γ(I) is a one dimensional complex with geodesic

edges. Recall that the string bracket [ , ] restricts to S(C) ⊂ S(M), where it

defines a Lie algebra by Lemma 3.14. By construction we have thatX, Y, Z
are in S(C), thus the Jacobi identity between X, Y, Z is obtained.

That shows Theorem 1.1. We would also like to point out that there is a

natural quotient S(M) → S1(M), since free homotopy of closed curves is a

coarser equivalence than the one defining S(X), and we can show that this

map is a homomorphism

(S(M), [ , ]) → (S1(M), [ , ]π1(M))

To check this we can consider X, Y ∈ S(M), take representatives α, β and

let γ, δ be the curves given by Lemma 3.12 for C = α(I) ∪ β(I). Then γ
and δ are freely homotopic to α and β, and the same argument for Lemma

3.14 shows that [X, Y ] maps to [γ, δ]π1(M) under the natural quotient.

As we commented in the introduction, it is also possible to define a co-

bracket in a similar fashion as we did for the bracket in Definition 3.9, this

time involving LP1. That gives a Lie bi-algebra structure on S(M), and the

axioms can also be verified using one dimensional complexes and results of

[Cha04].

4. INFINITE LIFTS AND INTERSECTIONS

With the goal of proving Theorem 1.2 in mind, we will study the in-

tersections of a cyclically reduced curve with its inverse by looking at the

horizontal lifts in the loop bundle.

Throughout this section we fix a cyclically reduced, non-trivial closed

curve α, and write x = α(0). Let α̃ be the horizontal lift of α to Ex(M)
such that α̃(0) = idx. We consider the set

Λα =
⋃

n∈Z

[α]nα̃(I)

which is nothing but the infinite lift of α through idx. Since α is cycli-

cally reduced, Λα is a line in Ex(M), i.e. is an embedding of R (it has no

“spikes”). We give it a standard orientation induced by the orientation of α̃.

Note that Λα−1 agrees with Λα as a set, but has the opposite orientation.
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❡❡ ❡

[α]−1 idx [α]

[α]−1α̃ α̃

FIGURE 2. The set Λα

4.1. Intersections as elements of Lx. For every A ⊂ Ex(M) define

T (A) = {g ∈ Lx(M) such that gA ∩A 6= ∅}

Consider g ∈ T (Λα) so that gΛα 6= Λα. We show that gΛα∩Λα must be a

compact arc (or a point): Note that Ex(M) contains no non-trivial horizontal

loops, and if gΛα ∩ Λα contains a ray, then we note that g[α]nα̃(I) ⊂ Λα

for some n. Thus the projection of g[α]nα̃ is some permutation of α, which

leads to an equation of the form gwn+1 = wm where [α] = wk (for some

such powers), and this implies gΛα = Λα.

Then to each g ∈ T (Λα) with gΛα 6= Λα we can associate a horizontal

curve bg ⊂ Λα, with the same orientation as Λα, such that bg(I) = gΛα∩Λα.

Let ag ⊂ Λα be the horizontal curve such that gag(I) = bg(I) and ag has the

orientation carried from bg by the action of g (thus we may write gag = bg).

Note that the pair (ag, bg) determines g, since Lx(M) acts freely on Ex(M).

Definition 4.1. Let g ∈ T (Λα).

• We say that g preserves orientation if either gΛα = Λα or the ori-

entation of ag agrees with that of Λα. Let T+(Λα) be the set of

orientation preserving elements of T (Λα).
• We say that g reverses orientation if the orientation of ag is opposite

to that of Λα. We denote by T−(Λα) the set of orientation reversing

elements of T (Λα).

The case when ag is constant shall be regarded as both orientation pre-

serving and reversing. When we want to exclude this case we say that g
strictly preserves or reverses orientation.

Remark 4.2. The sets T (Λα), T
+(Λα) and T−(Λα) are closed under taking

inverses.

Remark 4.3. If g ∈ T (Λα) and gΛα 6= Λα, then we have l(ag) = l(bg) <
l(α).

Proof. Assume the contrary, i.e. that l(bg) ≥ l(α). Then if g ∈ T+(Λα) we

get a contradiction by showing that gΛα = Λα, with a similar argument as in

the case when gΛα ∩Λα contained a ray. On the other hand, if g ∈ T−(Λα)
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we can deduce that α−1 is a permutation of α, which would mean that α is

trivial. �

Next we shall see that each g ∈ T (Λα) with gΛα 6= Λα defines naturally

an intersection pair between α and α−1. Let tg = π ◦ ag = π ◦ bg and

ǫ = ±1 according to whether g preserves or reverses orientation (in case ag
is constant the pick makes no difference). Recalling that bg(I) = gΛα ∩Λα

and projecting what we see at a neighborhood of bg in gΛα ∪ Λα, we can

find geodesic curves r, s, u, v such that (r, tg, s), (u, t
−ǫ
g , v) is an intersection

pair with rtgs ⊂ α and ut−ǫ
g v ⊂ α−1, where the inclusions are modulo

permutation (we do not have to consider powers of α or α−1 because of

Remark 4.3). We depict this situation in Figure 3.

✲

✕

✣

❢

idx

❝

❝

[α]

g

ẽ

f̃

c̃ ã b̃ c̃

gα̃(1)❝

FIGURE 3. A schematic example of gΛα ∪ Λα for g ∈
T (Λα). All shown curves are horizontal. We assume α =
abc = ecaf and g = [c−1e−1], note that tg = ca.

Then we can give cyclic factorizations Pg = (α1, tg) of α and Qg =
(β1, t

−ǫ
g ) of α−1 so that:

• the horizontal lift of tgα1 at bg(0) is contained in Λα, and

• the horizontal lift of t−ǫ
g β1 at a−ǫ

g (0) is contained in Λα.

In other words, α1 can be obtained by projecting a curve spanning a com-

ponent of

Λα −
⋃

n∈Z

[α]nbg(I)
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with the orientation given by Λα, while β1 is the analog for the translates of

ag(I) and the reverse orientation to that of Λα.

Notice that if g is orientation preserving, i.e. when ǫ = 1, we get an inter-

section pair of type either (3) or (1) between α and α−1. In the orientation

reversing case, when ǫ = −1, we get an intersection pair of type either (2)

or (1). In Figure 3 we depict a situation where g is orientation preserving.

Observe that an element of the form h = [α]ng[α]m induces the same

intersection pair as g, since bh = [α]nbg and ah = [α]−mag induce the same

cyclic factorizations of α and α−1. With this in mind we define

T1(α) = {g ∈ T (α̃(I)) : gΛα 6= Λα and α̃(1) /∈ ag(I) ∪ bg(I)}

noting that the conditions amount to ask that ag and bg meet α̃(I) but not

α̃(1). Since α̃([0, 1)) is a fundamental domain for Λα under translations by

powers of [α], we get the following:

Remark 4.4. Let g ∈ T (Λα) such that gΛα 6= Λα. Then there is a unique

g1 ∈ T1(α) and integers m,n such that

g = [α]ng1[α]
m.

The next result describes the intersections of a string with its inverse in

terms of elements of the loop group. Let I(α, α−1) denote the set of inter-

section pairs between α and α−1.

Lemma 4.5. The map

T1(α) → I(α, α−1)

that takes g → (Pg, Qg) is a bijection.

Proof. For injectivity, consider the way in which an horizontal curve ν ⊂
Λα with l(ν) < l(α) defines a cyclic factorization of α or α−1, as was used

in the construction of the map g → (Pg, Qg). Then observe that two such

curves ν1 and ν2 yield the same cyclic factorization iff ν1 = [α]nν2 for some

n ∈ Z. Combining this fact with Remark 4.4 gives injectivity.

