
Ecological Indicators 146 (2023) 109880

Available online 12 January 2023
1470-160X/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Testing for stationary dynamics in the Barro Colorado Island forest 

Andrea Cavagna a,b, Hugo Fort c, Tomás S. Grigera d,e,f,a,* 

a Istituto Sistemi Complessi, Consiglio Nazionale delle Ricerche, UOS Sapienza, 00185 Rome, Italy 
b Dipartimento di Fisica, Università Sapienza, 00185 Rome, Italy 
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A B S T R A C T   

We analyse population dynamics in Barro Colorado Island (Panama) using census data of a 50 ha forest plot 
spanning 35 years, and address the question whether this community is in a stationary state. Individual species 
abundances show large fluctuations, but assessing stationariety requires discriminating random fluctuations from 
actual trends. This requires evaluating mean quantities as well as the structure (i.e. the correlations) of the 
fluctuations around this mean. We argue that a species average is the best surrogate for the theoretically required 
but unfeasible history average. We define the overlap, a species-averaged measure of composition similarity, 
which reveals that the BCI population dynamics is stationary but not static, displaying fluctuations with a 
characteristic time of around 15 years, two orders of magnitude less than previously estimated.   

1. Introduction 

Ecological systems (May and McLean, 2007) are neither static nor in 
thermodynamic equilibrium (Michaelian, 2005), but nevertheless the 
question may be asked whether they reach a steady state (Hening and Li, 
2021). Assessing whether a given ecosystem or ecological community is 
actually in such a steady, or stationary, state is difficult, and ecological 
theories often assume a stationary state (Missa et al., 2016; Ma et al., 
2021). However, this assessment is important for theoretical as well as 
practical reasons, including understanding the long-term dynamics of 
ecological communities, sustainable management, biodiversity conser-
vation, and forest restoration (Thompson et al., 2009; Rodríguez et al., 
2016; Cetin, 2016; Cetin, 2019; Zeren Cetin et al., 2020). 

Understanding an ecosystem’s dynamics necessarily involves ac-
counting for spatial and temporal fluctuations (Wu and Loucks, 1995). 
To ascertain whether the system is stationary, one needs to establish not 
only whether average quantities are changing with time, but also if the 
structure of the fluctuations around the mean is evolving or not 
(Priestley, 1981). Thus noise here is both a nuisance and a source of 
information (Boettiger, 2018). It is a nuisance because species’ abun-
dances will change in time due to stochastic fluctuations even when the 
system is actually stationary in the statistical sense, and so it hampers 
our access to the evolution of average abundances (such as would be 

described by deterministic differential equations, like Lotka-Volterra). 
But it is also a source of information, because the correlations of these 
fluctuations encode properties of the system’s dynamics, and can reveal 
signs of system evolution even when mean values are not changing in 
time (Cugliandolo, 2004). 

Thus, to establish whether or not an ecological community is sta-
tionary, one must attempt to estimate both averages and correlations 
while making allowance for the presence of random fluctuations. This 
means, at least, being able to compute averages over the statistical 
ensemble, or probability distribution, that describes these fluctuations. 
From the theoretical point of view, a history average is required, i.e. an 
average over different realizations of a stochastic process: the compo-
sition of the local community’s population fluctuates because of death, 
birth and immigration (from a larger regional community) processes 
(Hubbell, 2001; Vanpeteghem et al., 2008). But of course we do not have 
experimental access to such an ensemble, as history has happened only 
once. We must look for a proxy of the ensemble, as one must do to 
interpret experimental results in terms of statistical mechanical theories. 
Two often employed proxies are time averages (Allen and Tildesley, 
1987) and space averages (Cavagna et al., 2018). However, in the pre-
sent case both alternatives beg the question at least to some extent. If one 
can somehow assert that a stationary state has been reached (as e.g. in 
numerical simulation), a time average can approximate an ensemble 
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average, but this is clearly out of the question here since the time series is 
too short to employ standard statistical tests of stationariety (Krauth, 
2006). Alternatively, one can regard very distant individuals as 
belonging to independent populations and perform a space average, 
which should then be equivalent to a statistical average over many re-
alizations of the stochastic process that gives rise to particular pop-
ulations. The difficulty is that taking measurements far apart from each 
other may introduce unwanted environmental variations (e.g. in soil or 
resources), so that it is hard to estimate how large an area one should 
use, especially for the less abundant species. 

