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The double coplanar pendulum is an example of the coexistence of regular and chaotic dynamics
for equal energy values but different initial conditions. Regular trajectories predominate for low
energies; as the energy is increased, the system passes through values where chaotic trajectories are
abundant, and then, increasing the energy further, it is again dominated by regular trajectories.
Given that the energetically accessible states are bounded, a relevant question is about the fraction
of phase space regular or chaotic trajectories as the energy varies. In this paper, we calculate the
relative abundance of chaotic trajectories in phase space, characterizing the trajectories using the
maximum Lyapunov exponent, and find that, for low energies, it grows exponentially.
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I. INTRODUCTION

In chaotic systems, instead of looking for long-term predictions about the solutions, which are essentially impossible to
obtain, it is helpful to know the general properties of their evolution. An essential feature of Hamiltonian dynamical
systems is the coexistence of regular and chaotic trajectories for different initial conditions1,2. The non-trivial combi-
nation of these trajectories gives rise to critical phenomena such as dynamical traps3 and anomalous diffusion4. One
aspect that has been little studied is the fraction of chaotic and regular trajectories as we vary the system parameters.
To answer this question meaningfully, we must place ourselves in phase space where, thanks to Liouville’s theorem, the
volume is conserved under canonical transformations and especially during the time evolution given by the equations
of motion5.
The double pendulum is a captivating and illustrative example within chaos theory, showcasing the sensitivity to

initial conditions inherent in nonlinear dynamical systems. In the context of chaos, the motion of a double pendulum
is notoriously unpredictable, as slight variations in the starting positions or initial velocities can lead to vastly different
trajectories over time. This sensitivity to initial conditions is a hallmark of chaos where tiny perturbations can result
in significant deviations from the expected behavior. This chaotic behavior results from the nonlinear equations
governing the double pendulum’s motion.

Nonlinear descriptions, often formulated using the Lagrangian or Hamiltonian formalism, are crucial in understand-
ing the dynamics of the double pendulum. The Lagrangian approach allows for a concise and elegant representation
of the system’s kinetic and potential energy, yielding the equations of motion through the principle of least action.
Alternatively, the Hamiltonian formalism provides insights into the system’s energy conservation and phase space
dynamics, offering a different perspective on the chaotic behavior of the double pendulum. Researchers often lever-
age these formalisms to analyze the intricate dynamics of chaotic systems, providing a foundation for understanding
chaotic phenomena in diverse fields.

The applicability of the double pendulum extends beyond mere theoretical curiosity, finding relevance in various
disciplines such as physics6,7, engineering8, and even in the study of biological systems9. Engineers and physicists use
double pendulums as a testbed for chaotic behavior in mechanical systems, helping to design and optimize systems that
can tolerate and control chaotic dynamics. By exploring chaotic dynamics in the double pendulum, researchers gain
valuable insights into the broader implications of chaos theory and its potential applications in real-world scenarios.

The distinction between regular and chaotic behavior is relevant to the dynamical evolution of stellar systems. In
Ref.10, the abundance of regular and chaotic orbits has been studied considering the non-zero Lyapunov exponent and
show that their spatial distributions substantially differ. In another approach, Manos and Athanssoula11 found that
in a galactic model reduced to 2 degrees of freedom, the fraction of chaotic trajectories is a non-monotonic function
of the energy. This information is vital in galaxy formation models, a particularly active area in astrophysics, where
the formation of structures strongly depends on the orbits and morphology of the celestial objects involved.

The planar double pendulum is a paradigmatic system with chaotic dynamics12–14. In the low and high energy
extremes, it possesses excellent regularity in its motion - by theoretical predictions. There is an intermediate energy
range between them where essentially all initial conditions result in chaotic motion. This paper’s main objective is the
study of the transition between regular and chaotic behavior from a global perspective in the double-plane pendulum.
With this aim, we calculate the fraction of initial conditions corresponding to a section of the phase space, in this case,
the Poincaré section, that leads to a chaotic evolution. The results reported here concern a relevant and paradigmatic
system, such as the double pendulum, and could be extended to various scenarios. The following section discusses the
general aspects of the double pendulum dynamics. We report the most relevant results concerning the phase space
fraction of chaotic trajectories in Section III. Finally, SectionIV provides a brief conclusion.