To show surjectivity consider (P,Q) ∈ I(α, α−1) and write P = (α1, ξ),
Q = (β1, η) as in Definition 3.2. Let ǫ = ±1 so that η = ξ−ǫ, i.e. ǫ = 1
for (P,Q) of type (3), while ǫ = −1 for type (2), and either one for type

(1). Since ξα1 is a permutation of α, there are horizontal curves ξ̃ and

α̃1, projecting to ξ and α1 respectively, such that the concatenation ξ̃α̃1 is

well defined and contained in Λα. Note that ξ̃ and α̃1 have the orientation

of Λα, and that Λα is the infinite lift of ξα1 that continues ξ̃α̃1. Now we

consider the infinite horizontal lift of ηβ1 starting at ξ̃−ǫ(0). Since ηβ1 is

a permutation of α−1, this infinite lift must be of the form gΛα for some

g ∈ T (Λα). Notice that the definition of intersection pair implies, by taking
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the appropriate horizontal lifts, that Λα ∩ gΛα = ξ̃(I). Thus it becomes

direct to verify that (Pg, Qg) = (P,Q), and we can use Remark 4.4 to finish

the proof.

�

Through the proof of Lemma 4.5 we see that T1(α) is a choice of a re-

striction of domain, in order to obtain a bijection from the construction that

associates g → (Pg, Qg). This choice satisfies the following nice property:

Remark 4.6. g ∈ T1(α) iff g−1 ∈ T1(α). Moreover,

bg−1 = aǫg and ag−1 = bǫg

where ǫ = ±1 according to whether g is orientation preserving or reversing.

In later sections we shall focus on the linked pairs, i.e. the intersection

pairs that are relevant for the bracket.

Definition 4.7. We define T0(α) ⊆ T1(α) as the set of elements that corre-

spond to linked pairs under the bijection of Lemma 4.5.

Note that by Remark 4.3 and Lemma 4.5, the set T0(α) is in bijection

with LP2(X,X
−1), where X is the conjugacy class of [α]. From these

same results we also get that LP1(X) = LP2(X,X), which is in natural

bijection with LP2(X,X
−1). Observe also that by Lemma 3.13 a string X

is simple, as defined in the introduction, iff LP1(X) = ∅, or equivalently,

iff LP2(X,X
−1) = ∅.

4.2. Orientation reversing elements and unique intersections. The ori-

entation properties of the elements of T0(α), which correspond to the type

of their associated linked pairs, will play a major role in proving Theorem

1.2. Next we study the key properties of the orientation reversing case.

Lemma 4.8. Let ξ and η be non-constant segments of Λα going in the pos-

itive orientation. Then if π ◦ ξ = (π ◦ η)−1 we have ξ(I) ∩ η(I) = ∅ and

l(α) > 2l(ξ).

Proof. Write γ = π ◦ ξ. Then an overlap between ξ and η would project

to an overlap between γ and γ−1, and if ξ and η meet at an endpoint, that

would project to a reduction of α, of the form γγ−1 or γ−1γ. Thus we get

the first claim. The second one comes from considering a permutation α0

of α so that its horizontal lift starting at ξ(0) is contained in Λα. Note that

such lift ends at [α]ξ(0), which is not in η(I) by the first claim applied to η
and [α]ξ. Thus we obtain α0 = γaγ−1b with a and b non-constant, so

l(α) = l(α0) > 2l(γ) = 2l(ξ).
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�

Lemma 4.9. Let g ∈ T−(Λα). Then [αn]ag(I) ∩ [αm]bg(I) = ∅ for all

n,m ∈ Z.

Proof. If g reverses orientation strictly, we apply lemma 4.8 to the curves

[αn]a−1
g and [αm]bg. In case ag is constant, say ag = ep for p ∈ Λα, we get

that [αn]g[α−m]p = p which is absurd because the action of Lx(M) is free

and g, being orientation reversing, is not a power of α. �

Remark 4.10. Note that for g ∈ T−(Λα) we have l(tg) < l(α)/2.

We say that α has unique intersection if T1(α) consists of only two el-

ements, g and g−1 (by Remark 4.6). By Lemma 4.5 this is equivalent to

say that I(α, α−1) has two elements. Observe that the definition of inter-

section pair makes sense for a curve in a general one dimensional complex,

i.e. not necessarily embedded in a surface. Thus we may speak of unique

intersection for curves in this more general setting.

Given a subgroup G ⊆ Lx(M) we can consider Λα/G, the image of

Λα in the quotient Ex(M)/G, which is a one dimensional complex since

Λα/Lx(M) = α(I) and α is piecewise geodesic. For g ∈ Lx(M), let Gg

be the subgroup generated by g and [α].

Lemma 4.11. Let g ∈ T−(Λα) and ᾱ be the projection of α̃ onto Λα/Gg.

Then ᾱ has a unique intersection.

Proof. By Lemma 4.9 we have that all the translates [α]nag(I) and [α]mbg(I),
for n,m ∈ Z, are pairwise disjoint. Consider first the quotient Λα/〈[α]〉,
which is a circle that can be parametrized by the projection of α̃. Then

ag(I) and bg(I) project to Λα/〈[α]〉 as two disjoint intervals, and Λα/Gg

is the further quotient obtained by identifying these two intervals (with the

appropriate orientation). The interval resulting from this identification is

the core of the only self-intersection pairs of ᾱ, which are only two (of the

form (P,Q) and (Q,P )), and this shows the lemma.

�

4.3. α-oriented subgroups. Now we turn our attention to the orientation

preserving elements of T (Λα). We will be showing that they generate sub-

groups with the following property.

Definition 4.12. Let G ⊂ Lx(M) be a subgroup. We say that G is α-

oriented if for every g, h ∈ G with g−1h ∈ T (Λα) we have g−1h ∈ T+(Λα).

Let us explain this definition in geometric terms. First note that each

g ∈ Lx(M) induces an orientation on gΛα by carrying the standard orien-

tation of Λα through the action of g. For two elements g, h ∈ Lx(M), the
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condition that g−1h ∈ T (Λα) is equivalent to saying that gΛα ∩ hΛα 6= ∅,

and we have g−1h ∈ T+(Λα) exactly when the orientations of gΛα and hΛα

agree on their (non-empty) intersection. If G ⊂ Lx(M) is a subgroup we

have that

GΛα =
⋃

g∈G

gΛα

is a one dimensional complex whose connected components are simplicial

trees, recalling the form of the intersections between translates of Λα by

elements of Lx(M). Then we have:

Remark 4.13. IfG is α-oriented we can giveGΛα aG-invariant orientation

that extends the standard orientation of Λα.

If a subgroup G ⊂ Lx(M) is generated by some elements of T (Λα) then

GΛα is connected, thus is a simplicial tree. The following technical result

will be useful in this context.

Lemma 4.14. Suppose g, h1, . . . , hn ∈ Lx(M) satisfy that:

• g−1h1, g
−1hn ∈ T (Λα),

• g−1hi /∈ T (Λα) for i = 2, . . . , n− 1,

• h−1
i−1hi ∈ T (Λα) for i = 2, . . . , n.

Then h−1
1 hn ∈ T (Λα).

