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Abstract: This paper starts by presenting an empirical finding in the U.S. stock market: Between 2001
and 2021, high productivity was achieved when the Shannon evenness—measuring the inverse of
concentration—dropped. Conversely, when the Shannon evenness soared, productivity plunged.
The same inverse relationship between evenness and productivity has been observed in several
ecosystems. This suggests explaining this result by adopting the business ecosystem perspective,
i.e., regarding the tangle of interactions between companies as an ecological network, in which
companies play the role of species. A useful strategy to model such ecological communities is through
ensembles of synthetic communities of pairwise interacting species, whose dynamics is described
by the Lotka–Volterra generalized equations. Each community is specified by a random interaction
matrix whose elements are drawn from a uniform distribution centered around 0. It is shown that the
inverse relationship between productivity and evenness can be generated by varying the strength
of the interaction between companies. When the strength increases, productivity increases and
simultaneously the market evenness decreases. Conversely, when the strength decreases, productivity
decreases and evenness increases. This strength can be interpreted as reflecting the looseness of
monetary policy, thus providing a link between interest rates and market structure.
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1. Introduction

Neoclassical economics, which assumes investors behave with rational expectations
in order to maintain an efficient market, is frequently at odds to explain the dynamics
of markets. Instead, the agents in markets are not perfectly rational, but rather they are
boundedly rational satisfiers [1]. The idiosyncrasies in human behavior make financial
markets depart from the assumption of informational efficiency leading for example to
excess volatility, i.e., financial markets change more than rational measures of value would
suggest [2].

An alternative viewpoint is to regard financial markets as ecosystems with a tangle of
interactions between companies, investors, clients, etc. Indeed, according to [3,4], compa-
nies are engaged in “competition for differential advantage” which gives firms a position
in the marketplace known as an “ecological niche” [3]. Companies survive and grow in
the marketplace depending on the actions and reactions of agents permanently adjusting
their behavior to match environmental opportunities. Such an ongoing process is similar to
the one that operates in ecological systems competing for scarce resources [5–7]. That is, a
process of co-evolution, shared by markets and ecosystems, in which interdependent species
or companies evolve in an endless reciprocal cycle—such that changes in species A set the
stage for the natural selection of changes in species B—and vice versa [8]. Co-evolution
occurs in different forms, antagonistic, e.g., predators and their prey, mutually compet-
itive, e.g., different species sharing the same trophic level, or cooperative co-evolution,
e.g., flowering plants and their pollinators [9].
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Moore [10] introduced biological ecology as a metaphor for strategic thinking about
business co-evolution and radically new cooperative/competitive relationships. In a
similar vein, Farmer and Lo [11] regard markets as co-evolving ecologies of different
strategies pursued by companies. These strategies are analogous to a biological species,
and the amount of funds deployed by traders following a given strategy is analogous
to the population of that species [11]. As the market evolves, the market shares of the
inefficient companies decrease while the companies with greatest fitness capture market
share. Therefore, companies often play the same role of selection units that species play
in ecosystems.

The general goal in this paper is to use the above analogy between markets and
ecosystems to better understand the forces that structure markets and determine their
productivity. This includes the market responses to external shocks (analogous to envi-
ronmental perturbations), such as expansive economic policies (analogous to nutrient
enrichment), and the susceptibility of companies of being displaced by newcomer compa-
nies (species turnover in the case of ecosystems). Furthermore, the above analogy offers
an opportunity to harness the potential of applying various powerful techniques from
theoretical ecology to the fields of economics and finance. The specific primary objective
of this study is to elucidate the inverse relationship detected between productivity and
evenness within a set of firms encompassing the largest companies in the U.S. stock mar-
ket. To accomplish this, we employ a combination of empirical evidence and theoretical
modeling from ecology. Unraveling this relationship holds significant importance as it
profoundly impacts the functioning of both markets and ecosystems. In fact, this ecological
perspective allows us to use two central attributes which emerge from the co-evolution
process of species in an ecological community, namely its productivity and its species
diversity [12,13] to get insight into market dynamics. Both properties can be defined in
several different ways in ecology. Productivity has been characterized by variables that
range from direct estimates of energy flow to the ecosystem to accumulated biomass or
biomass density (per area or volume) [14,15]. A common metric is the rate of generation of
biomass in an ecosystem, usually expressed in units of mass per unit area per unit of time,
such as grams per square meter per day [16]. In the case of agricultural crops, productivity
is also commonly measured by the total weight per unit area [17], which is known as crop
yield [18]. Diversity, in turn, involves concepts ranging from simplest concept of species
richness, namely the number of species, to evenness, i.e., the measure of how similar species
are in their abundance in an environment [19]. Indeed, species diversity is often intended
as a combination of richness and evenness [20].

This study draws on and integrates elements of ecological science and economics,
which is the scientific research program of ecological economics (EE), understood as “the
relationship between ecosystems and economic systems in the broadest sense” [21]. In
addition, it is transdisciplinary and uses methods and complex systems analysis [22].

2. The Business Ecosystem Perspective: Financial Markets as Ecosystems

The business ecosystem perspective refers to a framework or approach that views
businesses and organizations as part of a larger interconnected system or ecosystem [10]. In
the business ecosystem perspective, the focus is not solely on individual firms operating in
isolation, but rather on understanding how they interact and mutually influence each other
within the broader context of the ecosystem [23–25]. It recognizes that the success and
sustainability of any given organization are influenced by the health and dynamics of the
entire ecosystem in which it operates. Key features of the business ecosystem perspective
include interconnectedness, collaborative relationships, and ecosystem dynamics. Inter-
connectedness recognizes that firms within the ecosystem are interconnected and depend
on each other for resources, capabilities, and market opportunities. Actions and changes
in one part of the ecosystem can have ripple effects on other entities within the system.
Collaborative relationships refer for example to partnerships and alliances among different
companies within the ecosystem. Through ecosystem dynamics, we understand that the
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perspective acknowledges that ecosystems are dynamic and subject to various forces and
disruptions, rather than entities at equilibrium. New entrants, technological advancements,
market shifts, or changes in regulatory environments can shape the competitive landscape
and the overall dynamics of the ecosystem [10,24].