II. THE DOUBLE PENDULUM

A. General description of the dynamics

A planar double pendulum is a physical system consisting of two pendulums attached end-to-end, in which the
second pendulum is suspended from the lower end of the first. Each pendulum consists of point masses, m1 and
m2, attached to the end of massless strings, lengths l1 and l2, allowing them to swing under the influence of gravity,
with gravitational acceleration g, in a single vertical plane. As this system has two degrees of freedom and only one
conserved quantity, the mechanical energy, it exhibits complex and chaotic behavior depending on the parameter
values and the initial conditions. This system is often used in physics and mathematics to illustrate chaotic and
regular behavior from theoretical or experimental perspectives12. In Fig. 1 we show a system diagram where the
angles with respect to the vertical, φ, and ψ, are taken as generalized coordinates.
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Figure 1. Schematic diagram of the planar double pendulum.

The dynamics of this system can be analyzed using either the Lagrangian or the Hamiltonian formalism. To begin
with, we can express the position of the masses in terms of φ and ψ, as x1 = l1 sinφ and y1 = −l1 cosφ, and
x2 = l1 sinφ+ l2 sinψ, y2 = −l1 cosφ− l2 cosψ. The Lagrangian can be written as

L =
1

2
m1l

2
1φ̇

2 +
1

2
m2(l

2
1φ̇

2 + l22ψ̇
2 + 2l1l2φ̇ψ̇ cos(ψ − φ))−m1gl1 cosφ−m2g(l1 cosφ+ l2 cosψ). (1)

The equations of motion can be easily found from the Euler-Lagrange equations as

(m1 +m2)l
2
1φ̈+m2l1l2(ψ̈ cos(ψ − φ)− ψ̇2 sin(ψ − φ)) + (m1 +m2)l1g sinφ = 0 (2)

and

m2l2ψ̈ +m2l1l2(φ̈ cos(ψ − φ)φ̇2 sin(ψ − φ)) +m2l2g sinψ = 0 (3)

Throughout this work, we study the system’s dynamics by analyzing the Poincaré sections and calculating the
Lyapunov characteristic exponents described in the following Subsections. With these objectives in mind, we integrate
numerically the equations of motion using a standard 4th-5th order Runge-Kutta method15. The parameter values are
m1 = m2 = 1, l1 = l2 = 1 and g = 9.81. Thanks to the numerical integration, we obtain the temporal evolution of the
generalized coordinates and velocities of φ(t), ψ(t), φ̇(t) and ψ̇(t). Although it is simpler to work with the Lagrangian
formalism since we are interested in the fraction of chaotic trajectories in phase space, we must also calculate the
generalized momenta

pi =
∂L

∂q̇i
. (4)

Then, from the numerical integration of the generalized coordinates and momenta, we obtain the momenta expressed
as pi(t) = pi(qi(t), q̇i(t)). This aspect is essential for finding the Lyapunov exponents and the fraction of chaotic
trajectories defined in the phase space where Hamiltonian mechanics occurs.

To conclude this summary, two limited dynamical behaviors are worth mentioning. The first case is the limit of small
oscillations. In that case, the equations of motion reduce to a pair of easily integrable second-order linear equations.
Therefore, the orbits are regular, and according to the ratio of the normal modes frequencies ω1 and ω2, the generic
motion will be periodic or quasiperiodic. This limit corresponds to a low-energy case where the system does not
move too far from its equilibrium position. The null energy E = 0 corresponds to both pendulums in the equilibrium
position with velocities equal to zero. Let us note that by slightly increasing the energy so that the motions do not
move too far away from the equilibrium position, the equations of motion are no longer linear but remain integrable.
That is, the system describes non-harmonic oscillations. At the other end of the spectrum, the gravitational potential
energy becomes negligible for high energies compared to the kinetic energy, and the perpendicular component of
the angular momentum is approximately conserved. In this limit, the system’s dynamics are composed of ordered
trajectories again. In short, the double pendulum presents ordered dynamics in the low and high energy limits. In
contrast, in an intermediate range of energies, its trajectories through the phase space are mainly chaotic. This work’s
primary focus is verifying this prediction and quantitatively analyzing the order-chaos-order transition.
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B. Poincaré sections

The double pendulum has two degrees of freedom and one conserved quantity, so the mechanical energy and
dynamics occur in a three-dimensional hypersurface. Following the criterion used by Korsch et al.16, we consider
two-dimensional Poincaré sections corresponding to the points where the outer pendulum crosses the vertical in a
counter-clockwise direction

ψ = 0 and l2ψ̇ + l1φ̇ cosφ > 0. (5)

Depending on the value of the mechanical energy, the system exhibits different behaviors that can be appreciated
using Poincaré sections. We can see in Fig. 2 three characteristic dynamical behaviors for an energy E = 15J

• Finite sets of intersections. They correspond to periodic motions: the trajectory crosses the section through the
same points after a time, for example, the red point in the center of the stable island that we find towards the
center of the Poincaré section.