In thermodynamic systems one may usually avoid dealing with 
fluctuations by considering intensive properties (i.e. per unit volume, 
area, or mass), because fluctuations grow with size more slowly than the 
average (Landau and Lifshitz, 1959), i.e. Taylor’s law (Eisler et al., 
2008) holds with exponent 1/2. However, this approach is no good in 
the case of ecological communities, not only because sizes are typically 
smaller and fluctuations grow faster with size [the Taylor’s law expo-
nent is larger than 1/2,] (Eisler et al., 2008; Giometto et al., 2015), but 
also because it amounts to performing a space average, and thus 
implicitly assumes homogeneity, which is in general not justifiable as 
discussed above. 

Here we address these questions for the case of the Barro Colorado 
Island (Panama) rain forest. Past studies of rain forests population dy-
namics (Volkov et al., 2009; Azaele et al., 2006; Kalyuzhny et al., 2015) 
have assumed stationary conditions, perhaps due to the short temporal 
span of available time series, which hampers the empirical observation 
of dynamics of relatively slowly evolving systems. However, data from 
the Barro Colorado Island 50 ha permanent tree plot in Panama span-
ning eight population censuses over 35 years is now available Condit 
et al. (2019), allowing for a study of short- and mid-term dynamics. We 
argue (Section 2.1) that an average over species can act as suitable proxy 
for the history average, enabling us to deal with fluctuations without 
assuming homogeneity in space or time. We define a quantity, the 
overlap, related to a time correlation function, that allows us to probe 
whether the forest can be considered in a stationary state (Section 3), 
while mitigating the problems associated with estimating second mo-
ments in broad distributions (Section 4). In our approach, we use the 
census data, taking into account the available historical information [at 
variance with the snapshot proposal of]Rodríguez et al. (2016) but avoid 
any assumption of stationariety or homogeneity. Unlike previous studies 
[e.g. Azaele et al., 2006; Rodríguez et al., 2016] the metric we employ 
does not rely on a specific theoretical model of ecosystem dynamics, nor 
on general assumptions about dynamic interaction networks (May, 
1972) or on inference or estimation of interaction matrices (Volkov 
et al., 2009). 

We find that the census data are consistent with an ecosystem in a 
stationary state, although far from static, and obtain a characteristic 
time for the composition fluctuations. 

2. Methods 

2.1. Observables 

The crucial idea is that the choice of an ensemble proxy is based on 
known or postulated invariances of the system under study: if the system 
is stationary, all times are statistically equivalent; if the system is ho-
mogeneous, all positions are statistically equivalent. Then a time or 
space average, respectively, can replace a history average. Here we 
propose an ensemble proxy based on species invariance: we assume that 
all species are statistically equivalent, and that the variations in their 
abundances are due to random fluctuations. The idea of species equiv-
alence is shared with the “neutral” theories of Caswell (1976) and 
Hubbell (2001), but here we are merely proposing an invariance, not 
formulating a new theory. Averaging over different species is then 
approximately equivalent to averaging a single species over many 
(experimentally inaccessible) realizations of the stochastic process. In 

other words, we propose to use species averages as a proxy for history 
averages. 

2.1.1. The overlap 
The quantity we propose to compare the states of the forest at two 

different times is the overlap. Letting nσ(t) be the abundance of species σ 
at time t, the overlap is 

Q

(

t1, t2

)

=
1

NS

∑NS

σ=1

nσ(t1)nσ(t2)

[max(nσ(t1), nσ(t2))]
2, (1)  

where NS is the total number of species recorded in the full set of cen-
suses. The overlap is a measure of the similarity of two configurations 
(Fig. 1b): identical configurations have overlap unity (in particular Q(t,
t) = 1), while two configurations with very different composition have a 
low overlap (see A for a discussion of the asymptotic overlap). The de-
nominator of each term serves to express both increase and decrease of 
abundance as a number less than 1. 