Using the analogy between ecosystems and markets, companies can be regarded
as species and the market value (In this paper ‘market value’ is taken as synonym of
market capitalization, i.e., the number of a company’s shares outstanding multiplied by
the current price of a single share [26].) of a company as the abundance or biomass of
a species [7,11,23–25]. Therefore, as in ecology, we consider as proxy for productivity
a relative metric, corresponding to total returns—i.e., the rate of variation of the total
market value. In addition, as it is carried out in agricultural sciences, we also consider an
absolute metric, given by the total market value (analogous to crop yield). Likewise, as a
measure of diversity, the Shannon evenness [27]—aka Shannon equitability index is used. This
metric is widely used in ecology, for example, to measure the variation of the diversity of a
community with a fixed number of species [28]. Notice that, in the same way as species
evenness is highest when all species in a community have the same abundance, the market
evenness is highest when all firms have the same market share. Market evenness is the
opposite of concentration, which happens for example when a few disproportionately large
firms dominate the returns of value weighted stock market indices such as the S&P500. The
use of the concept of evenness and other diversity measures in economics was reviewed,
for example, in [29]. Additionally, a comparison of ecological and economic measures
of biodiversity was reviewed in [30]. Box 1 summarizes the correspondences between
financial markets and community ecology.

Box 1. Correspondences between financial markets and community ecology.

Financial market Community ecology Denoted by
• company ↔ species i

• market value of a company ↔ species biomass vi

• total market value ↔ total biomass (all species) V

• total market return ↔ rate of variation of the total biomass R

• market share of a company ↔ frequency of such species xi

• evenness (inverse of concentration) ↔ evenness (species diversity) E

Most natural ecological communities exist in a state of nonequilibrium where com-
petitive equilibrium is prevented by several factors such as, for example, fluctuations in
the physical and biotic environment [31]. The same happens in stock markets, where stock
prices often do not settle down for long time but are driven by factors affecting supply
and demand such as the economic environment, economic policies, market news, etc. In
nonequilibrium ecological communities, although the number of coexisting competitors
remains relatively stable, the level of diversity—measured by the evenness—varies. Indeed,
a long-standing debate in ecology is that of how species diversity relates to the productivity
of ecosystems (see for instance [32] or [33] and references therein).

Classical community ecology, developed by Lotka [34] and Volterra [35], has been the
major descriptor of species interactions in the ecological literature for almost a century.
The Lotka–Volterra generalized theory (LVGT) [36,37] rests on the assumption that species
interactions play a major role in structuring an ecological community. The Lotka–Volterra
generalized equations can be written in finite time as [37,38]:

vi(t + 1)− vi(t) = rivi(t)

(
1 +

S

∑
j=1

αijvj(t)

)
, i = 1, 2, · · · , S. (1)
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where i denotes the species number; vi(t) stands for its biomass at time t and ri is the intrinsic
growth rate of the species (dimension of time−1). Thus, a central ingredient of LVGT is
the pairwise interaction matrix, αij. whose element ij quantifies the effect of species j on the
growth of species i. The resulting variation in pairwise species interactions determines
biodiversity in a community [39], and thus it is able to yield species abundance distributions
and biodiversity as a function of species-specific interaction parameters. By analogy, one
way to approach the relationship between productivity as a function of evenness in financial
markets is through LVGT. The problem is that estimating the interaction matrix αij between
companies is far from trivial. We will come back to this problem in Section 4.

3. Empirical Analysis
3.1. Dataset

The used dataset is based on the Fortune 100 list, i.e., a list of the top 100 public
and privately held companies by revenues in the United States published by Fortune
magazine [40]. From these 100 U.S. companies we selected those 78 public firms such that
reported annual revenue and market cap from 1 January 2000 (see Table 1). Thus, the
resulting dataset consists of time series for daily closing market values for each company,
vi(t) (i =1, 2, . . . , 78), with t measured in days spanning 5536 days, from 1 January 2000
to 31 December 2021 [41]. The market value is a good firm size proxy; indeed, over the
27-year period of 1989–2015, it demonstrated providing high value relevance in predicting
future returns [42].

Table 1. The 78 companies considered in this study ordered by their market value as of 31 December
2021 [41].

Company Ticker Market Val
(USD Bill) Rank Sector Industry

Apple AAPL 2902 1 Technology Consumer Electronics

Microsoft MSFT 2522 2 Technology Software–
Infrastructure

Amazon AMZN 1697 3 Consumer Cyclical Internet Retail
Berkshire Hathaway BRK 662.63 4 Financial Services Insurance
JP Morgan JPM 472.51 5 Financial Services Banks
United Health Group UNH 466.21 6 Healthcare Healthcare Plans
Johnson & Johnson JNJ 450.36 7 Healthcare Drug Manufacturers
Home Depot HD 433.37 8 Consumer Cyclical Home Retail
Walmart WMT 401.35 9 Consumer Defensive Discount Stores
P&G PG 392.11 10 Consumer Defensive Household
Bank of America BAC 359.38 11 Financial Services Banks
Pfizer Inc. PFE 331.86 12 Healthcare Drug Manufacturers
The Walt Disney Company DIS 281.54 13 Comm. Services Entertainment
Cisco Systems, Inc. CSCO 267.27 14 Technology Comm. Equipment
Nike NKE 263.55 15 Consumer Cyclical Footwear and Access.

