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ABSTRACT
Mean motion resonances (MMR) are a frequent phenomenon among extrasolar planetary systems. Current observations indicate
that many systems have planets that are close to or inside the 2:1 MMR, when the orbital period of one of the planets is twice
the other. Analytical models to describe this particular MMR can only be reduced to integrable approximations in a few specific
cases. While there are successful approaches to the study of this MMR in the case of very elliptic and/or very inclined orbits
using semi-analytical or semi-numerical methods, these may not be enough to completely understand the resonant dynamics. In
this work, we propose to apply a well-established numerical method to assess the global portrait of the resonant dynamics, which
consists in constructing dynamical maps. Combining these maps with the results from a semi-analytical method, helps to better
understand the underlying dynamics of the 2:1 MMR, and to identify the behaviors that can be expected in different regions of
the phase space and for different values of the model parameters. We verify that the family of stable resonant equilibria bifurcate
from symmetric to asymmetric librations, depending on the mass ratio and eccentricities of the resonant planets pair. This
introduces new structures in the phase space, that turns the classical V-shape of the MMR, in the semi-major axis vs. eccentricity
space, into a sand clock shape. We construct dynamical maps for three extrasolar planetary systems, TOI-216, HD27894, and
K2-24, and discuss their phase space structure and their stability in the light of the orbital fits available in the literature.
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1 INTRODUCTION

Mean motion resonances (MMR) are a frequent phenomenon among
extrasolar planetary systems. The occurrence of MMR provides im-
portant clues about the formation and early evolution of such systems.
In particular, capture or closeness of planets pairs to MMR is usually
taken as an evidence of some sort of primordial radial migration of
the planets.

Current observations indicate that many systems have planets that
are close to or inside the 2:1 MMR, where the orbital period of
one of the planets is twice the other. Analyzing the distribution of
planets pairs near the 2:1 MMR that have mass estimates, taken from
the Extrasolar Planets Encyclopaedia (http://exoplanet.eu/),
we can verify that there is a higher frequency of pairs with a more
massive outer planet. Systems with mass ratios (outer/inner) greater
than 2 are more prevalent for periods ratios (outer/inner) greater than
2, while systems with mass ratios smaller than 0.5 occur more often
for period ratios smaller than 2. Also, systems with mass ratios close
to 1 are more often detected. Biases in the different detection methods
(e.g. Giuppone et al. 2009) may indicate that the actual number of
resonant systems is significantly larger than currently observed.
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The distribution of resonant pairs also shows a gap in period ratios
at the exact 2:1 MMR, with an overpopulation of planets with period
ratios between 2.0 and 2.05. Goldreich & Schlichting (2014) pro-
posed that this shift towards slightly larger period ratios reflects the
same asymmetry that requires convergent migration for resonance
capture. Possible evidence of subsequent tidal evolution to explain
the dispersion of period ratios around the 2:1 MMR has been ad-
dressed by Delisle & Laskar (2014); Delisle et al. (2014) and Ramos
et al. (2017). Other mechanisms to explain this dispersion rely on
interaction with disks of planetesimals (Chatterjee & Ford 2015), or
evolution in turbulent disks (Batygin & Adams 2017).

The radial velocity (RV) and transit timing variations (TTV) tech-
niques are very successful in characterizing the orbits and masses of
extrasolar planets in MMR from observational data (Bean & Seifahrt
2009; Rivera et al. 2010; Trifonov et al. 2014). However, planet char-
acterization applying these techniques to sparse data, or to data with
incomplete phase coverage, sometimes led to ill-determined system
architectures (e.g. Beaugé et al. 2008; Dawson et al. 2019; Kipping
et al. 2019; Dawson et al. 2021). In the case of the 2:1 MMR, for ex-
ample, the combined RV signal of a pair of planets in low eccentricity
orbits could be misinterpreted as a single planet with moderate ec-
centricity if the data are sparse (Anglada-Escudé et al. 2010; Boisvert
et al. 2018), or even with a coorbital pair in a trojan configuration
(Giuppone et al. 2012).
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Analytical models to describe the 2:1 MMR have the limitation
of the many degrees of freedom of the system, which can only be
reduced to integrable approximations in a few specific cases. In par-
ticular, analytical models describing MMR between two planets have
been developed for coplanar orbits (Beaugé et al. 2003; Batygin &
Morbidelli 2013; Deck et al. 2013). There have been some success-
ful approaches using semi-analytical or semi-numerical methods,
yet these are not enough to completely understand the resonant dy-
namics. For the 2:1 MMR, some models provide families of apsidal
corrotation resonances (ACR; Beaugé et al. 2006; Michtchenko et al.
2008a,b; Voyatzis et al. 2009). A recent work introduces a semi-
analytical model that allows to study MMR for any eccentricities and
inclinations of the planets (Gallardo et al. 2021).