Proof. Interpreting the hypotheses in terms of intersections of translates of

Λα, we can find a curve β ⊂ h1Λα ∪ · · · ∪ hnΛα that only meets gΛα

at its endpoints, with β(0) ∈ h1Λα ∩ gΛα and β(1) ∈ hnΛα ∩ gΛα. Since

gΛα∪h1Λα∪· · ·∪hnΛα has no non-trivial loops, we must have β(0) = β(1)
(and β must be a trivial loop), which provides a point in h1Λα ∩ hnΛα as

desired. �

The following is a straightforward observation.

Lemma 4.15. If g, h ∈ T+(Λα) and g−1h ∈ T (Λα), then g−1h ∈ T+(Λα).

Next we present the main result of this subsection, concerning the sub-

groups generated by orientation preserving elements.

Lemma 4.16. Let G ⊂ Lx(M) be a finitely generated subgroup whose

generators belong to T+(Λα). Then G is α-oriented.

Proof. By hypothesis we can write

G =
⋃

i

Gi, where G0 = {idx}, and Gi+1 = Gi ∪ {hi+1},
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such that there is h′i ∈ Gi with h−1
i+1h

′
i ∈ T+(Λα) for every i ≥ 0. We

are going to show the lemma by induction on i: assuming that g−1h ∈
T (Λα) implies g−1h ∈ T+(Λα) for g, h ∈ Gi, we shall show that this same

property holds for g, h ∈ Gi+1. The base case of this induction is trivial.

By Remark 4.2, we only need to consider the case when g = hi+1 and

h ∈ Gi. So let h ∈ Gi be such that h−1
i+1h ∈ T (Λα), and we are going

to show that h−1
i+1h ∈ T+(Λα). By construction of the set Gi there is a

sequence h′i = k1, . . . , kn = h in Gi such that k−1
j kj+1 ∈ T+(Λα) for

j = 1, . . . , n− 1. Since kj ∈ Gi for every j, the induction hypothesis gives

us that k−1
j kl ∈ T+(Λα) whenever k−1

j kl ∈ T (Λα).

By lemma 4.14 we can assume, maybe after taking a subsequence, that

h−1
i+1kj ∈ T (Λα) for every j. Now write

h−1
i+1k2 = (h−1

i+1k1)(k
−1
1 k2)

and note that h−1
i+1k1 and k−1

1 k2 are orientation preserving by construction.

Therefore h−1
i+1k2 is orientation preserving by Lemma 4.15. Proceeding in-

ductively we conclude that h−1
i+1kn is also orientation preserving, as desired.

�

5. FORMULAS FOR THE TERMS OF THE BRACKET

In this section we study the dot products between a string and its inverse

applying what we developed in section 4. Again we fix a cyclically re-

duced, non-trivial closed curve α, and let x = α(0) and X ∈ S(M) be the

conjugacy class of α.

5.1. Expressions for the dot product. Let g ∈ T1(α) and recall the hori-

zontal curves (ag, bg) defined in subsection 4.1. We introduce the following

curves:

• α̃g is the segment of Λα starting at bg(1) and ending at [α]bg(1). Let

αg = π ◦ α̃g.

• β̃g is the segment of gΛα starting at bg(1) and ending at g[α−1]ag(1).

Let βg = π ◦ β̃g.

• γ̃g is the segment of Λα starting at idx and ending at bg(1). Let

γg = π ◦ γ̃g.

We observe αg and βg are permutations of α and α−1 respectively, and

that α̃g and β̃g are their respective horizontal lifts starting at bg(1). This is

easy to see for αg, and in the case of βg note that β̃g = gβ̃ ′ where β̃ ′ is

the segment of Λα starting at ag(1) and ending at [α−1]ag(1). According
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to Definition 3.8 (which also makes sense for intersection pairs), the con-

jugacy class of αgβg is the dot product (X ·(P,Q) X
−1) where (P,Q) is the

intersection pair corresponding to g.

On the other hand, γg is the curve that gives the change of basepoint

conjugation so that [γgαgγ
−1
g ] and [γgβgγ

−1
g ] belong to Lx(M). We also

have that γ̃g is the horizontal lift of γ at idx. For an example of these curves,

in figure 3 we have αg = bca, βg = a−1c−1e−1f−1 and γg = a.

Remark 5.1. By Remark 4.6 we have

• If g preserves orientation, then αg−1 = β−1
g and βg−1 = α−1

g .

• If g reverses orientation, αg−1 and βg−1 are the respective reductions

of tgβ
−1
g t−1

g and tgα
−1
g t−1

g .

(Note that in the first case tg−1 = tg, while in the second case tg−1 = t−1
g ).

This gives a relationship between the dot products between X and X−1

associated to g and g−1.

Remark 5.2. Let (P,Q) ∈ I(α, α−1) correspond to g ∈ T1(α), and denote

by (Q′, P ′) the intersection pair corresponding to g−1. Then we have

(X ·(Q′,P ′) X
−1) = (X ·(P,Q) X

−1)−1

In particular, these dot products cannot be equal, as a non-trivial loop is

not conjugate to its inverse. Next we define the curves that will help us write

reduced forms for the dot products.

Definition 5.3. Let g ∈ T1(α). We define the curves c1(α, g) and c2(α, g)
according to whether g preserves of reverses orientation:

• If g preserves orientation,

c1(α, g) is the reduced form of αgt
−1
g and

c2(α, g) is the reduced form of tgβg

• If g reverses orientation, let

c1(α, g) = αg and c2(α, g) = βg

As an example, in Figure 3 we have c1(α, g) = b and c2(α, g) = e−1f−1.

Let us interpret this definition in terms of the construction of the intersec-

tion pair (Pg, Qg) given in subsection 4.1. In the orientation preserving case

we had Pg = (α1, tg) and Qg = (β1, t
−1
g ), and recalling the construction we

get

αg = α1tg and βg = t−1
g β1, thus c1(α, g) = α1 and c2(α, g) = β1
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In the orientation reversing case we had Pg = (α1, tg) and Qg = (β1, tg)
and we get

αg = α1tg and βg = β1tg, and so c1(α, g) = α1tg and c2(α, g) = β1tg

In both cases we have that the concatenation c1(α, g)c2(α, g) is the cycli-

cally reduced form of αgβg. Also note that:

Remark 5.4. If g ∈ T1(α) is orientation reversing, then c1(α, g) is a permu-

tation of α and c2(α, g) is a permutation of α−1. In particular l(c1(α, g)) =
l(c2(α, g)) = l(α).

Remark 5.5. On the other hand, if g ∈ T1(α) is orientation preserving we

have l(c1(α, g)) = l(c2(α, g)) = l(α)− l(tg).

So in any case the lengths of c1(α, g) and c2(α, g) agree. We can also

deduce the length of the dot product (i.e. the length of a cyclically reduced

form), as follows:

Remark 5.6. For g ∈ T1(α) we have:

• l(c1(α, g)c2(α, g)) = 2l(α)− 2l(tg) if g preserves orientation, and

• l(c1(α, g)c2(α, g)) = 2l(α) if g reverses orientation.

Recalling the relationship between orientation and the type of intersec-

tion pairs from subsection 4.1, Remark 5.6 implies that if c1(α, g)c2(α, g)
is a permutation of c1(α, h)c2(α, h) for g, h ∈ T1(α) then either:

• (Pg, Qg) and (Ph, Qh) are both of types (2) or (1) (i.e. g and h are

orientation reversing), or

• (Pg, Qg) and (Ph, Qh) are both of type (3) (i.e. g and h are strictly

orientation preserving), and l(tg) = l(th).

This observation is an example of recovering information about the inter-

section pair from the corresponding dot product. In the following sections

we will be proving stronger results within this same idea, which will ulti-

mately lead us to Theorem 1.2 by showing there can be no cancellations in

the formula for [X,X−1].