• Curve filling points (invariant curves) associated with quasiperiodic dynamics: the motion is regular but never
passes through the same point twice (represented in black).

• Area filling points, associated with chaotic trajectories: the trajectory crosses the Poincaré section erratically,
without following any regularity or crossing the same threshold twice (blue regions).

We also note that the energetically accessible states in the Poincaré section are bounded, indicated in this figure by
a green dashed closed line.

Figure 2. Poincaré section for an energy value (E = 15J) with coexistence of different dynamics. The left panel shows a
global view where the dashed green curve represents the boundary of the energetically accessible region. Periodic motion is
exemplified by the red point corresponding to orbits crossing the section at a single point. The right panel shows an enlargement
of the region surrounding the red point. Black orbits whose intersections form continuous curves correspond to quasiperiodic
dynamics, and the orbits whose intersections fill non-zero areas (blue regions) correspond to chaotic motions. The chaotic
trajectories were integrated for 104s, integrating the equations of motion for longer times would lead to additional filling in the
blue areas.

C. Lyapunov characteristic exponents

As a complement to the analysis of the trajectories using Poincaré sections, we also consider the calculation of the
Lyapunov characteristic exponents. In a conservative mechanical system with two degrees of freedom, there are two
opposite pairs of Lyapunov exponents. One of them, parallel to the trajectories, corresponds to null values. Therefore,
the spectrum of Lyapunov exponents is (−λ, 0, 0, λ) and can be characterized entirely by λ, the maximum Lyapunov
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exponent (MLE). To numerically calculate the MLE, we use a popular algorithm based on a convergent iterative
calculation17 extensively used in the literature13,16. The MLE can take positive values in the case of chaotic dynamics
or a null value for regular solutions, which include periodic or quasiperiodic behavior. Typically, computing the MLE
involves integrating the equations of motion over extended time intervals. Due to the slow convergence, discerning
between a positive or zero MLE becomes a subtle process. In Subsection III C, we elaborate on the criteria employed
to make this crucial distinction.

III. PHASE SPACE FRACTION OF CHAOTIC TRAJECTORIES

A. Algorithm

We can determine the Poincaré section fraction corresponding to chaotic trajectories with the tools presented in
the previous sections. There are several techniques to approximate what percentage of initial conditions result in
the chaotic motion of the system. One of the techniques18 compares the area occupied by the chaotic trajectories by
connecting the points corresponding to intersections of such orbits with the section forming triangles with a Delaunay
triangulation. In this work, we propose another technique exploiting the tools we have introduced, which gives results
comparable to those of the article above in less computer time. Our algorithm is inspired by the well-known Monte
Carlo method. The procedure involves the following steps:

1. For a given energy, we find the maximum and minimum values of φ and φ̇. For large energies where the inner
pendulum can make a full rotation, we consider the range [−π, π] for φ.

2. We define a grid of initial conditions (φ0, φ̇0) in the region [φmin, φmax]× [φ̇min, φ̇max]

3. For each initial condition, we take ψ0 = 0, and calculate the corresponding ψ̇0 which verifies the Eq. (5) using

the equations of motion. If the points lie in the Poincaré section, there is a solution for ψ̇0 because they belong
to the energy hypersurface of the system. We then have a vector of initial conditions in the configurations
space, which are converted to the phase space using the canonical momenta definitions. We thus obtain a set of
canonical initial conditions for each grid point in the Poincaré section.

4. For each initial condition, we integrate the equation of motion for sufficiently long periods and then calculate
the MLE.

5. We determine whether the value found corresponds to a regular or a chaotic orbit according to the criterion
exposed in Subsection III C.

6. Finally, after integrating all the initial conditions for a given energy, we sum the number of chaotic trajectories
and divide by the total initial conditions.