Thermo Fisher Scientific Inc. TMO 263.18 16 Healthcare Diagnosis
and Research

Exxon Mobil XOM 259.38 17 Energy Oil and Gas
The Coca-Cola Company KO 256.09 18 Consumer Defensive Beverages
Costco COST 251.74 19 Consumer Defensive Discount Stores
Abbott Laboratories ABT 248.28 20 Healthcare Medical Devices
PepsiCo, Inc. PEP 240.24 21 Consumer Defensive Beverages
Oracle ORCL 232.89 22 Technology Software–Infrastructure
Comcast CMCSA 228.16 23 Comm. Services Telecom Services
Chevron CVX 226.46 24 Energy Oil and Gas
Verizon VZ 218.12 25 Comm. Services Telecom Services
Intel Corporation INTC 209.6 26 Technology Semiconductors
QUALCOMM Incorporated QCOM 205.73 27 Technology Semiconductors
Merck & Co., Inc. MRK 193.72 28 Healthcare Drug Manufacturers
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Table 1. Cont.

Company Ticker Market Val
(USD Bill) Rank Sector Industry

Wells Fargo WFC 186.44 29 Financial Services Banks

Anthem UPS 186.41 30 Industrials Integrated Freight
and Logistics

Lowe’s LOW 174.15 31 Consumer Cyclical Home Retail
Morgan Stanley MS 173.96 32 Financial Services Banks
Honeywell International Inc. HON 142.79 33 Industrials Conglomerates
CVS Caremark CVS 136.38 34 Healthcare Healthcare Plans
Bristol-Myers
Squibb Company BMY 134.24 35 Healthcare Drug Manufacturers

AT&T T 132.58 36 Comm. Services Telecom Services

Raytheon Technologies Corp. RTX 128.51 37 Industrials Aerospace
and Defense

The Goldman Sachs
Group, Inc. GS 127.61 38 Financial Services Banks

American Express Company AXP 124.5 39 Financial Services Credit Services
IBM IBM 120.04 40 Technology Information Tech. Serv.
Citigroup C 119.84 41 Financial Services Banks

Boeing BA 118.56 42 Industrials Aerospace
and Defense

Target TGT 110.89 43 Consumer Defensive Discount Stores

Caterpillar Inc. CAT 110.79 44 Industrials Farm and
Heavy Constr.

Deere & Company DE 105.68 45 Industrials Farm and
Heavy Constr.

General electrics GE 103.83 46 Industrials Specialty Industr.
Machinery

3M Company MMM 101.58 47 Industrials Conglomerates

Lockheed Martin Corporation LMT 96.32 48 Industrials Aerospace and
Defense

ConocoPhillips COP 94 49 Energy Oil and Gas
Phillips 66 TJX 90.56 50 Energy Oil and Gas
Ford Motors F 85.59 51 Consumer Cyclical Auto Manufacturers
Cigna Corporation CI 74.16 52 Healthcare Healthcare Plans

FedEx Corporation FDX 68.53 53 Industrials Integrated Freight and
Logistics

Northrop Grumman Corp. NOC 60.49 54 Industrials Aerospace and
Defense

Capital One Financial Corp. COF 60.05 55 Financial Services Credit Services
The Progressive Corporation PGR 59.99 56 Financial Services Insurance
Humana Inc. HUM 59.75 57 Healthcare Healthcare Plans

General Dynamics GD 57.88 58 Industrials Aerospace and
Defense

Enterprise Products Partners
L.P. EPD 47.79 59 Energy Oil and Gas

AIG AIG 46.55 60 Financial Services Insurance

Walgreens Boots Alliance WBA 45.03 61 Healthcare Pharmaceutical
Retailers

HP Inc. HPQ 40.79 62 Technology Computer Hardware

Exelon Corporation EXC 40.34 63 Utilities Utilities-Regulated
Electric

Sysco Corporation SYY 40.27 64 Consumer Defensive Food Distribution
Archer-Daniels-
Midland Comp. ADM 37.85 65 Consumer Defensive Farm Products

The Travelers Companies, Inc. TRV 37.73 66 Financial Services Insurance
McKesson Corp. MCK 37.24 67 Healthcare Medical Distribution
The Kroger Co. KR 33.28 68 Consumer Defensive Grocery Stores
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Table 1. Cont.

Company Ticker Market Val
(USD Bill) Rank Sector Industry

The Allstate Corporation ALL 33.06 69 Financial Services Insurance
Tyson Foods, Inc. TSN 31.65 70 Consumer Defensive Farm Products
Nucor Corporation NUE 31.1 71 Basic Materials Steel
Valero Energy VLO 30.73 72 Energy Oil and Gas
AmerisourceBergen ABC 27.78 73 Healthcare Medical Distribution
Best Buy Co., Inc. BBY 24.44 74 Consumer Cyclical Specialty Retail
Cardinal Health CAH 14.26 75 Healthcare Medical Distribution

Arrow Electronics, Inc. ARW 9.14 76 Technology Electronics
Distribution

Fannie Mae FNMA 0.95 77 Financial Services Mortgage Finance
Chico’s FAS, Inc. CHS 0.66 78 Consumer Cyclical Apparel Retail

According to the Federal Reserve [43], there were three recessions in this period:

• From the first to the third quarter of 2001, corresponding to the dot-com crash [44];
• From the fourth quarter of 2007 to the second quarter of 2009, associated with the

“Subprime Mortgage Crisis” or the “Mortgage crisis” [45];
• Across the first and second quarters of 2020.

Hence, this sample covers two business cycles.

3.2. Variables

In this study, as mentioned, the three main global or aggregated variables considered are:
1. The total market value, V(t), which depends on time t (measured in days), i.e.,

V(t) ≡
78

∑
i=1

vi(t). (2)

2. The total market return, R(t), given by the annual variation of V, i.e.,

R(t) ≡
S

∑
j=1

(vi(t + 1)− vi(t)). (3)

In fact, I mainly consider the two abovementioned quantities adjusted by the annual con-
sumer price index (CPI), respectively, denoted as Va(t) and Ra(t), except as otherwise stated.

3. The Shannon evenness or Shannon equitability, E(t), defined as:

E(t) ≡
−

78
∑

i=1
xi(t) ln xi(t)

ln 78
, (4)

where xi(t) is the market share of company i at day t, i.e.,

xi(t) =
vi(t)
V(t)

. (5)

This index is basically a normalized Shannon entropy, independent of the sample size
(N = 78 in our particular study).