Next we record the behaviour of the curves from Definition 5.3 under

taking inverses in T1(α), which we can compute from Remark 5.1.

Remark 5.7. Let g ∈ T1(α), then

• if g preserves orientation,

c1(α, g
−1) = c2(α, g)

−1 and c2(α, g
−1) = c1(α, g)

−1

• if g reverses orientation,

c1(α, g
−1) is the reduced form of tgc2(α, g)

−1t−1
g and
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c2(α, g
−1) is the reduced form of tgc1(α, g)

−1t−1
g

The next result lets us write the dot products as commutators in Lx(M).

Lemma 5.8. Let g ∈ T1(α), and put ci = ci(α, g) for i = 1, 2. Then we

have

(1) [α]g[α]−1g−1 = [γgc1c2γ
−1
g ], and

(2) if (P,Q) ∈ I(α, α−1) corresponds to g by the bijection of Lemma

4.5, then (X ·(P,Q) X
−1) is the conjugacy class of [α]g[α]−1g−1.

Proof. The second point follows from the first and the fact that the cycli-

cally reduced form of [γgc1c2γ
−1
g ], which is c1c2, represents the dot product

(X ·(P,Q) X
−1) as discussed previously in this subsection.

We show the first point in the statement for g corresponding to an in-

tersection pair of type (3), as the other cases result from a straightforward

adaptation of the same computations. In fact, type (1) can be considered

within types either (2) or (3) by allowing constant core curves.

Whithin the case of (P,Q) being of type (3), we distinguish 3 subcases

according to whether idx belongs to both ag and bg, to only one of them, or

to neither of them. First we assume that idx is in bg but not in ag. This is

the situation shown in Figure 3. Then we can write α = abc = ecaf with

g = [c−1e−1], noting that it corresponds to an intersection pair of type (3).

We have γg = a, c1 = b and c2 = e−1f−1. Thus we get [γgc1c2γ
−1
g ] =

abe−1f−1a−1. On the other hand we compute

(2) g[α]−1g−1 = [(c−1e−1)(f−1a−1c−1e−1)(ec)]

Thus

[α]g[α]−1g−1 = [(abc)(c−1e−1)(f−1a−1c−1e−1)(ec)] = [γgc1c2γ
−1
g ]

as desired. The situation is symmetrical for idx in ag but not in bg.

In the second subcase, when idx is in both ag and bg, we have that g ∈
bg(I). If g lies before idx in the orientation of Λα we can write α = abcc′ =
c′afc, where tg = cc′a and g = [c′−1]. Now γg = a, c1 = b and c2 = f−1,

and we compute

(3) g[α]−1g−1 = [c′−1(c−1f−1a−1c′−1)c′]

and

[α]g[α]−1g−1 = [(abcc′)c′−1(c−1f−1a−1c′−1)c′] = [abf−1a−1],

that is [γgc1c2γ
−1
g ]. When g lies after idx in Λα we write α = aa′bc = a′fca,

where tg = caa′ and g = [a′], and the computation is similar.
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Finally, if idx is neither in ag nor bg, we have α = abc = ebf with tg = b
and g = [ae−1]. We see that γg = ab, c1 = ca and c2 = e−1f−1. On the

other hand

(4) g[α]−1g−1 = [(ae−1)(f−1b−1e−1)(ea−1)]

thus we get

[α]g[α]−1g−1 = [ab(cae−1f−1)b−1a−1] = [γgc1c2γ
−1
g ]

�

5.2. Conjugate dot products. Our strategy for Theorem 1.2 is to show

that for a primitive string X there can be no cancellations in the formula

for [X,X−1] given in Definition 3.9. This would imply that [X,X−1] = 0
only when LP2(X,X

−1) = ∅, provided that X is primitive, thus proving

Theorem 1.2. So we need to study what happens if two linked pairs between

X and X−1 yield the same dot product. Here we shall focus on what we

can achieve for general intersection pairs, leaving the discussion of linked

pairs and their signs for the next section.

Assume that g, h ∈ T1(α) are such that c1(α, g)c2(α, g) is a permuta-

tion (maybe trivial) of the curve c1(α, h)c2(α, h), which is to say that their

corresponding intersection pairs yield the same dot product. So we have

[c1(α, h)c2(α, h)] = [rc1(α, g)c2(α, g)r
−1]

where r ∈ Ω is an initial segment of c1(α, h)c2(α, h).

By Remark 5.6 and the discussion preceeding it, the curves c1(α, h),
c2(α, h), c1(α, g) and c2(α, g) have all the same length. Thus we may as-

sume that r is an initial segment of c1(α, h) (otherwise we exchange the

roles of g and h), and find s, t, u ∈ Ω such that

(5) c1(α, h) = rs c2(α, h) = tu

(6) c1(α, g) = st c2(α, g) = ur

where l(r) = l(t) and l(s) = l(u). In particular, r is constant iff t is constant

(trivial permutation case), and s is constant iff u is constant. (Note: t is not

to be confused with tg nor th). Let

(7) φ = [γhrγ
−1
g ] ∈ Lx(M)

Then by Lemma 5.8 we have

(8) φ[α]g[α]−1g−1φ−1 = [α]h[α]−1h−1

Lemma 5.8 also gives the converse: if g, h ∈ T1(α) are so that [α]g[α]−1g−1

and [α]h[α]−1h−1 are conjugate in Lx(M), then c1(α, g)c2(α, g) is a permu-

tation of c1(α, h)c2(α, h).
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Lemma 5.9. Assume that α is primitive, and that g, h ∈ T1(α) are orien-

tation reversing and so that [α]h[α]−1h−1 and [α]g[α]−1g−1 are conjugate.

Then

g = h

in particular

ci(α, g) = ci(α, h) for i = 1, 2.

Proof. Recall that since g and h are orientation reversing we have c1(α, g) =
αg, c2(α, g) = βg, c1(α, h) = αh and c2(α, h) = βh, which will be useful

through the proof.

Let ᾱ be the projection of α̃ onto Λα/Gh as in Lemma 4.11. Note that

Ex(M)/Gh is an intermediate bundle overM , and has a notion of horizontal

lift, by projecting the one in Ex(M) (which is equivariant). Throughout this

proof we shall consider horizontal lifts to Ex(M)/Gh repeatedly, and refer

to them simply as “lifts”.

Let γ̄h be the lift of γh starting at γ̄h(0) = ᾱ(0), which is the same as the

projection of γ̃h, thus it is contained in Λα/Gh and γ̄h(1) is the projection

of bh(1). Let c̄1(α, h)c̄2(α, h) be the lift of c1(α, h)c2(α, h) beginning at

γ̄h(1). We see that this curve is closed and contained in Λα/Gh, by observ-

ing that c̄1(α, h) and c̄2(α, h) are the respective projections of α̃h ⊂ Λα and

h−1β̃h ⊂ Λα, thus each one is a closed curve at γ̄h(1).

Next we take r̄ the lift of r starting at γ̄h(1), noting that it is an initial

segment of c̄1(α, h). Consider c̄1(α, g)c̄2(α, g) the lift of c1(α, g)c2(α, g)
that starts at r̄(1) (recalling that c1(α, g) begins at r(1)).

Claim 1: c̄1(α, g)c̄2(α, g) is closed and contained in Λα/Gh.