The definition regards all trees of the same species as indistin-
guishable: two configurations with the same set of {nσ(t)} are considered 
identical even if the identities of all trees are different. A measure of 
similarity that flagged two configurations with identical abundances but 
different individuals as different is not desirable, because since in-
dividuals eventually die, no ecosystem could possibly be stationary in 
that sense. The definition of the overlap is thus consistent with a sta-
tistical interpretation of population data. A consequence of (1) is that if 
an individual dies in some position and another of the same species is 
born elsewhere, this change is not detected, i.e. the overlap is insensitive 
to spatial structure. 

Although it is reasonable to dispense with individual identities, one 
may wonder about possible effects of spatial heterogeneities. We thus 
also explore a local version of the overlap, defined as 

Q

(

t1, t2; r

)

=
1

NS

∑NS

σ=1

nσ(t1; r)nσ(t2; r)
[max(nσ(t1; r), nσ(t2; r))]2

, (2)  

where r indicates the position of a small quadrat within which the 
abundances are computed (we have used here quadrats of size l2 = 10, 
m× 10,m). Q(t1, t2; r) detects variations in species composition within 
quadrat r. It is insensitive to changes outside the quadrat, but will 
decrease whenever a species’ abundance changes in the quadrat, even if 
it is compensated by an opposite change elsewhere in the census plot. 

2.1.2. Alternative measures of similarity 
Below we compare the results from using the overlap to those ob-

tained with other measures of similarity, namely the Jaccard index and 
the normalised time correlation function. The Jaccard index (Jaccard, 
1902; Koch, 1957), often employed to compare ecological data is 
defined as 

J

⎛

⎝t1, t2

⎞

⎠ =

∑

σ
min
[

nσ

(

t1
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, nσ

(

t2

)]

∑

σ
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(

t1

)

, nσ

(

t2

)] . (3)  

As the overlap, the Jaccard index is bounded, 0⩽J(t1,t2) ≤ 1, and J(t1,t1)
= 1. Another similarity measure sometimes employed, the Sørensen- 
Dice coefficient, is directly related to the Jaccard index by S = 2J/(1 +

J), which thus displays the same qualitative behaviour. 
We also consider the normalised (or Pearson) time correlation, 

defined as 

ρ
(

t1, t2

)

=
C(t1, t2)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Varn(t1)Varn(t2)

√ , (4)  

where C(t1, t2) is the species-averaged connected time correlation, 
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C

(

t1, t2

)

=
1

NS

∑NS

σ=1
[nσ(t1) − n(t1)][nσ(t2) − n(t2)], (5)  

where n(t) is the species-averaged abundance, 

n

(

t

)

=
1

NS

∑NS

σ=1
nσ

(

t

)

, (6)  

and the variance is Varn(t) = C(t, t). 

2.2. Data 

We used data from the Barro Colorado Island 50 ha permanent tree 
plot in Panama (Condit, 1998; Condit et al., 2012), which has been made 
publicly available (Condit et al., 2019). The data consists of eight pop-
ulation censuses, carried out in 1981 and every five years since 1985. 
Data collection for each census except the first took 10–11 months to 
complete (Condit et al., 2017), we ignore this interval and take each 
census as an instantaneous snapshot. The first census, started in March 
1981, took two years to complete, however the bulk of individuals 
(95%) was censused before August 1982 (Condit et al., 2017), so we take 
1981 as the first census’ date. 

The species, position and other information of individual trees with 
diameter at breast height larger than 10,mm is recorded in each census. 
For this study, we only need the individual’s species (to compute the 
global overlap) and the positions (for the local overlap). A total of 328 
different species were identified across the 8 censuses; all of these were 
used for the computation of the overlap (i.e. NS in Eqs. (1) and following 
is equal to 328). 