In this work, we propose to apply a well-established numerical
method to assess the global portrait of the 2:1 MMR dynamics,
which consists in constructing dynamical maps. Combining these
maps with semi-analytical methods may help to better understand
the underlying resonant structure, allowing to identify the different
behaviors that can be expected in different regions of the phase space,
and for different values of the model parameters.

We aim to study some specific systems near the 2:1 MMR —period
ratios of 2 ± 0.05, based on the offset produced by tidal evolution of
the planets after disk dispersal (Ramos et al. 2017)—, and to discuss
their dynamics in the neighborhood of their best fit orbital parameters.
We wish to detect the regions that may or may not harbor planets
and apply this to constrain the orbital parameters that are usually
unconstrained from the observations, like the pericenters. We also
aim to explore other configurations beyond the orbital fits in order
to understand how and why the resonance portrait depends on the
parameters of the system. This, in turn, may help us to understand
why the real system is in its current configuration. In particular, we
choose three systems with masses of the planets pairs that cover a
wide range of mass ratios: TOI-216 (𝑚2/𝑚1 = 9.49), HD-27894
(𝑚2/𝑚1 = 0.24), and K2-24 (𝑚2/𝑚1 = 0.81). Along this work, we
will use the sub-indexes 1 and 2 to refer to the inner and outer planet,
respectively.

The paper is organized as follows: in Section 2 we explain the
methodology that will be used, providing details on the construction
of the dynamical maps and the application of the semi-analytical
model of Gallardo et al. (2021), hereafter GBG21. In Section 3, we
present the analysis of the three extrasolar systems referred above
(Sect. 3.1, 3.2 and 3.3), as well as some general results concerning
the structure of the 2:1 MMR (Sect. 3.4). Finally, our conclusions
are summarized in Section 4.

2 METHODOLOGY

The 2:1 MMR between a pair of planets is characterized by the two
resonant or critical angles

𝜎1 = 𝜆1 − 2𝜆2 +𝜛1, 𝜎2 = 𝜆1 − 2𝜆2 +𝜛2, (1)

where 𝜆𝑖 are the mean longitudes of the planets and 𝜛𝑖 are the
longitudes of periastron. We assume that at least one of these critical
angles must librate around a stable equilibrium value in order to
have the system in the 2:1 MMR. The libration of 𝜎𝑖 is coupled
with an oscillation of the semi-major axis 𝑎𝑖 around the resonant
value 𝑎res. The resonant domain is characterized by the maximum
libration amplitude 𝛿𝜎𝑖 , or equivalently, 𝛿𝑎𝑖 , which defines the so-
called separatrix of the MMR. The secular angle

Δ𝜛 = 𝜛2 −𝜛1 = 𝜎2 − 𝜎1 (2)

is also a relevant parameter to characterize the dynamics of the MMR.
In particular, when both critical angles are librating at the same time,
then Δ𝜛 will also librate, leading to a configuration usually referred
to as apsidal corotation resonance or ACR.

In this work, we employ the technique of dynamical maps in order
to investigate the resonant structure of the 2:1 MMR. Usually, a
dynamical map is constructed as a 2D grid of numerical simulations
by varying the initial value of two orbital elements of a selected
body, keeping the remaining parameters unchanged. The most usual
representation of a dynamical map to study the structure of a mean-
motion resonance is based on a grid of initial semi-major axis and
eccentricity or inclination.

We construct dynamical maps considering grids in the semi-major
axis vs. eccentricity plane, around the nominal position of the less
massive planet in a system with only two planets close to the 2:1
MMR. We choose to vary the parameters of the less massive planet
over the grids under the assumption that its orbit is more prone
to higher variations due to the perturbation of the more massive
companion. Each grid includes 150×150 numerical simulations, us-
ing two different initial configurations of the periastron longitudes,
Δ𝜛 = 0◦ and 180◦; thus we present the maps in the 𝑎𝑖 , 𝑒𝑖 cosΔ𝜛
plane. The initial semi-major axis and eccentricity of the more mas-
sive planet are taken to be equal to the nominal values of the best
fit for each system analyzed (Sect. 3). The initial mean anomalies,
inclinations and ascending nodes are assumed to be zero.