In addition, using daily data raises the problem of high-frequency variation of daily
prices compared to the monthly, quarterly, or annual frequency which are much more
relevant for the business ecosystem picture. To avoid this problem, the high frequency
daily fluctuations were smoothed out by using moving averages over 252 stock trading
days per year.
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It is worth mentioning that the total (unadjusted) market value V of this set of com-
panies at the end of the period was USD 18.9 trillion [40,41], and they represented at least
60% of the total New York Stock Exchange (NYSE) market cap in the period 2000–2021 [46].
Hence, as expected, V is strongly correlated with the S&P 500 index, as shown in Figure 1.
This simply confirms that V for the selected set of companies serves as an aggregate mea-
sure of production to determine the business cycle chronology (working with the entire set
of 2800 NYSE listed firms would be a daunting task).

Entropy 2023, 25, x FOR PEER REVIEW 7 of 22 
 

 

It is worth mentioning that the total (unadjusted) market value V of this set of com-
panies at the end of the period was USD 18.9 trillion [40,41], and they represented at least 
60% of the total New York Stock Exchange (NYSE) market cap in the period 2000–2021 
[46]. Hence, as expected, V is strongly correlated with the S&P 500 index, as shown in 
Figure 1. This simply confirms that V for the selected set of companies serves as an aggre-
gate measure of production to determine the business cycle chronology (working with the 
entire set of 2800 NYSE listed firms would be a daunting task). 

 
Figure 1. The total market value V vs. the S&P 500 index, for the period 2012–2021 [41]. 

As an additional check that that E(t), given by Equation (4), correctly reflects the mar-
ket evenness of the whole U.S. stock market the Shannon evenness was computed through 
Equation (3) but taking subsets of the whole set of 78 firms, i.e., the top 20 companies, the 
top 30, etc. (and replacing in Equation (3) 78 by N = 20, 30, etc.). Figure 2 shows that the 
corresponding succession of curves of EN (t) converges towards the evenness E(t) for the 
whole set; for N ≥ 50 the curves are qualitatively very similar, while the curve E70 (t) only 
shows small departures from E(t). This is because adding companies with very low shares 
does not change much E since xi ln xi → 0 when xi → 0. 

 
Figure 2. The Shannon evenness curves EN (t) computed for the top N = 20 companies, the top N = 
30, …, the whole set of 78 companies (thick gray curve). 

Figure 1. The total market value V vs. the S&P 500 index, for the period 2012–2021 [41].

As an additional check that that E(t), given by Equation (4), correctly reflects the market
evenness of the whole U.S. stock market the Shannon evenness was computed through
Equation (3) but taking subsets of the whole set of 78 firms, i.e., the top 20 companies, the
top 30, etc. (and replacing in Equation (3) 78 by N = 20, 30, etc.). Figure 2 shows that the
corresponding succession of curves of EN (t) converges towards the evenness E(t) for the
whole set; for N ≥ 50 the curves are qualitatively very similar, while the curve E70 (t) only
shows small departures from E(t). This is because adding companies with very low shares
does not change much E since xi ln xi → 0 when xi → 0.
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It was checked that other different metrics used to quantify the evenness, like in-
verse Simpson and the Gini–Simpson indices, provide qualitatively identical curves to the
Shannon evenness. (See Appendix A)
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3.3. Productivity vs. Evenness in the U.S. Stock Market

The relationship between Ra(t), the most widely used metric to measure market pro-
ductivity, and E(t) provides clear evidence of the inverse relationship between productivity
vs. evenness. In Figure 3, the 21-year period is divided into three portions according to the
behavior of the evenness E (full thick green curve). That is:

• A period of soaring E(t), from January 2001 to December 2007, (almost exactly coincid-
ing with the first business cycle);

• A period of relatively smooth oscillations of E(t) around a high value, from January
2008 to December 2017;

• A period in which E plunged, from January 2018 to December 2021.
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Right axis: Shannon evenness E (full tick green curve). Left axis: Ra plotted for three different
periods depending on the behavior of E: 2001–2007 (dashed blue), characterized by soaring E and
negative average Ra; 2008–2017 (dotted gray), of roughly constant E and low average Ra; January
2018 to December 2021, in which E plunged and the average Ra was high. The horizontal segments
correspond to the mean of Ra along the respective period.

Notice that the Ra averaged over these periods, indicated in Figure 3 by horizontal
segments, was slightly negative (blue), slightly positive (gray), and high (red), respectively.
In other words, during periods in which E(t) sharply decreased productivity was high,
while in the other periods of soaring or high evenness, productivity was low.

The behavior of the absolute productivity metric, Va, is also enlightening. Figure 4
shows the trajectory of Va as a function of E from 2001 to 2021 together with some key
financial events that occurred in this period. The three recessions divide the period in two
business cycles, both characterized by E and Va moving in opposite directions:

• From the beginning of 2001 until the end of 2007 (portion of the trajectory in blue in
Figure 4), in which E steadily increased, while Va ended in a slightly lower value.
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• The 2009–2020 expansion (portion of the trajectory in red in Figure 4), which was the
longest on record at 128 months—from July 2009 to February 2020—according to the
Congressional Research Service (NBER 2022). This was a period in which, after some
initial erratic movements, Va grew strongly and E considerable declined.
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Figure 4. The trajectory of CPI adjusted total market value, Va, as a function of E from 2001 to
2021 [41]. The portion in blue corresponds to the period between the dot-com crash and the Mortgage
crisis (2001–2008). The red portion corresponds to the 2009–2020 expansion. Full lines correspond to
entire periods in which Va and E moved in opposite directions (see text). Dashed lines correspond
to periods in which Va and E moved in the same direction. The dotted section corresponds to the
erratic period whose start coincided with the Mortgage crisis. The dot-dashed section in the upper
left corresponds to the last three quarters of 2021 in which the market entered in a phase of almost
vertical growth of Va.