3. Results 

Abundances of individual species show sizeable fluctuations (Condit 
et al., 2017). While the total population shows fluctuations of less than 
5%, there are some species with very large population fluctuations: we 
have identified 55 species that show more than 20% abundance change 
between consecutive censuses (considering only species with more than 
100 individuals, see Fig. 1a). Some of them display considerable growth 
(Calophyllum longifolium, Cecropia insignis), others a catastrophic 
decrease (Piper cordulatum, which drops from more that 3100 in-
dividuals to less than 100, or Poulsenia armata), and yet others exhibit 
large oscillations (like Acalypha diversifolia, which starts and ends the 
period with about 1500 individuals, but hits a low of 578 in census 5). In 
a few cases, the relative variation between consecutive censuses is close 
to 1 (e.g. Cecropia insignis, Croton bilbergianus, Palicourea guianensis, not 
shown). 

To analyse these fluctuations we compare censuses using the overlap 
(1), which definition is depicted graphically in Fig. 1b. In Fig. 1c we plot 
the overlap between the first census and all the others, i.e. Q(1981, t) for 
t = 1981,1985,1990,…,2015 We have done this for two sets: the whole 
census population and the population with diameter at breast height 
(dbh) larger than 100,mm (i.e. excluding saplings). Note that to 
compute the overlap we have used abundances for all the 328 recorded 
species, not just those shown as an example in Fig. 1a. In both cases we 
observe that the overlap decays monotonically from 1, indicating that 
the composition of the population is evolving, and that as time passes 
the state is less and less similar to the reference configuration. We 
observe that a simple exponential function, 

Fig. 1. Abundance fluctuations of the whole Barro Colorado Island forest are compatible with a stationary state despite strong fluctuations in individual species’ 
abundances. Panel a: Abundances of individual tree species as recorded in the Barro Colorado Island censuses fluctuate considerably in time, seemingly contradicting 
the hypothesis of a stationary ecosystem. However, a system can be both stationary and fluctuating, and only appropriately averaged quantities can be used to 
establish whether it is actually stationary. Panel b: We define a quantity to compare the state of the forest at two times t1 and t2, based on an average over species, 
which we argue is the best surrogate for the theoretically required history average. The quantity is the overlap (1), graphically depicted here: each vertical bar 
represents the forest population, where each species is assigned to a small rectangle, color-coded with the respective abundance. The reference census (t1) is suc-
cessively compared species by species to the more recent ones; the overlap slowly decays from the value 1 corresponding to identical configurations. Note that the 
overlap includes data from all species, not just the examples chosen for panel a. Panel c: Overlap Q(t1, t2) vs. t2 using the first four censuses as reference (t1). Main 
panel: Overlap plotted against the time difference t2 − t1: the decay has the same shape for all reference configurations, showing that the BCI forest is in a stationary 
state despite the considerable fluctuations in individual species abundance. 
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Q
(
t1, t2

)
=
(
1 − Q∞

)
e− (t2 − t1)/τ +Q∞, (7)  

can adequately fit the decay of the overlap. Note that since Q(t1,t1) = 1, 
the asymptotic overlap and the amplitude of the decay are related, so 
that there are only two independent parameters, τ and Q∞. The 
asymptotic overlap measures how different from the reference the sys-
tem becomes for very long times. The measured values of Q and the 
fitted values of Q∞ indicate significant changes in the species distribu-
tion over time, although Q∞ is higher than the value expected for a 
completely different composition (see Appendix A). The time scale for 
the decay is given by the characteristic time τ, found to be around 12 
years (15 y for dbh  > 100 mm). Note however that slower processes 
could exist, undetectable with a time series of the length available, that 
could bring Q∞ down to lower values. The set of larger trees (dbh  > 100 
mm) appears to be slightly more stable that the full set, with a larger 
asymptotic overlap and slightly larger relaxation time. This higher 
variability in the population of smaller trees has been already observed 
before (Condit et al., 2017). 