The simulations are carried out in the framework of the general
planar three body problem. We numerically solved the full equa-
tions of motion in Newtonian form, together with the corresponding
variational equations of the system. We use a version of the Bulirsh
Stoer integrator (Press et al. 1992), with adaptive step size, that has
been modified to independently monitor the error in each variable.
We impose a relative precision better than 10−13. A simulation is
stopped when the distance between the star and any planet is less
than their mutual radii, or when a planet is ejected from the system
(astrocentric distance > 2 au) after scattering with the other bodies.
We integrate each numerical simulation over a time span of 100 or
200 yr, depending on the specific system, which represents between
1 000 and 2 500 orbital periods of the outer planet.

For each numerical simulation on the grid, we compute several
dynamical indicators allowing us to identify the regions of stable
and unstable motion, or regular and chaotic motion, as well as some
properties of the system such as the libration center and the separa-
trix of the resonance. The indicators we consider are: the maximum
variation of the semi-major axis, maxΔ𝑎𝑖 , the maximum variation of
eccentricity, maxΔ𝑒𝑖 , and the maximum amplitude of the critical an-
gle, maxΔ𝜎𝑖1. All these dynamical indicators are coded in a suitable
color scale. In Sects. 3.1 and 3.2, we present and discuss the maps of
the dynamical indicators corresponding to the less massive planet in
the system. Similar maps with the dynamical indicators correspond-
ing to the more massive planet are presented for completeness in the
Appendix. In Sect. 3.3, on the other hand, we present and discuss the
indicators of both planets, because they have similar masses.

We also compute for each simulation the MEGNO chaos indicator,
⟨𝑌∗⟩ = log10 ( |⟨𝑌⟩ − 2|) (see Cincotta & Simó 2000, for details).
Since the value of this indicator may be sensitive to the integration
time span (Cincotta et al. 2003; Hinse et al. 2010), we took the
TOI-216 system as a test case and computed the maps of MEGNO
for time intervals of 100, 1 000 and 10 000 years. The results are

1 The notation Δ𝜎𝑖 refers to the libration amplitude of a specific orbit, while
𝛿𝜎𝑖 denotes the resonance width. Therefore, maxΔ𝜎𝑖 ≈ 𝛿𝜎𝑖 .
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Figure 1. The 2:1 MMR width, 𝛿𝑎, represented in the space of mass ratio
vs. period ratio, computed using the semi-analytic model of GBG21. Full and
dashed lines correspond to Δ𝜛 = 0◦ or 180◦, respectively. Each line color
corresponds approximately to each of the three systems analyzed in this work:
TOI-216 (green) HD27894 (magenta), and K2-24 (orange). These systems
are indicated by black stars. Other planets pairs in the 2:1 MMR are indicated
by open circles depending on the discovery technique: radial velocity (blue)
or transit timing variations (red). The Uranus-Neptune pair is indicated by a
full black dot.

presented in the Appendix. We verified that the maps do not display
significant differences, although the final value of the MEGNO may
actually differ in certain regions. In principle, we may assume that the
time span of 100-200 years we used in all the simulations provides
a MEGNO value that allows the identification of regions of strong
chaos, but for the regions of regular motion, the results should be
treated with caution.

In addition to the dynamical maps, we also use the model of
GBG21, which is based on a semi-analytical approach for planetary
resonances around single or binary stars. In the framework of Jacobi
and Poincaré variables, this model computes the numerical value of
the averaged resonant disturbing function, allowing to predict the
strength of any MMR, the location and stability of the equilibrium
points, the libration period of the resonant angle, and the width of
the resonant domain. We apply the model of GBG21 to estimate the
position of equilibrium points and the width of the 2:1 MMR, as
functions of the orbital eccentricity. These results are then compared
to the results from the dynamical maps, allowing us to better under-
stand the global behavior of the resonant dynamics of the planetary
systems under analysis.