B. Poincaré sections and MLE as a function of the energy

To verify the performance of the method and to be able to analyze some aspects of the motion, we obtained Poincaré
sections for representative values of the energy. To get these sections, we used the numerical integrator we mentioned,
ode45, and the intersection points were found with the integrator built-in function, events, which allows us to obtain
specific topics of interest of the trajectory. Precisely, we determine the points of the circuit verifying conditions are
given by Eq. (5). The results are consistent with those obtained in the literature18,19.

Regular and chaotic trajectories are distinguishable in Fig. 3: filling area points corresponding to chaotic trajectories
and filling curves points or isolated points corresponding to quasiperiodic or periodic orbits. In Fig. 3(a), for the given
energy value the generic trajectories are quasiperiodic (frequency ratio is irrational). These trajectories surround two
regions where the normal oscillation modes occur in the limit of small amplitudes. In the subsequent panels, we notice
how these curves deform and decrease in size while chaotic regions emerge as the energy increases. We also note that
for an energy of about E = 20J , the chaotic region is already considerable, and it can be seen that for an energy of
about E = 30J , regular regions occur in a small region of the section.

Poincaré sections are compared with the MLE for energies of E = 15J and E = 20J to get a deeper insight. In
Fig. 3(e) and (f), we represent colormaps of the MLE. It is remarkable an excellent agreement between panels (c) and
(d), Poincaré sections, and (e) and (f) MLE. Therefore, we conclude that both techniques provide coherent results.
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Figure 3. Poincaré sections (a, b, c, and d) and Lyapunov exponent (e and f) for different energies indicated in each panel. We
observe that as the energy increases, the regions covered by chaotic trajectories increase to the detriment of those corresponding
to regular orbits. We note a clear correspondence between the values of positive (null) MLE and the chaotic (regular) regions.
The MLE colormaps (e and f) comprise results calculated on a grid of 1200× 1200 initial conditions in the Poincaré section.
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C. Criterion for positive MLE

One point that is worth exploring further is the criterion used to classify the null or positive values of the MLE,
λ = 0 or λ > 0, for each point in the last step of the algorithm detailed in IIIA. The chosen criterion is relevant
because it is based on estimating the limit of a series by a finite sum. Hence, even if the limit is zero, it is not possible
to obtain precisely a null value in finite times. To establish this criterion, we studied the statistical distribution of
MLE. In Fig. 4 we can see a histogram of the distribution of MLE varying the initial conditions but keeping the
energy fixed in two different values (E = 15J or E = 175J which correspond to panels (c) and (d) of Fig. 3). The
histograms reveal that although the MLE values do not take a single value, we can clearly distinguish two clusters,
one close to zero and the other around a positive value. Comparing to the Poincaré section, we identify that the
first cluster corresponds to λ = 0 and the second to λ > 0. This fact allows us to establish a threshold to determine
whether a calculated MLE value is zero or positive.

It is worth mentioning that the ranges of values corresponding to a null MLE may vary. In general, we observe that
by keeping the number of iterations fixed and increasing the energy, the convergence is slower, an event that leads to
the MLE values of the stable regions obtained being higher for higher energies. We can appreciate this phenomenon in
Fig. 4. There, we see how the values corresponding to the 0 region for an energy of 175J are more significant than those
of 15J . However, contrasting again with the Poincaré sections, we can corroborate that the initial conditions whose
exponents fall within this first region of the histogram (for energy 175J) correspond to quasiperiodic trajectories,
curves in the Poincaré section, and the same with the points in the second region of the histogram with the chaotic
zones. Therefore, we adopt this criterion to classify the MLE as null or positive. We also note that MLE values
obtained are consistent with other studies on the subject13, for example, values of the order of 10−2 for low energies.

Figure 4. MLE histogram for E = 15J and E = 175J overlapped. Values are distributed in two regions: the λ ∼ 0 region is
associated with quasiperiodic orbits, while the λ > 0 region corresponds with chaotic orbits.