To show this claim, write c1(α, g)c2(α, g) = stur, and start by taking

the lift s̄ of s starting at r̄(1). Since rs = c1(α, h) we have that r̄s̄ =
c̄1(α, h), and thus s̄ ⊂ Λα/Gh and s̄(1) = γ̄h(1). We continue lifting

c1(α, g)c2(α, g) = stur by taking the lift of tu beginning at s̄(1) = γ̄h(1),
and we notice that this lift agrees with c̄2(α, h) since tu = c2(α, h). In

particular it ends at γ̄h(1), so r̄ is the lift of r that we need to complete

the lifting of c1(α, g)c2(α, g) = stur. Thus we get that c̄1(α, g)c̄2(α, g) =
s̄c̄2(α, h)r̄, which is closed at r̄(1) and clearly contained in Λα/Gh.

Claim 2: For i = 1, 2 we have

(9) c̄i(α, g) = c̄i(α, h).

We can consider Lᾱ(0)(Λα/Gh) as a subgroup of Lx(M), since projection

induces an injective homomorphism, and then Lemma 4.11 implies that

T1(ᾱ) = {h, h−1}. By construction we have

c̄i(α, h) = ci(ᾱ, h) for i = 1, 2.
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On the other hand, by Claim 1 we have that c̄1(α, g) and c̄2(α, g) lie

inside Λα/Gh, and we recall that they are lifts of αg and βg respectively,

which are permutations of α and α−1. Therefore c̄1(α, g) and c̄2(α, g) are

permutations of ᾱ and ᾱ−1 respectively (in particular they are closed). Then

we get that c̄1(α, g)c̄2(α, g) represents the dot product for an intersection

pair of ᾱ, and since it is cyclically reduced we must have

c̄i(α, g) = ci(ᾱ, h
ǫ) for i = 1, 2 and for some ǫ = ±1

Since we have c̄1(α, h)c̄2(α, h) = r̄c̄1(α, g)c̄2(α, g)r̄
−1, we can apply

Remark 5.2 to get that ǫ = 1, proving this claim.

To finish the proof of the lemma recall that, since we are in the orienta-

tion reversing case, we have c1(α, g) = αg and c1(α, h) = αh, which are

permutations of α. Equation (9) implies, by projecting, that αg = αh, and

then Lemma 2.3 gives g = h, since α is primitive.

�

Putting Lemma 5.9 together with Remark 5.6, we see that a dot product of

the form (X ·(P,Q)X
−1) with length 2l(α) comes from a unique intersection

pair (P,Q), which is of type either (1) or (3).

One would like to remove the orientation reversal condition from the hy-

pothesis of Lemma 5.9, for that would give a stronger result than Theorem

1.2, namely that the strings in the terms of the formula for [X,X−1] cannot

repeat. Unfortunately this remains open. Next is the result we can get when

dropping said orientation condition, which will suffice for our purpose.

Lemma 5.10. Assume that α is primitive, and that g, h ∈ T1(α) are such

that [α]h[α]−1h−1 and [α]g[α]−1g−1 are conjugate. Then

ci(α, g) = ci(α, h) for i = 1, 2.

Proof. We shall assume g and h preserve orientation strictly, since Remark

5.6 implies that the only other possible case is the one covered by Lemma

5.9.

Recall the notation from Equations (5) and (6), i.e. the curves r, s, t, u
and their properties. Notice that we can prove the lemma by showing that t,
and hence r, are constant.

Firstly we shall define some horizontal lifts in Ex(M) that will be useful

through the proof: By Equation (6) we can take s̄ the lift of s starting at

γ̃g(1) = bg(1), and t̄ the lift of t starting at s̄(1). Note that s̄t̄ is the lift of

c1(α, g) that is an initial segment of α̃g, thus it is contained in Λα and ends at

t̄(1) = [α]bg(0), recalling Definition 5.3 in the orientation preserving case.

We also see that s̄ and t̄ are positively oriented in Λα.
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We also define r̃ as the lift of r starting at γ̃h(1) = bh(1), and s̃ as the lift

of s starting at r̃(1), which are well defined by Equation (5). Again we see

that r̃s̃ is the lift of c1(α, g) which is an initial segment of α̃h, and so it is

contained in Λα and ends at s̃(1) = [α]bh(0). Also, r̃ and s̃ are positively

oriented in Λα.

Finally, let t̃ be the lift of t starting at s̃(1), which is well defined since

t(0) = s(1) from Equation (6). We see from Equation (5) that t̃ is an initial

segment of a lift of c2(α, h), namely the one contained in [α]β̃h, since it

starts at [α]bh(0). Thus t̃ is contained in [α]hΛα, meeting Λα only at t̃(0),
and it goes in the negative direction with respect to the orientation of [α]hΛα

induced by [α]h.

Next we recall Equation (7), defining φ = [γhrγ
−1
g ]. Notice that, by the

above definitions, we have φγ̃g(1) = r̃(1), in particular φ ∈ T (Λα). Since

the action of Lx(M) preserves horizontal lifting, we also get that φs̄ = s̃
and φt̄ = t̃.

Claim 1: If φ ∈ T+(Λα) then t is constant.

Let G be the subgroup generated by g, h, φ and [α]. Then G is α-oriented

by Lemma 4.16, so there is a G-invariant orientation on GΛα. On the other

hand, φt̄ = t̃ where t̄ has positive orientation in Λα but t̃ has negative

orientation in [α]hΛα. This is a contradiction unless t is constant.

Claim 2: If s is non-constant, then φ ∈ T+(Λα).

We have φs̄ = s̃ where both s̄ and s̃ are contained in Λα, thus s̄ ⊂ bφ(I)
and s̃ ⊂ aφ(I). Recall that both s̄ and s̃ are positively oriented in Λα, thus

showing that φ preserves orientation, if s is non-constant.

Recall that we prove the lemma by showing that t is constant. Thus, in

light of these claims, the only case that remains to be considered is when s
is constant and φ reverses orientation strictly. We shall show that this case

is void, which makes sense as s and t cannot be both constant in Equation

(6). Thus we assume that s is constant and φ strictly reverses orientation,

aiming to reach a contradiction.

This case is the most complex part of this proof, the key will be to con-

sider the dot product defined by φ. Note that this can be defined even if

φ is not in T1(α), through Lemma 4.4, and the same is true for the curves

c1(α, φ) and c2(α, φ) from Definition 5.3. In order to simplify notation we

put ci(φ) = ci(α, φ) for i = 1, 2, and define

ω = [α]φ[α]−1φ−1 = [γφc1(φ)c2(φ)γ
−1
φ ]

Claim 3: ω is primitive.
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By change of basepoint, i.e. Lemma 2.1, this is equivalent to show that

c1(φ)c2(φ) is primitive. Assume the contrary, i.e. that there is a closed

curve τ and k > 1 so that τk = c1(φ)c2(φ). Note that τ must be cyclically

reduced, since c1(φ)c2(φ) is, and that l(c1(φ)) = l(c2(φ)) by Remark 5.4.

If k is even, we write k = 2j and get that c1(φ) = τ j = c2(φ), which is

absurd by Remark 5.4 and the assumption that φ reverses orientation, since

a permutation of α cannot agree with a permutation of α−1. If k is odd, we

write k = 2j + 1 and we get that

τ = vw with c1(φ) = (vw)jv and c2(φ) = w(vw)j

where we also have l(v) = l(w). Again by Remark 5.4, we get that

(w−1v−1)jw−1 is a permutation of (vw)jv. Since l(v) = l(w) and v cannot

overlap v−1 (nor w overlap w−1), we must have v = w−1, which is absurd

since τ cannot be trivial. Thus we have shown Claim 3.

Claim 4: There is a non-trivial θ ∈ T (Λα) such that θωθ−1 = ω.