It is possible to identify some landmark events. For instance, the dot-com crash in 2001
seems to have triggered a process until 2003 in which Va steadily decreased and E increased
quickly. Conversely, from 2017 to 2021 Va increased and E decreased fast and steadily. The
start of this second period coincided with the advent of “Trumponomics”. The term refers
to the economic policies of U.S. President Donald Trump, who won the 8 November 2016
presidential election on the back of bold economic promises to cut personal and corporate
taxes, restructure trade deals and introduce large fiscal stimulus measures [47]. The period
2008–2015 (dotted curve), whose start coincided with the “Subprime Mortgage Crisis” or
the “Mortgage crisis”, was quite erratic from the point of view of Va vs. E.

In summary, after 21 years, the market evenness roughly returned to the value it had
in 2001, but the total market value doubled in CPI-adjusted dollars. This growth occurred
entirely in the second half of the period, characterized by a process of concentration in
which the evenness lost everything it had gained in the first half.

The negative relationship between the two productivity metrics with the market
evenness agrees to what is often observed in ecological communities across different
taxa. For example, the analysis of data from a large multi-site grassland experiment
revealed that for plots which started with the same and even species composition, but
which diverged in evenness over time, those with lower evenness attained a significantly
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greater biomass [48]. Moreover, the relationship between evenness and biomass across all
plots in these experiments was also negative. The same was observed in other grassland
experiments involving many plots of perennial grass species [49]. There are also examples
of mixtures of species that converge with time towards a state of higher biomass and lower
evenness for protozoa [50] and algae [51].

4. Explaining the Relationship between Productivity and Evenness in Stock Markets
from a Community Ecology Perspective

Species interactions involve a complex balance of competition and facilitation in which
indirect interactions occur if a third species (or more species) modifies the interaction
between two other species [52]. It was argued that the success of species in a community is
affected not only by direct interactions between species, but also by indirect interactions
among groups of species [53,54]. The Lotka–Volterra generalized equations can naturally
implement these indirect interactions through combinations of several pairwise interaction
coefficients. That is, species i affects directly species k through the coefficient αki, but also
indirectly through the combination of αji and αkj (i.e., species i affects directly species j,
which in turn affects directly species k).

Regarding markets as ecological communities enables us to use the general machinery
of the theory of community ecology [9] to understand the observed negative relationship
between productivity, measured by Va and Ra, and evenness, E. We will focus in particular
to the Lotka–Volterra generalized equations and the interaction matrix, αij, quantifying the
strength of the effects between pairs of species.

To estimate the interaction matrix αij of an ecological community a far from trivial
task. A straightforward procedure is through pairwise competition trials by comparing
the species yields in biculture relative to monoculture [50,55]. However, these experiments,
which are common in community ecology and agricultural science are feasible for a small
number of coexisting species S [17,37,49,50]. This is because the number of required
experiments grows as S2. Furthermore, such experiments are not feasible in markets since
one cannot isolate companies from the rest of the market to study their evolution under
controlled conditions. Hence, we have to make use of theoretical analysis in terms of in
silico synthetic communities.

4.1. Ensemble of Synthetic Communities

Therefore, let us use an approach based on Robert May’s theoretical work in commu-
nity ecology in terms of randomly assembled communities [38]. The idea is to consider
an ensemble of pairwise interaction matrices whose diagonal elements, corresponding to
intraspecific interactions of each species i, are set to −1, as it is customarily performed in
community ecology [38]. The off-diagonal matrix elements, corresponding to interspecific
interactions between different species i and j, are drawn from a uniform random distribu-
tion centered around 0 and with radius δ, which can thus be interpreted as the intensity of
interspecific interactions. That, is:

αij =

{
−1 if i = j
random in [− δ,+δ] if i 6= j

(6)

Notice that the mean of the interspecific interaction coefficients is µ = 0, i.e., negative
and positive interaction coefficients are equally likely. In fact, complex combinations of
negative and positive interactions have been identified in a number of different ecological
communities, like plant communities [49,56], freshwater communities [57], etc. The hetero-
geneity of interspecific interactions is controlled by δ since the variance of the interspecific
interaction coefficients is given by δ2 = δ2/3, i.e., the greater δ, the greater the variance of
interspecific interactions. To analyze the effect of varying the heterogeneity of interspe-
cific interactions, we took into account that systems in which interspecific interactions are
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stronger than intraspecific interactions are likely to be unstable [58], thus we kept δ < 1.
Thus, the parameter δ was varied from 0 to 0.9 in steps of 0.1.

To set the intrinsic growth rates, ri, it was used that, by Equation (1), on average ri is
equal to the mean relative returns (vi(t + 1) − vi(t))/vi(t). Therefore, let us take ri = 0.014
for all i which is the mean of the empirically observed relative returns (This mean implies
a double average, over companies and over time.). Next, to solve the Lotka–Volterra
Equation (1) for each value of δ, 1000 simulations were run, each one starting from a
random initial condition:

vi(1) = random in [0, 1 ], i = 1, 2, . . . , 78. (7)

The initial total market value, and the evenness are thus given, respectively, by:
V(1) ≈ 78 × 0.5 = 39 (in arbitrary units) and E(1) ≈ 0.957 (see Appendix B). Notice that
these initial values are close to the equilibrium values for δ = 0, V0* = 39 and E0* = 1(see
Appendix C). From this initial arbitrary state, the transient dynamics towards equilibrium
was studied. It is important to note that randomness only enters in the initial choice of the
interspecific coefficients αij, which then define a particular community by Equation (6), and
in the initial configuration (i.e., Equation (7)). For each simulation the subsequent dynamics
is strictly deterministic, and the community specified by a random interaction matrix
given by Equation (6), in general does not allow for the coexistence of all the 78 species.
Instead, some species extinguish with time; the coexistence of the 78 species is in general
unfeasible for random matrices [37]. Therefore, simulations were stopped for a time, T,
for which the first species extinguished (A species is considered extinguished when its
biomass drops below a cutoff vmin << 1 (here I use vmin =10−5)). For small values of δ, T
can be quite large (thousands of time steps). However, as δ increases, T decreases, until
T~30 for δ = 0.9. Hence, to use the same simulation cutoff time for all values of δ, T = 30
was fixed (qualitatively similar results were obtained for smaller values of T, as shown in
Appendix C).