The fact that the overlap decays indicates that the forest is not static 
but evolving. However, this does imply that the system is not stationary: 
a system can be statistically stationary, even while fluctuating, if any 
configuration can be considered as good a starting point to measure the 
dynamic evolution as any other (Priestley, 1981). In terms of the over-
lap, we want to know if the evolution (as measured by the decay of Q) is 
different if we take a different census as reference. This is what we do in 
Fig. 1 (main panel), where, to compare different origins, we have plotted 
in the abscissas the time difference with respect to the census used as 
reference. Remarkably, the decay with respect to the reference census is 
very similar in all cases. This finding means that the decay of the overlap 
is compatible with a dynamics where all the observed configurations 
(censuses) are statistically equivalent, i.e. a stationary dynamics. 

Possible effects of spatial heterogeneity can be studied by consid-
ering the local version of the overlap (2). Fig. 2 show maps of the local 
overlap between the 1981 census and four later ones. It is seen that the 
local overlap is rather heterogeneous, with some spots showing rapid 
pronounced decrease. In other words, the decay of the global overlap 
does not happen through gradual global change, but through sudden 
spatially localized events. 

To check whether spatial heterogeneity affects our analysis of a 
stationary state using the global overlap, we compute the local overlap 
averaged over the whole plot, 

QSA

(

t1, t2

)

=
1

Nq

∑

r
Q

(

t1, t2; r

)

, (8)  

where Nq = 50⋅104,m2/l2 is the number of quadrats and SA stands for 
space average. We show QSA in Fig. 3. As expected, the values attained 
by QSA are higher than those of Q(t1, t2) due to the lower number of 
species per quadrat (N(100,m2) ≈ 23 for dbh > 10,mm and ≈ 4 for 
dbh > 100,mm, see Appendix A). 

However, just like the global overlap, QS decays exponentially in the 
time difference between censuses, and independently of the census 
taken as reference. A simple exponential (Eq. 7) also fits Qs(t1, t2) rather 
well, with slightly higher values of τ (Table 1). The characteristic time is 
again longer for the set of larger trees. The most important feature of the 
overlap decay, namely that it depends only on the time difference t2 − t1 
holds also for the space-averaged local overlap, so that even taking into 
account the heterogeneities of the population changes, the result is 
compatible with a stationary dynamics. 

4. Discussion 

The overlap we have defined is inspired in the quantity of the same 
name used in spin glass theory (Mézard et al., 1987) to compare states. 
Other measures of similarity, like the Jaccard index or the Sørensen-Dice 

Fig. 2. Maps of local overlap, using quadrats of side l = 10,m. Colors indicate, as function of quadrat position, the value of the local overlap between the 1981 census 
and (from left to right and top to bottom) censuses of the years 1985, 1995, 2005, and 2015. The minimum expected overlap for quadrats of this size is q0 ≈ 0.86. 

Fig. 3. Space-averaged local overlap, QSA(t1, t2) vs. the time difference t2 − t1 

for all pairs of censuses. 
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coefficient, yield qualitatively similar results (Fig. 5). However, the 
advantage of the overlap is conceptual. Apart from the normalisation of 
each term, our definition is that of a correlation function, C(a, b) =

〈n(a)n(b)〉, where the statistical ensemble average 〈…〉 is replaced by an 
average over species, i.e. we use species as a proxy for the average over 
the actual statistical ensemble, much like time or space averages are 
commonly used in statistical physics. We are in effect saying that all 
species are equivalent to one another: in this sense our definition is 
species-neutral. Species equivalence is a basic assumption of “neutral” 
theories of biodiversity (Caswell, 1976; Hubbell, 2001; Volkov et al., 
2003; Vanpeteghem et al., 2008; Chisholm, 2011), but we stress that 
here we are merely proposing an invariance that allows to use species 
averages as a proxy for history averages. In particular, unlike the 
mentioned approaches, we do not make additional assumptions (such as 
absence of interactions) or impose other constraints (like a constant total 
population). The observable we define is general, and not tied to a 
particular theory. Rather, it constitutes a tool to analyze the dynamics 
that can be applied to empirical or simulation data without assuming the 
validity of a particular theoretical hypothesis on the time evolution. 