To show this claim it will be useful to write Equations (5) and (6) for the

case when s is constant:

(10) c1(α, h) = c2(α, g) = r and c1(α, g) = c2(α, h) = t,

and we also get that t̄(0) = γ̃g(1) = bg(1) and r̃(1) = t̃(0) = [α]bh(0). By

Remark 5.7 we deduce that

(11) c1(α, h
−1) = c2(α, g

−1) = t−1 and c1(α, g
−1) = c2(α, h

−1) = r−1

Define

ψ = h−1φg.

Let us check that ψ ∈ T−(Λα). Note first that, since g preserves orientation,

we have γ̃g−1(1) = bg−1(1) = ag(1) by Remark 4.6. By Equation (11) we

may take r̂ the lift of r that ends at r̂(1) = ag(1), i.e. so that r̂−1 lifts

c1(α, g
−1) starting at ag(1) = γ̃g−1(1). Thus we see that r̂−1 is contained in

Λα and is positively oriented, since it is a segment of α̃g−1 . We also see that

r̂(0) = r̂−1(1) = [α]ag(0).

We shall describe the action of ψ = h−1φg on r̂. First we notice that

gr̂ ends at gag(1) = bg(1) = γ̃g(1). Next we recall that φγ̃g(1) = r̃(1),
so by equivariance of the horizontal lifting we get that φgr̂ = r̃. Finally

we get that ψr̂ = h−1r̃. Recalling Equation (11) we see that this curve

lifts c2(α, h
−1)−1 starting at h−1r̃(0) = h−1bh(1) = ah(1). Thus ψr̂ is

contained in h−1Λα and meets Λα exactly at ψr̂(0) = ah(1). This shows

that ψ ∈ T (Λα), and it must reverse orientation strictly by Lemma 4.16

since φ = hψg−1.
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Now we set h∗ = [α]h[α]−1, and a simple computation from Equation 8

and the definition of ψ = h−1φg gives us

(12) h∗[α]ψ[α]−1ψ−1h∗−1 = [α]φ[α]−1φ−1

By Remark 4.4 there are integers i, j, k, l such that [α]iφ[α]j and [α]kψ[α]l

belong to T1(α). Now we apply Lemma 5.9 to these elements and Equation

(12), hence for n = i− k, m = k − l we obtain

ψ = [α]nφ[α]m

and Equation (12) becomes

(h∗[α]n)[α]φ[α]−1φ−1(h∗[α]n)−1 = [α]φ[α]−1φ−1

So we set θ = h∗[α]n and get that θωθ−1 = ω. Note that θ = [α]h[α]n−1

is not trivial, since h is not a power of [α], and belongs to T (Λα), since

θΛα = [α]hΛα intersects Λα in the segment [α]bh(I). Thus we have shown

Claim 4.

Putting C = α(I) and recalling Lemma 3.10, we see that ω, θ ∈ Lx(C)
which is a free group, so Claims 3 and 4 imply that

(13) θ = ωi for some i ∈ Z, i 6= 0

We shall reach a contradiction by showing that θΛα is disjoint from Λα,

i.e.that θ /∈ T (Λα), against Claim 4. Since T (Λα) is closed under taking

inverses (Remark 4.2), we may assume that i > 0.

Changing the basepoint if necessary, we may assume that bφ(1) = idx.

Note that such a change of basepoint ammounts to repalce α by a permu-

tation of it, and does not change the curves c1(φ) and c2(φ). By Lemma

2.1 this change of basepoint also preserves Claims 3 and 4, and Equation

(13). From bφ(1) = idx we get that γφ is constant, c1(φ) = α and c2(φ) is a

non-trivial permutation of α−1.

Let c̃2(φ) be the horizontal lift of c2(φ) that ends at bφ(1) = idx. Since

φ reverses orientation, the discussion after Definition 5.3 implies that c̃2(φ)
intersects Λα exactly in the segment bφ(I), and in particular c̃2(φ)(0) /∈ Λα.

On the other hand we take η the horizontal lift of (c1(φ)c2(φ))
i that begins

at idx, so we have η(1) = ωi = θ. Note that since c1(φ) = α, we have a

reduced factorization

η = α̃ν

where ν meets Λα only at ν(0), since the lift of c2(φ) starting at [α] =
[α]bφ(1) is an initial segment of ν. Observe also that θc̃2(φ), being the lift of

c2(φ) that ends at θ = ν(1), is a final segment of ν (if i = 1 it agrees with the

initial segment just discussed). Since Ex(C) is a tree, the line θΛα cannot

intersect Λα without containing ν(I), but acting by θ we see that θc̃2(φ)
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intersects θΛα only at θbh(I), which does not contain θc̃2(φ)(0) ∈ ν(I).
Therefore θ /∈ T (Λα) and we have a contradiction, concluding the proof.

�

6. SIGNS OF THE TERMS OF THE BRACKET

Here we shall study the signs of the linked pairs in LP2(X,X
−1) for

X ∈ S(M), showing that linked pairs yielding the same dot product have

also the same sign, and finally arriving at the proof of Theorem 1.2. In

order to do so, we may need to consider a small deformation of a curve α
representing X .

6.1. Deformations of 1-complexes. Let C be a one dimensional complex,

and consider p ∈ C. Then a small enough neighborhood B of p in C
is homeomorphic to a wedge of intervals, each one with an endpoint at p
and the other in ∂B. We call the valence of p in C to the number of such

segments. A point of valence 2 will be called a regular point of C. Observe

that the set of non-regular points is discrete, while the components of the

set of regular points are arcs.

We will be interested in complexes of the form C = α(I) where α ∈ Ω
is a cyclically reduced, non-constant closed curve. Then C has no points of

valence 1, and by compactness, the set of non-regular points (i.e. branching

points) is finite. The closure of a component of the set of regular points is

a segment with endpoints at non-regular points. Note that, replacing α by a

permutation if necessary, we can assume that x = α(0) is a regular point.

Before introducing the perturbation of α that we need, it is worth re-

calling that Cε is the ε-neighborhood of C in M , and for ε small enough,

Lemma 3.11 states that Cε retracts by deformation onto C. Then the map

induced by the inclusion i∗ : π1(C, x) → π1(Cε, x) is an isomorphism, and

its inverse is χ∗ : π1(Cε, x) → π1(C, x), which is induced by a retraction

χ : Cε → C.

Lemma 6.1. Let α be a cyclically reduced closed curve and C = α(I).
Assume that x = α(0) is a regular point of C. Then there are ε > 0 and a

closed, cyclically reduced curve γ ⊂ Cε such that

(1) γ is an ε-perturbation of α, with γ(0) = x,

(2) Γ = γ(I) has no points of valence greater than 3, and

(3) The map i∗ : π1(Γ, x) → π1(Cε, x) induced by the inclusion is an

isomorphism.

Moreover, γ only differs from α in an ε-neighborhood of the non-regular

points of C.
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Proof. Set ε as in Lemma 3.11, though we may need to reduce it further. For

each non-regular point p of C we consider Bp a closed ball in M centered

at p with radius ε/2. Note that if ε is small enough, then Bp is a normal ball

and Bp∩C is a union of geodesic segments joining p to ∂Bp. Reducing ε if

necessary, we can also make the sets Bp pairwise disjoint, and disjoint from

x by our assumption.