The results of simulations are shown in Figure 5. For δ = 0.1, only slight deviations
in V and E from their initial values, V(1) = 39 and E(1) = 0.957, occur (Figure 5a). As δ
increases, the community moves towards higher values of V and lower values of E. Indeed,
the curves E(δ) and V[δ] (the bars denote average over simulations) appear to be mirror
images of each other.

These opposite trends for E(δ) and V[δ] can be understood as follows. It is immediate
that the evenness will decline when δ is increased. This is because for δ = 0 the interaction
matrix αij, given by Equation (6), reduces to the identity matrix, and then all distinction
among the companies disappears, Therefore, the evenness tends to its maximum possible
value of E0* = 1 (see Appendix C). As the interactions between companies are “turned
on” (δ > 0), the equivalence between companies breaks down and the system departs
from this state of maximum evenness. The larger the heterogeneity (variance) of these
interactions the larger this departure. A derivation that V[δ] is a monotonic increasing
function of δ requires a little bit more of algebra. In a nutshell the idea is that, even though
by Equation (6) positive and negative interspecific interactions are equally likely, the effect
of positive interactions outweighs the effect of negative interactions, as it is shown in
Appendix C. Moreover, it can also be derived that the time derivative of V[δ], i.e., R[δ], is a
monotonic increasing function of δ.

Therefore, a way to generate the observed inverse relationship between productivity
metrics and E, is by changing the interaction strength between companies: if δ increases
(decreases) R and V tend to increase (decrease) and simultaneously E tends to do the
opposite, i.e., to decline (rise).
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Regarding the mechanism promoting the growth of δ, and ultimately behind the
negative relationship between productivity and evenness, monetary policy is a natural
candidate. That is, when the monetary policy is loose and interest rates are low, capital
flows to firms. This injection of money promotes the idea that firms address new business
opportunities which multiply the interactions between them, either in the form of coopera-
tion through new contracts, joint ventures, etc. or competition in new segments. Such an
increase in the heterogeneity of interactions among companies is equivalent in our model
to increase δ. Indeed, high productivity coincided with an expansion in money supply,
M1 [59], and mainly with low effective interest rates (see Appendix D). The relationship
between interest rates and evenness, or between money supply and evenness is less clear.
Although at the beginning of the period the evenness soared with high interest rates, it
persisted high during 2009–2015 when, in order to combat the Great Recession, the U.S.
Federal Reserve ran a quantitative easing program and kept the effective interest rate at vir-
tually zero [59] (see Appendix D). In a similar vein, it was observed that algal biovolume, a
surrogate for biomass, increased, whereas evenness decreased with increasing total supply
of resources in algal communities [60].

Two remarks are in order. Firstly, the monotonic curves E(δ), R[δ] and V[δ] of Figure 5
were obtained as averages over 1000 simulations. Nevertheless, this does not imply that if
δ1 < δ2 all simulations performed with δ1 will produce a V smaller than the one produced
by all simulation with δ2 or an E larger than the one produced by all simulation with δ2.
Hence, this approach is also able to yield periods in which R and/or V move in the same
direction as E (either both upward or downward), but they will be less likely than periods
in which productivity metrics and E move in opposite directions. This is in agreement with
what is shown in Figure 4 for the empirical trajectory of V vs. E: those sections in which
both variables move in the same direction are rarer and shorter (e.g., during 2004).

Secondly, this approach, in terms of random matrices, produces only qualitative
evidence for the observed V vs. E trend in the U.S. stock market. To obtain a better
quantitative description, one has to consider more complicated structured interaction
matrices. This issue is beyond the scope of this study, but some recent advances are briefly
reviewed in the next subsection. Indeed, the random matrices approach, which is commonly
used in various fields such as physics, mathematics, and finance, has certain limitations
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and restrictions. A main restriction is its assumptions of randomness. The random matrices
approach relies on the assumption that the matrix elements are independent and identically
distributed random variables. However, in some real-world scenarios, this assumption may
not hold true. Real-world data often exhibit correlations, dependencies, or non-random
patterns that may not be accurately captured by random matrices.

4.2. Other Ecologically Based Approaches Supporting the Negative Relationship between
Productivity and Evenness

The classical Ecological Niche Theory (ENT) states that an ecological community is made
up of a limited number of niches, each occupied by a single species and that differences
among species in their niches are important in determining the outcome of species interactions
as might be revealed in their distributions and/or abundances in ecosystems [61]. Using
ENT, the pattern of increasing biomass accompanied by decreasing evenness was firstly
mathematically derived for the case of pure competition [62], which implies a restriction of the
general interactions of LVGT only to mutually competitive interactions for resources. More
recently, this result was extended to the more realistic case of generalized interactions. This was
performed through the so-called Lotka–Volterra Niche Game Model (LVNGM) [63], resulting
from the combination of ENT and Game Theory. Other recent works approaching financial
markets as ecosystems have contributed to support the generality of the inverse relationship
between productivity and evenness. Indeed, population dynamic models can be used in
conjunction with time series of species abundances to infer the interaction coefficients between
companies through indirect methods. One of such indirect methods is the so-called Pairwise
Maximum-Entropy (PME) modeling [64]. PME modeling is a particular implementation of the
of Maximum Entropy general approach proposed by Jaynes [65,66] which has been used in
finance for different purposes, like ranking the performance of mutual funds [67], retrieving
the risk neutral density of asset returns [68], investigating the effect of size differences on
cost efficiency heterogeneity in U.S. commercial banks [69], etc. In the last two decades, PME
models have been used to analyze ecological data associated with diverse problems, such as
animal flocks [70], and community ecology [37,71–73]. In fact, PME modeling has been applied
for a subset of the US companies I consider here in two recent studies, each one focused on a
different subject, across different time lengths or training periods Ttr. The first one addressed
the issue of inferring adjacency matrices defining the network that describe the interactions
between firms in a fashion similar to how theoretical ecology pictures the interaction of
species in an ecosystem [74]. A main finding of a community analysis on the resultant
networks was that the network modules derived from a PME matrix, Mij, coincide almost
exactly with the industry groupings of the firms defined by the Global Industry Classification
Standard (GICS) [75]. The second study tested the combination of this PME approach with
evolutionary game theory for quantitative market forecasting by taking αij = Mij [7]. It turns
out that the resulting forecasting method does a decent job of predicting empirical shares
of the companies along several choices of validation periods. Interestingly, these interaction
matrices αij obtained by the PME method in [7,74] exhibit properties which are similar to
the ones of the synthetic communities defined by Equation (6), namely that (a) most of its
off-diagonal element are in the interval (−1, +1) and (b) with a mean close to 0.