At this point, one may ask two questions. First, in a stationary sys-
tem, average quantities are independent of time. In particular, the 
average abundance must be time-independent; is it actually so in BCI? 
The practical problem is that, while the expectation of time- 
independence is true for the history average, we only have access to 
the species average, which, as a statistical estimate, is subject to fluc-
tuations even under stationary conditions. We expect that relative 
fluctuations tend to zero as the size of the sample increases (where a 
larger sample means a sample with more species), but, unlike thermo-
dynamic systems, the distribution of species abundances is much 
broader than Gaussian. The abundance distribution of BCI has been 
shown (Hubbell et al., 2008; Hubbell, 2013) to be broader than a log- 
normal distribution, and more similar to Fisher’s logseries (Fisher 
et al., 1943). Estimating the moments of broad distributions is difficult, 
and one can expect significantly larger fluctuations than for a narrow, 
Gaussian-like distribution. We have computed the species-averaged 
abundance, Eq. (6), vs. time to check if it is consistent with a 

stationary forest (Fig. 4). We find quite moderate fluctuations, 
compatible with a stationary scenario. In the stationary state, the 
history-average abundance must be time-independent, but instead our 
estimate using an average over a finite number of species is bound to 
exhibit fluctuations. The absence of obvious long-term trends in the 
species-averaged abundance is consistent with the assertion that the BCI 
forest is stationary, as well as the observed fluctuations, which do not 
exceed 10%. 

The second question is why use the overlap instead of the standard 
time correlation mentioned above. The answer again is the broad dis-
tribution of abundances. The time correlation C(a, b) is the covariance of 
the abundance in a and b (variance when a = b), and the problem 
mentioned above for the average is aggravated for higher moments. 
Thus the time correlation is bound to be subject to stronger statistical 
fluctuations than the overlap, and can be expected to be rather difficult 
to estimate accurately. Instead, the individual normalisation of each 
term in the overlap makes it insensitive to fluctuations in the overall size 
of the population and in the estimated variance, while it can still detect 
dynamical processes involving taxonomic changes other than fluctua-
tions of the overall community size. Computing the Pearson correlation 
(see Section 2.1.2 and Eq. (4)), which normalises the correlation with 
the product of the standard deviation at each time, yields results similar 
to the overlap (Fig. 5). 

Some time ago, Azaele et al. (2006) found the hypothesis of a sta-
tionary state to be self-consistent within a theoretical data analysis of the 

Table 1 
Parameters of the exponential fit to the overlap in the different cases.  

Overlap Set τ [y] Q∞ 

Q(t1, t2) dbh> 10,mm 11.7 0.565 
Q(t1, t2) dbh> 100,mm 15.3 0.659 
QSA(t1, t2) dbh> 10,mm 19.2 0.928 
QSA(t1, t2) dbh> 100,mm 36.2 0.980  

Fig. 4. Species-averaged abundance vs. time, n(t) for the whole census (red) 
and dbh  > 100 mm (blue). n(t) fluctuates much less than individual abun-
dances: the maximum instantaneous deviation of from its time average is is 
slightly above 9% when considering all trees and approximately 2.2% for dbh 
> 100 mm. 

Fig. 5. The Jaccard index and normalised time correlation function are 
consistent with a stationary state. Top: Jaccard index J(t1, t2) vs. t2 − t1 between 
all pairs of censuses, for trees with dbh > 10,mm (black) and dbh > 100,mm 
(red). Lines are fits to an exponential decay J(t1, t2) = (1 − J∞)e(t2 − t1)/τJ + J∞. 
The values of the fit constants are τJ = 23.2,y, J∞ = 0.648 for dbh > 10,mm and 
τJ = 38.9,y, J∞ = 0.489 for dbh > 100,mm. The behaviour is qualitatively the 
same as that of Q(t1, t2), displaying an exponential decay, albeit with slightly 
larger time constant. The plot shows that the J(t1, t2), like the overlap, depends 
only on the time difference t2 − t1, i.e. it is also stationary. Bottom: Normalised 
(Pearson) time correlation ρ(t1, t2) for all pairs of censuses and all trees. While 
the time correlation, being a second-order moment, is difficult to estimate when 
the distribution of nσ is broad, the normalisation of the Pearson correlation 
compensates for fluctuations in sample size, similar to the term-by-term nor-
malisation of the overlap. While its shape is different from an exponential, its 
decay is also compatible with a stationary scenario. 
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first three BCI censuses. At variance with our approach, these authors 
assumed the forest is stationary, and analysed the data using a particular 
theory (neutral theory). Our result significantly extends that work, not 
only because more censuses are now available, but moreover because 
ours is not a self-consistently check within a particular theory, but a 
data-based result that follows from the fact that the overlap depends 
only on the time elapsed between censuses. 