First we will construct the complex Γ. For each non-regular point p of

C, we take a segment η ⊂ α with endpoints in ∂Bp and so that η(I) ⊂ Bp,

i.e. η is a segment of α that traverses Bp. Then we consider a piecewise

geodesic complex Yp contained inBp, with Yp∩∂Bp = C∩∂Bp, and so that

Yp is a finite tree containing η(I), whose branching points lie in η(I) and

have valence 3. Figure 4 shows an example of this construction. It can be

interpreted as a deformation ofC∩Bp that spreads out the segments that are

not in η, so that their endpoints are spread along η instead of converging at p.

Then we define Γ so that it agrees with C in the complement ofB =
⋃

pBp,

and that Γ ∩Bp = Yp for every non-regular point p in C.

ab

c

b a

c

FIGURE 4. proof of lemma 6.1

By construction, Γ is a connected piecewise geodesic complex and all

its non-regular points are of valence 3. Note also that Bp retracts by de-

formation to Yp for each p. These maps can be extended to a retraction by

deformation χ1 : Cε → Γ, thus obtaining point (3) in the statement.

Now we describe the curve γ. Write

(14) α = α0β1α1 · · ·βnαn

where αi is contained in the closure of the complement of B for all i =
0, . . . , n, and βj is contained inB, for j = 1, . . . , n. None of these curves is

constant since x is outsideB. Then for each j there is some pwith βj ⊂ Bp,

and we have βj(0), βj(1) ∈ ∂Bp. Note that, by construction, there is a

unique reduced curve β̄j joining βj(0) to βj(1) in Yp. Thus β̄j ⊂ Γ ∩ Bp

with β̄j(0) = βj(0) and β̄j(1) = βj(1). We define

(15) γ = α0β̄1α1 · · · β̄nαn
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i.e. we replace each βj with β̄j . This is an ε-perturbation of α, since for

each j, βj and β̄j are in the same ball of radius ε/2. It is also clear that γ
admits no reductions, and that γ(0) = γ(1) = x. It only remains to show

that γ(I) = Γ. By construction we have γ(I) ⊆ Γ, and it is also clear that

the closure of Γ − B is contained in γ(I), writing this set as
⋃

i αi(I). So

we must show that Yp ⊂ γ(I) for each non-regular point p of C. For one

such p we note that the curve η used in the construction of Yp is in γ(I): by

its definition η = βj for some j (maybe more than one), and in that case we

also have β̄j = η. On the other hand, since we have ∂Bp ∩ Γ ⊂ γ(I), the

rest of the segments making up Yp must also be contained in γ(I).

�

6.2. Signs and lifts. Now we shall interpret the signs of linked pairs in

terms of horizontal lifting, in the same fashion as we did for intersection

pairs and dot products in the previous sections. Let α ∈ Ω be a non-trivial

cyclically reduced closed curve and x = α(0).

Definition 6.2. For g ∈ T0(α) we write

ǫg(α) = sign(Pg, Qg),

i.e. the sign of the linked pair of α corresponding to g. When the curve α is

clear from the context, we just write ǫg.

Let C = α(I) and recall from Lemma 3.10 that the universal cover C̃
is isomorphic, as a principal fiber bundle, to Ex(C). We choose such an

isomorphism by picking x̃ ∈ C̃ a lift of x, and setting that idx corresponds

to x̃. Then we can identify Λα with the infinite lift of α to C̃ that starts at x̃.

LetCε be a neighborhood ofC satisfying Lemma 3.11. Then its universal

cover C̃ε contains C̃, and retracts onto it by lifting the retraction χ : Cε →
C. Note that the complement of Λα in C̃ε has two connected components.

We give C̃ε the orientation lifted from that of Cε ⊂ M , and let C+(α) be

the left side of Λα. More precisely, C+(α) is the component of C̃ε − Λα so

that the standard orientation of Λα, given by α̃, agrees with the orientation

induced on Λα as part of the boundary ∂C+(α). The other component, i.e.

the right side of Λα, will be denoted by C−(α).

Let a1, a2, ν be small geodesic segments in C̃ε, so that a1(1) = a2(0)
and ν meets a1a2 only at this point, which is an endpoint of ν. Note that we

have sign(a1a2, ν) = sign(π(a1a2), π(ν)), by definition of the orientation

of C̃ε. In case that a1a2 is contained in Λα with positive orientation, then we

have sign(a1a2, ν) = 1 if either ν(0) = a1(1) and ν(1) ∈ C+(α), or ν(1) =
a1(1) and ν(0) ∈ C−(α). In the reverse cases we have sign(a1a2, ν) = −1.
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Now consider g ∈ T1(α). We identify Lx(C) with π1(Cε, x) acting on C̃ε

by deck transformations, using Lemmas 3.10 and 3.11. Then, by definition

of T1(α), we have that g[α]x̃ and g[α−1]x̃ are not contained in Λα. Due to

the previous observations, we see that g corresponds to a linked pair, i.e.

g ∈ T0(α), iff g[α]x̃ and g[α−1]x̃ are in different components of C̃ε − Λα.

In that case, we have ǫg = 1 if g[α−1]x̃ ∈ C−(α), and thus g[α]x̃ ∈ C+(α),
which is to say that gΛα crosses Λα going from its right side and towards its

left side. We have ǫg = −1 if the reverse holds. We compile these results

for future reference

Remark 6.3. Let g ∈ T1(α), then

• g ∈ T0(α) iff g[α]x̃ and g[α−1]x̃ are on different sides of Λα.

• In that case, ǫg = 1 iff g[α−1]x̃ ∈ C−(α), i.e. is at the right side of

Λα.

In a similar manner, we see that for g ∈ T0(α) we have ǫg = 1 iff β̃g(1) ∈

C−(α). Equivalently, iff g[α]g−1β̃g(0) ∈ C+(α). Noting that c2(α, g) ends

at tg(1) by Definition 5.3, we have the following.

Remark 6.4. For g ∈ T0(α) let c̃2(α, g) be the lift of c2(α, g) that ends at

bg(1) (namely, the one contained in g[α]g−1β̃g). Then ǫg = 1 iff c̃2(α, g) is

at the left of Λα (more precisely, is contained in the closure of C+(α)).

By the comments after Definition 5.3 we see that the intersection of

c̃2(α, g) with Λα is either the endpoint bg(1), in case g preserves orienta-

tion, or the segment bg(I), if g reverses orientation. We also point out that

the terminology of orientation preserving or reversing elements of Defini-

tion 4.1 does not relate to the orientation of C̃ǫ, which is preserved by every

deck transformation.

6.3. Signs and deformations. Let α ∈ Ω be a cyclically reduced closed

curve, and assume that x = α(0) is a regular point of C = α(I). Take ε and

γ as given by Lemma 6.1, and let Γ = γ(I). Then we can identify Ex(Γ)

with Γ̃, the universal cover of Γ, which is embedded in C̃ε. This identifies

Lx(Γ) with π1(Cε, x), and thus with Lx(C). We will be assuming these

identifications in the sequel, though we should make clear that Lx(C) and

Lx(Γ) are different as subgroups of Lx(M), and that Ex(C) ∪ Ex(Γ), as a

subspace of Ex(M), is not homeomorphic to C̃ ∪ Γ̃. In fact, this correspon-

dence identifies [γ] ∈ Lx(Γ) with [α] ∈ Lx(C).

We also identify Λγ with the infinite lift of γ at x̃, the lift of x used

to define both correspondences Ex(C) ∼= C̃ and Ex(Γ) ∼= Γ̃. Thus the sets

T (Λα) and T (Λγ) can be considered as subsets of the same group π1(C̃ε, x),

which we shall see as the group of deck transformations of C̃ε.
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Lemma 6.5. Let α and γ be as in Lemma 6.1, and take g ∈ π1(C̃ε, x). Then

g ∈ T0(α) iff g ∈ T0(γ), in which case ǫg(α) = ǫg(γ).