5. Conclusions

As we have seen, regarding markets as ecosystems can be traced back to the late
1950s [3]. Since then, different authors have contributed to building this analogy and used
it to gain insight into market forces. However, there has been a lack of quantitative tools so
far useful to the practitioners [76]. Indeed, the main novelties of this study are as follows:

Firstly, it raises the productivity vs. diversity issue, a fundamental question of com-
munity ecology, in the context of financial markets modeling. It is worth mentioning that a
similar conclusion was drawn using a different diversity measure provided by the largest
eigenvalue of the correlation matrix among stocks [77]. The productivity–diversity tradeoff
is important because, as it happens in ecology, in economics, decision makers need to strike a



Entropy 2023, 25, 1029 14 of 21

balance in resource allocation by considering both productivity-enhancing investments and
maintaining a diverse to mitigate risks and promote long-term sustainability and resilience.

Secondly, it uses the Shannon evenness of market values to quantify the market
diversity as opposed to market concentration. Being a normalized metric, the Shannon
evenness is particularly useful when working with samples of companies of large markets
such as NYSE. Additionally, it allows a quantitative comparison of the evenness among
different markets or among different industrial sectors of the same market. The use of
the Shannon evenness was instrumental to detect an important pattern of NYSE market
dynamics between 2001 and 2021, namely the fact that high productivity was achieved
when the evenness dropped; conversely when the evenness soared (during the business
cycle 2001–2008) productivity plunged. Interestingly, such negatively correlated regime
parallels the relationship between total biomass and species evenness observed in several
ecosystems across distinct taxa (plants, algae, protozoa, etc.). In the case of economics
and finance, balancing productivity and diversity is crucial for sustainable economic
growth. High productivity can boost overall output and efficiency, leading to economic
expansion. Diversity, on the other hand, can contribute to resilience and adaptability,
allowing economies to better withstand disruptions. Diversity also plays a vital role in
fostering innovation and creativity. When a system encompasses diverse perspectives,
knowledge, and skill sets, it is more likely that it promotes the generation of new ideas and
approaches. Recognizing the potential adverse effects of losing diversity, decision makers
can implement policies that promote a more diverse economic landscape. This can involve
supporting industries with growth potential, fostering entrepreneurship, encouraging small
and medium-sized enterprises, and providing incentives for diverse business models and
market entrants. Such policies can help maintain a resilient economy, reduce concentration
risks, and encourage innovation and competition.

Thirdly, as far as the author knows, May’s model [38] has not been previously used
to analyze the relationship between evenness and productivity, neither in ecology nor in
economics. Specifically, the model allows to explain how an inverse relationship between
productivity and diversity can emerge when loosening or tightening the monetary policy.
This has profound implications for decision makers, who need to carefully balance the
short-term benefits of loosening monetary policy, such as increased liquidity and economic
stimulus, with the potential long-term undesired effects on the economy. While monetary
easing may provide immediate economic boosts, it can also discourage productivity im-
provements and hinder the development of a diverse and resilient economy. In that sense,
the above finding serves to assess the trade-offs and evaluate the long-term consequences
of monetary policy decisions.

Let us conclude with some research directions that seem worth investigating in fu-
ture works. One important issue is the generality of negative correlation between market
productivity and market evenness. For example, one may wonder whether this pattern
is a particularity of the US stock market or if it is shared by other stock markets in differ-
ent countries? Thus, analyzing financial markets from other countries is a natural next
step. Another question is how the detected pattern is connected to long-term trends in
demographics and the inter-industry reconfiguration of firms away from traditional manu-
facturing [78]. The business ecosystem perspective is also useful to develop quantitative
methods to forecast future market values of firms [79], or to define fitnesses for firms and
disentangle the effects of selection and the environment in the evolutionary dynamics of
financial markets [80].
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Appendix A. Other Metrics of Evenness

In addition to Shannon evenness there are other metrics to assess the equitability or
evenness in a community. A couple of popular metrics are based on the Simpson index,
which is given by:

λ ≡
N

∑
i=1

xi
2, (A1)

where N is the number of companies and xi is the market share of company i, i.e.,

xi =
vi
V

. (A2)

The first one is the inverse Simpson index, given by:

IS ≡ 1/λ. (A3)

The second one is the Gini–Simpson index, given by:

GS ≡ 1− λ. (A4)

It turns out that both the above indices provide qualitatively identical curves to the
Shannon evenness, as it can be seen in Figure A1 which shows the curves of E(t) and GS(t).
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Appendix B. The Evenness of a Randomly Distributed Shares

Suppose that using a uniform distribution in the [0, 1] interval, we draw a set of
S fractions yi, which we assume that are proportional to the market values, vi, of S
firms. Therefore, the mean values yi will be uniformly distributed in the [0, 1] interval:
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i.e.,

yi =
i

S + 1
, with i = 1, 2, · · · , S. (A5)

To transform the fractions yi into shares xi we have to normalize them, i.e.,

xi =
yi

S
∑

j=1
yj

=
yi

S
2 (S + 1) 1

S+1

=
2
S

yi. (A6)

Using Equation (4) we can write the evenness in terms of the fractions yi as:

E =

−
S
∑

i=1
xi ln

( 2
S yi
)

ln S
= − 2

S

S
∑

i=1
yi ln yi + ln

( 2
S
)

ln S
. (A7)

Substituting Equation (A5) into (A7) we obtain:

E =
2

S(S + 1) ln S

S

∑
i=1

[
i ln

S + 1
i

]
+

ln S
2

ln S
. (A8)

For example, Equation (A8) produces for S = 2 species, E = 0.9813, whereas for
S = 78 companies, by performing the sum from 1 to 78, we obtain 0.11619 and then adding
up ln19/ln38 (=0.84090), we finally obtain E = 0.95709.