From the exponential fits of the overlap decay, we obtain a charac-
teristic time of about 15 years. This should be regarded as the charac-
teristic time of processes happening within the available observational 
time window and sampling rate: possible processes with times faster that 
the 5 year interval between censuses cannot be detected with these data 
(Press et al., 1992). Similarly, it is impossible to measure processes with 
characteristic time much longer than the 35 year window of the time 
series. In particular, trends or fluctuations happening on the scale of 
centuries cannot be ruled out, so that processes much slower than those 
observable in the available time window could take the asymptotic 
overlap to much lower values. To our knowledge, the only other esti-
mate of a characteristic time scale for the BCI forest is that Azaele et al. 
(2006), who obtained for the timescale of species turnover ts a value 
ts ≈ 3000,years, using fits to detailed expressions following from neutral 
theory. This value is not necessarily incompatible with the present es-
timate, since our results do not rule out the presence of very slow pro-
cesses causing fluctuations on the scale of centuries or milennia. 
However, detecting them in a time series spanning 30 years is tricky, and 
any attempt depends critically on the validity of the details of a partic-
ular theory. 

Our treatment of fluctuations, and the fact that we find them 
compatible with a stationary state, says nothing about whether this 
community is near a critical or tipping point (Scheffer et al., 2009; Kéfi 
et al., 2011; Staal et al., 2016; Cetin, 2020; Li and Convertino, 2021). If 
the system is stationary, it will respond to a change in external condi-
tions in the same way as it would have done in the past to the same 
change (Ma et al., 2021), but the present analysis does not inform us 
whether this response will be mild or catastrophic (Scheffer et al., 2001). 
For BCI, recent publications have discussed the issues of forecasting 
(Fort and Grigera, 2021) and early warnings (Fort and Grigera, 2021) at 
the level of individual species. 

5. Conclusions 

Our results show that (i) the BCI forest evolves, changing relative 
abundances over time, (ii) the evolution of larger trees (dbh  > 100 mm) 
is slightly slower, (iii) the decay of the overlap has the same shape when 
choosing any of the censuses as reference, and (iv) the time scale for the 
decay is about 15 years. 

Point (iii) is particularly important. A system in a stationary state is 
not the same as a static system. For example, a physical system in 
thermodynamic equilibrium is stationary but not devoid of dynamics: 
appropriate ensemble averages are time independent (or, equivalently, 
quantities such as density or energy per unit volume are constant if the 
size of the system is large enough), but there are observable fluctuations 
around this average value, and these fluctuations show a characteristic 
time (the correlation time), which is a measure of the time it takes for the 
quantity to “forget” the value it took at some earlier point in time. The 
relaxation time can be pretty large, even at equilibrium (Stanley, 1999), 
and can be determined by measuring correlation functions, which, like 
the overlap above, are stationary in the sense that they depend only on 

the difference between two times. 
It must be stressed that the evidence obtained from the overlap is 

much stronger than simply the absence of an obvious trend in n(t). The 
time-translation invariance of Q(t1, t2), i.e. the fact that it depends only 
on the time difference t2 − t1, is a much more robust test of stationarity. It 
can indeed happen that single-time quantities (like n(t)) are almost 
constant, while correlation functions like the overlap are clearly non- 
stationary [an example of such a situation is the physical ageing of 
polymers and glasses, Struik, 1977; Cugliandolo, 2004]. 