Proof. Let B be the ε-neighborhood of Λα in C̃ε, which also contains Λγ .

Moreover, we have C±(α) ∩ (C̃ε − B) = C±(γ) ∩ (C̃ε − B), i.e. points

outsideB are in the same side with respect to both Λα and Λγ . Note that the

construction of Lemma 6.1 allows for reducing ε as necessary, so we can

assume that the translates of x̃ that do not belong to Λα are outside B.

If g ∈ T0(α) we observed in Remark 6.3 that g[α−1]x̃ and g[α]x̃ are on

different sides of Λα, and since they are not in B, they are also on different

sides of Λγ . Since [α] and [γ] agree when seen as elements of π1(C̃ε, x),
we see that gΛγ contains both g[α−1]x̃ and g[α]x̃, implying that gΛγ and Λγ

intersect. This intersection corresponds to a linked pair by Remark 6.3. We

get that g ∈ T1(γ) by recalling the definition of this set, together with the

fact that α and γ agree on a neighborhood of their basepoint, so every lift

of γ is an ε-perturbation of the corresponding lift of α that agrees with it in

a neighborhood of its endpoints. With this we conclude that g ∈ T0(γ).

The reciprocal argument is analogous. We have that ǫg(α) = ǫg(γ) by

Remark 6.3, together with the facts that C±(α) ∩ (C̃ε − B) = C±(γ) ∩
(C̃ε − B) and that g[α−1]x̃ and g[α]x̃ lie outside B.

�

LetX and Y be the strings represented by α and γ as in Lemma 6.1. Then

Lemma 6.5 gives a bijection between LP2(X,X
−1) and LP2(Y, Y

−1) that

preserves the sign. It also preserves the dot product, by the isomorphism

between Lx(C) and Lx(Γ) and Lemma 5.8. Thus proving Theorem 1.2 for

Y also implies it for X , i.e. we may replace α with γ whenever necessary

in our proof. We will only be doing this replacement at the points of the

argument that require it, namely in the next Lemma 6.6.

The proof of Lemma 6.5 clearly does not generalize for intersection pairs

that are not linked. It is also possible to show Lemma 6.5 by following what

happens to an intersection pair during the construction of γ in Lemma 6.1,

though some cases may get cumbersome, as well as the assertion about the

signs. That approach would give that intersection pairs of types (2) and (3)

of α are also present in γ, maintaining their types. Since Γ has valence 3
at every branching point, γ has no intersection pairs of type (1), so the type

(1) linked pairs of α will become linked pairs of type either (2) or (3) in

γ. Some of the unlinked intersection pairs of type (1) of α may indeed be

removed when passing to γ (e.g. a suitable parametrization of a circle with

three points identified). We do not need these assertions to show Theorem

1.2, so we will not prove them.
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6.4. Signs and conjugation. Next we show the main lemma that implies

there are no cancellations in the formula for [X,X−1] when X is primitive.

After that, we shall finish the details of the proof of Theorem 1.2. Let α ∈ Ω
be a cyclically reduced non-trivial closed curve, and x = α(0). We consider

C = α(I) and Cε as in the rest of this section, identifying Ex(C) with C̃

embedded in C̃ε.

Lemma 6.6. Assume that α is primitive, and that g, h ∈ T0(α) are such

that [α]h[α]−1h−1 and [α]g[α]−1g−1 are conjugate. Then

ǫg = ǫh.

Proof. If g and h reverse orientation this is a consequence of Lemma 5.9.

So we assume that g and h preserve orientation, since by Remark 5.6 this is

the other possible case. Recall the notation of Equations (5) and (6), and let

φ be the element defined in equation (7). By Lemma 5.10 we have

(16) ci(α, g) = ci(α, h) for i = 1, 2,

so r and t are constant in Equations (5) and (6), and we have φ = [γhγ
−1
g ].

Therefore we get that φbg(1) = bh(1).

Let c̃1(α, g) be the lift of c1(α, g) starting at bg(1), and c̃2(α, g) the lift of

c̃2(α, g) ending at bg(1). Then c̃1(α, g) is contained in Λα with positive ori-

entation, and c̃2(α, g) only meets Λα at its endpoint bg(1), since g preserves

orientation. By Remark 6.4, the sign ǫg is decided by the side of Λα that

c̃2(α, g) is on. We may write

(17) ǫg = sign(bg c̃1(α, g), c̃2(α, g))

where we understand we are taking the intersections of these curves with

a small enough ball centered at bg(1), as to follow the definition of sign in

Subsection 3.1.

Similarly, we take c̃1(α, h) as the lift of c1(α, h) starting at bh(1), and

c̃2(α, h) as the lift of c̃2(α, h) ending at bh(1). The same observations hold,

in particular

(18) ǫh = sign(bhc̃1(α, h), c̃2(α, h))

Since φbg(1) = bh(1) and deck transformations preserve horizontal lift-

ing, Equation (16) implies that

(19) φc̃1(α, g) = c̃1(α, h) and φc̃2(α, g) = c̃2(α, h).

The situation is depicted in Figure 5.

First we shall complete the proof assuming the following extra condition:

Assumption 1: There exists η a final segment of bg so that φη is a final

segment of bh.
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✲ ✲

✌ ✌

bhbg

c̃2(α, g) c̃2(α, h)

c̃1(α, g) c̃1(α, h)

❥

✸

φ

φ

FIGURE 5. Proof of lemma 6.6

Under this assumption, we note that Equation (19) gives that

sign(ηc̃1(α, g), c̃2(α, g)) = sign(φη · c̃1(α, h), c̃2(α, h))

since φ, as a deck transformation, preserves the orientation of C̃ε. When we

combine this with Equations (17) and (18), Assumption 1 gives us

ǫg = ǫh

as desired.

Now observe that Assumption 1 holds if tg(1) = th(1) has valence 3

in C: for then bg(1) and bh(1) would have valence 3 in C̃, and since φ is

bijective and satisfies Equation 19, we get that a small enough final segment

of bg must be mapped by φ to a final segment of bh. Figure 5 depicts this

case.

Changing the basepoint of α if necessary, we consider the curve γ in

Lemma 6.1. By Lemma 6.5 we may replace α with γ if needed to ensure

Assumption 1.

�

We finally complete the proof of Theorem 1.2. Let X ∈ S(M) be non-

trivial and primitive, and α be a cyclically reduced representative of X .

Proof of Theorem 1.2: As we pointed out after Definition 4.7, we have

that LP1(X) = LP2(X,X) ∼= LP2(X,X
−1) which is in correspondence

with T0(α), recalling Lemma 4.5 and Definition 4.7. We rewrite the formula

for [X,X−1] given in Definition 3.9 using this correspondence, Lemma 5.8

and Definition 6.2, to get
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(20) [X,X−1] =
∑

g∈T0(α)

ǫg{[α]g[α]
−1g−1}

where {[α]g[α]−1g−1} stands for the conjugacy class of [α]g[α]−1g−1.

We must show that if [X,X−1] = 0 then LP1(X) = ∅, or equivalently,

T0(α) = ∅. We show it by contradiction: we assume that [X,X−1] = 0
and T0(α) is nonempty. Since S(M) is a free abelian group of basis S(M),
there must be cancellations in the second term of Equation (20), so there

must be g, h ∈ T0(α) with

{[α]g[α]−1g−1} = {[α]h[α]−1h−1} and ǫg = −ǫh

contradicting Lemma 6.6.

�
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