D. Chaotic fraction in the Poincaré section

By obtaining and classifying the maximum Lyapunov exponents for the grid points in the Poincaré sections, we can
approximate the fraction associated with chaotic or regular motions as

Chaotic fraction =
Number of chaotic initial conditions

Total number of initial conditions
. (6)

the objective is the variation of this fraction as a function of the system’s mechanical energy. For this study, simulations
were performed on a grid of 100× 100 points of the Poincaré section, sweeping energies between 1J and 2000J . For
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Figure 5. Chaotic fraction of the system as a function of energy. On the upper right, we appreciate a detail of the results for
low energies. We note how the initial value is zero, then grows with E until reaching the maximum value 1, and then decreases
for high energies.

each initial condition, a reference orbit of 1000 s was integrated, and 400 initial conditions close to this were taken for
the calculation of the MLE, integrating each short period of 2.5 s and then resetting the close initial condition.

In Fig. 5, we can see the global behavior of the chaotic fraction as a function of the energy. We note, particularly
in the inset corresponding low energies, that the chaotic fraction is almost zero for energies going to zero. This
limit coincides with the region of validity of the small oscillations approximation in which the general motion of the
pendulum is quasiperiodic and, therefore, non-chaotic. If we continue analyzing the Fig. 5, we see that as energy
increases, the chaotic fraction begins to increase in the same way, eventually almost covering the entire Poincaré
section for values greater than E = 25J . Then, as the energy continues to grow, we notice that, at approximately
E = 100J , its value begins to decrease, and it does so monotonically in the range of energies shown. Because of
the regularity of the system as the energy increases, as we approach the integrable limit at high energies, we expect
the monotonic decrease to be robust. This behavior, a “linearity → chaos → linearity transition ” appears to be
common to several simple chaotic conservative systems, such as a set of rotors18 or a double pendulum formed by
square plates19, and probably to many more, where in particular we have integrable limits at the two extremes of the
energy range. This is one of the relevant conclusions of the work.

One issue that arises, mainly from analyzing the low energy region depicted in Fig. 5, is the initial growth rate of the
chaotic fraction. The calculations were repeated in the low energy regions, varying E from 0.05J to study this. The
behavior described by the chaotic fraction, for values of up to E = 10.5J, is very satisfactorily fitted by an exponential
curve. The coefficient of determination for such a fit is r2 = 0.998. Not surprisingly, the fit is not appropriate for
higher energies because the chaotic fraction, bounded to its maximum value, 1, must decrease its slope. In Fig. 6, we
can see the values obtained for the chaotic fraction for low energies with the exponential fit. We can appreciate an
excellent agreement between the fit and the numerical data for this energy range. It is interesting to ask how much
we can extrapolate this behavior to other systems. This raises a question for future work on the subject. It would be
exciting to analyze other simple systems and study if they present this characteristic of initial exponential growth of
the chaotic fraction.

IV. CONCLUSION

In this paper, we studied the dynamics of a double-plane pendulum, particularly the fraction of regular and chaotic
trajectories as a function of the system’s mechanical energy. By analyzing Poincaré sections, we could appreciate
how, as the energy increases, the stable regions of the phase space - those associated with quasiperiodic trajectories
- yield space to the chaotic ones - related to erratic orbits, without any regularity. Eventually, the system’s motion
reaches a state of global chaos - any initial condition given to it leads to chaotic motion.

This transition was analyzed quantitatively using the numerical calculation of the maximum Lyapunov exponent.
Using a discretization of the Poincaré section (through a grating), we could estimate the chaotic fraction of the initial
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Figure 6. Chaotic fraction for low energies. On the numerically obtained data, an exponential fit is used. We can appreciate
that the behavior fits very satisfactorily by the exponential, up to a value of E = 10.5J approximately.

conditions in the phase space as the quotient between those associated with chaotic orbits and the total number for a
given energy. In agreement with the theoretical predictions we explained in IIA, we could appreciate, for example, in
Fig. 5, how the system has a high regularity for very low or very high energies. In both cases, the system’s motion is
orderly; we may be in the Hamiltonian’s integrable limits that describe its evolution. On the other hand, we verify that
for an intermediate range of energies, essentially every initial condition leads to a chaotic trajectory. Therefore, and as
we expected theoretically, the single, double pendulum undergoes an integrability transition → chaos → integrability.
We focused more on the region of energies where the chaotic fraction grows, starting from its null value in the limit

of small oscillations. We see the detail in Fig. 6. We verified that in a range of energies up to about 10.5J , the
growth of the chaotic fraction fits very well with an exponential curve. For future work, the most remarkable is this
last mentioned result, the exponential growth of the chaotic fraction for low energies.
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