Finally, the characteristic time of the exponential decay of the 
overlap is about 15 years. This can be interpreted as the time it takes to 
observe significant differences with respect to the reference configura-
tion. A previous estimate (Azaele et al., 2006) found a much larger value 
(≈ 3000,years), assuming a stationary state and employing results from 
a particular theory. In contrast, our approach cannot probe fluctuations 
on scales much larger than the time span of available data, but the 
observable we used is free from strong theoretical assumptions (we have 
fitted an exponential function only as the simplest way to obtain a 
characteristic time), and can actually test whether the forest is station-
ary or not. 

In summary, we have introduced the overlap as a dynamic observ-
able to compare an ecosystem’s taxonomic composition at different 
times and furnishing way to test whether the system is stationary. 
Applying this to the BCI forest community, we have for the first time 
obtained experimental evidence that the system is in a stationary state. 
The time decay of the overlap also shows that the system is not static, 
and that species abundances fluctuate on a time scale of ∼ 15 years, two 
orders of magnitude faster than previously estimated. 
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Appendix A. The asymptotic overlap 

The overlap is designed to attain a value of 1 for two configurations with identical taxonomic composition (i.e. with identical abundances for every 
species present). We must allow nσ(t) = 0, because a species that is present at time t1 and absent at time t2 (or vice versa) must contribute a term 
smaller than 1 to the sum, to signal a difference in composition. Thus NS is the total number of species ever recorded in any of the available censuses. It 
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can then happen that for some σ we have nσ(t1) = nσ(t2) = 0; In this case we have defined the corresponding term as 1, so that a species that is absent 
in both configuration does not spuriously lower the value of Q. A side effect of this choice is that the lowest possible value of the overlap, q0, expected 
for two configurations with completely different composition, depends on the ratio of the total number of species recorded, NS, and the typical number 
of species found in an area equal to the area occupied by the population being considered, N(A). 

Consider first the case when N(A) ≈ NS (as in the main text, where the whole BCI plot is used). The overlap decrease is brought about by changes in 
the distribution, but it cannot happen that two configurations are completely disjoint, because that would require NS > 2N(A). To estimate q0 in this 
case we assumed that both the total number of trees and the number of species remain constant (consistent with a stationary state), and we built a 
configuration by taking the abundances of the 1985 census (including the species with zero individuals) and exactly reversing the abundance rank (i. 
e. the most abundant species in 1985 was assigned lowest abundance, the second most abundant species was assigned the second lowest, etc). The 
overlap between this configurations and the 1985 census is q0 ≈ 0.15 (whole census) or q0 ≈ 0.11 (dbh  > 100 mm). 

On the other hand, if NS is much larger than N(A) (which is the case for the local overlap (2)), two disjoint configurations can nevertheless have a 
relatively high overlap. To see this, imagine that one takes a small l × l square within the BCI plot, and computes the overlap to compare the pop-
ulations of only this square in two different censuses. The full BCI census recorded NS = 328 different species, but in a l2 area one finds on average 
N(l2) of those coexisting at any given time. If the two populations are identical, one gets Q = 1 because although nσ = 0 for about NS − N(l2) species, 
the species that have zero abundance in both censuses contribute a 1 to the sum, according to our definition. But if the two censuses record completely 
disjoint populations (i.e. none of the species found at t = t1 is present at t = t2 and vice versa), each census still has roughly N(l2) species in the area, so 
that the overlap will take a value 

q0 ≈
1

NS

[
N
(
l2)⋅0 + N

(
l2)⋅0 +

[
NS − N

(
l2) − N

(
l2)]⋅1

]

= 1 − 2
N
(
l2)

NS
.

(A.1)  

For example, if one uses the full list of NS = 328 species but considers a square of l = 50,m, then, since for BCI N(l2) ≈ 120, the minimum value 
attained by the overlap will be q0 ≈ 0.27. For l = 10,m the average number of species is N(l2) ≈ 23 and the minimum overlap rises to q0 ≈ 0.86. 
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