The sum in the expression (A8) can be approximated as the integral (the larger S the
larger the accuracy of this approximation):

S

∑
i=1

[
i ln

S + 1
i

]
≈ (S + 1)2

1∫
0

y ln ydy =
(S + 1)2

4
. (A9)

Hence, substituting Equation (A9) into (A8), we obtain the following approximate
expression of the evenness as a function of S:

E ≈ S + 1
2S ln S

+
ln S

2
ln S

. (A10)

For S = 78, the evenness thus becomes E ≈ 0.11623 + 0.84090 = 0.95713, which differs
in 0.004% of the value we obtained performing the sum.

Appendix C. The Total Market Value as a Function of δ

The system of Equation (1) with an interaction matrix given by Equation (6) will
converge towards an equilibrium total market value, V*(δ). It is helpful to consider for a
moment the effect of “switching off” the interspecific interactions, which corresponds to
the trivial community of non-interacting species, so that as δ = 0, the interaction matrix
αij given by Equation (6) reduces to the identity matrix. In this case, the Lotka–Volterra
equations reduce to a set of uncoupled logistic equations:

vi(t + 1)− vi(t) = rivi(t)(1− vi(t)), i = 1, 2, · · · , S. (A11)
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The solution of Equation (A11) converges for asymptotically large times towards the
equilibrium vi* = 1 for all species i. Then, by Equations (A11), (2) and (4), the corresponding

total market value and evenness become V0* =
78
∑

j=1
v0j∗ = 78 and E0* = 1 (the sub index 0

are used to emphasize that these results hold for the trivial case δ = 0).
If we now “switch on” the interspecific interactions, i.e., δ > 0, from Equation (1), we

have for the equilibrium in which the S companies coexist:

S

∑
j=1

αijvj∗ = −1, i = 1, 2, · · · , S, (A12)

Inverting Equation (A12), we can write the equilibrium total market value, to which
the system eventually converges in terms of the inverse of the interaction matrix, α−1

ij, as:

V∗ =
S

∑
i=1

vi∗ = −
S

∑
i

S

∑
j

α−1
ij, i, j = 1, 2, · · · , S. (A13)

A general analytical expression of V* in terms of the coefficients αI ij is very cumber-
some and thus not very useful. In addition, we still have to perform the integrations in
those αi ij between −δ and δ to obtain the expected total market value at equilibrium for a
given δ, V*(δ). However, for a given value of δ, such multiple integral of Equation (A13)
can be computed numerically. To illustrate this calculation, let us consider the case of an
ensemble for a community of just two companies. Hence, v1* and v2* can be written as [37]:

v1∗ =
1 + α12

1− α12.α21
, v2∗ =

1 + α21

1− α12.α21
(A14)

Therefore, Equation (A13) reduces to:

V∗(δ) =
+δ∫
−δ

+δ∫
−δ

dα12dα21(v1∗+v2∗) =
+δ∫
−δ

+δ∫
−δ

dα12dα21
2 + α12 + α21

1− α12.α21
. (A15)

Performing the above double integral numerically, we obtain the total market value
curve, V*(δ), at equilibrium towards this system, which is depicted in Figure A2. Notice
that it is a monotonic function of δ. This implies that, even though positive and negative
interactions are equally likely, the effect of positive interactions is not entirely erased by
negative interactions.
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tions given by Equation (7), are shown in Figure A3 for different values of δ, varying the 
simulation time cutoff, T, from 2 to 20. In panel (A), one can see that for δ = 0.1, inde-
pendently of the cutoff time T, only slight deviations in V and E from their initial values, 
V(1) = 39 and E(1) = 0.957, occur. As δ increases, the initial configuration moves further 
away from the equilibrium state. The community then moves towards higher values of V 
and lower values of E when increasing T, as shown in panel (A) for δ = 0.3 and 0.5. Above 
δ = 0.5, the tendency towards the upper left corner in the plane E-V becomes monotonic, 
as shown in panel (B) of Figure A3. 
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The calculation shown above for two species can be generalized to any arbitrary
S > 2 number of interacting companies.

The results of simulations of 78 species/companies governed by Equation (1), with
random interaction matrices, given by Equation (6), and starting from the initial conditions
given by Equation (7), are shown in Figure A3 for different values of δ, varying the simula-
tion time cutoff, T, from 2 to 20. In panel (A), one can see that for δ = 0.1, independently
of the cutoff time T, only slight deviations in V and E from their initial values, V(1) = 39
and E(1) = 0.957, occur. As δ increases, the initial configuration moves further away from
the equilibrium state. The community then moves towards higher values of V and lower
values of E when increasing T, as shown in panel (A) for δ = 0.3 and 0.5. Above δ = 0.5, the
tendency towards the upper left corner in the plane E-V becomes monotonic, as shown in
panel (B) of Figure A3.
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For the evenness, no clear pattern emerges. As shown in panel (A), at the beginning of
the period, E soared with high interest rates, but from 2009 to 2015, the effective interest
remained virtually zero [59] and E remained high. On the other hand, high productivity
occurred entirely during the period of very low to moderate interest rates. Conversely, the
first business cycle 2001–2008 was characterized in general by high interest rates and low
productivity (panel (B)).
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