Figure 1 shows the maximum widths of the 2:1 MMR, in the
representative plane of period ratio, 𝑃2/𝑃1, vs. mass ratio, 𝑚2/𝑚1,
for a pair of adjacent planets. The width corresponds to the maximum
stable region of the resonant libration in the semi-major axis domain,
𝛿𝑎 (or equivalently 𝛿𝑃), for the less massive planet in the system.
To apply the model of GBG21, we fix the mass 𝑚1 and the semi-
major axis and of the innermost planet, 𝑎1 = 0.15 au, and the orbital
eccentricities which equal for both planets. Then, we calculate 𝛿𝑎𝑖
by varying the mass 𝑚2 and semi-major axis 𝑎2 of the outermost
planet over the adopted ranges of 𝑎2/𝑎1 (or equivalently 𝑃2/𝑃1) and
𝑚2/𝑚1. The planets are assumed to be coplanar and the longitudes
of pericenter are also fixed in such a way that Δ𝜛 = 0◦ (solid lines),
or Δ𝜛 = 180◦ (dashed lines).

Figure 1 also shows the distribution of several known extrasolar
planetary systems. Open circles stand for planets pairs in the vicinity

of the 2:1 MMR characterized through radial velocity (RV, in blue)
and through transit timing variations (TTV, in red). The full black dot
is the Uranus-Neptune system. The star symbols represent the three
systems that we investigate in this work, namely, TOI-216, K2-24
and HD27894. It is worth noting that the position of the open circles
in the plot should not be directly compared to the widths of the 2:1
MMR, since 𝛿𝑎𝑖 was obtained for fixed values of 𝑚1, 𝑎1, and 𝑒1 = 𝑒2
that can significantly differ from the values of the real systems.

On the other hand, the star symbols can be better compared to the
widths, because 𝛿𝑎𝑖 have been computed for values similar to those of
TOI-216 (green lines), HD27894 (magenta lines), and K2-24 (orange
lines). The comparison indicates that TOI-216 would be in the 2:1
MMR provided that Δ𝜛 = 180◦, but this conclusion may be biased
by the fact that 𝑒1 differs significantly from 𝑒2 in this system. On the
other hand, HD27894 is expected to be inside the 2:1 MMR, while
K2-24 would not be inside the 2:1 MMR.

Taking into account the fixed values of 𝑚1 and 𝑒1 that we have
used to compute the widths in Fig. 1 for the three systems, we can
conclude that 𝛿𝑎𝑖 increases with 𝑚1 and also with 𝑒1. In addition,
𝛿𝑎𝑖 is higher when Δ𝜛 = 180◦ than when Δ𝜛 = 0◦. On the other
hand, 𝛿𝑎𝑖 also varies with the mass ratio, and displays a minimum at
𝑚2/𝑚1 ≈ 2.5.

The semi-analytical model also allows to predict the variation of
𝛿𝑎𝑖 as a function of the eccentricities 𝑒1, 𝑒2. This is exemplified
in Fig. 2 for the HD27894 system. The left panel shows the res-
onance width 𝛿𝑎2 in the 𝑒2, 𝑃2/𝑃1 plane, that corresponds to the
HD27894c planet (the perturbed one), assuming three different val-
ues for the eccentricity of the HD27894b planet (the perturbing one),
𝑒1 = 0.047, 0.1, 0.2. At variance with the classical V-shape that is
characteristic of the resonances in the restricted circular three body
problem, here we observe something that resembles a sand clock
shape. The overall width increases with 𝑒1, while the neck of the
sand clock (the narrowest part) shifts to higher values of 𝑒2. The
overall width (for the same 𝑒1) also increases with the mass 𝑚1 of
the perturbing planet, as we can see in the right panel of Fig. 2. A
more in depth discussion about this sand clock shape will be provided
along the following sections.

3 RESULTS

3.1 TOI-216

TOI-216 is an 11.5 TESS apparent magnitude, main-sequence K-
dwarf with 𝑇eff = 5045 ± 110 K and [Fe/H] = −0.16 ± 0.09 dex
(Dawson et al. 2019). The system hosts a pair of warm, large exo-
planets discovered by the TESS mission near the mutual 2:1 MMR,
and both of them exhibit TTVs. Kipping et al. (2019) and Dawson
et al. (2019) presented two independent orbital fits that cannot con-
strain the planetary masses and eccentricities directly from the TTV
data. Moreover, the authors provide different values of the stellar pa-
rameters that affect the properties of the planets. We choose to study
this system configuration because it represents a good example of a
large 𝑚2/𝑚1 mass ratio system.

Dawson et al. (2021) updated the orbital fit using RV observa-
tions from HARPS, FEROS and the Planet Finder Spectrograph, and
expanded the TESS photometry with a ground-based transit observ-
ing campaign. This joint TTV+RV fit significantly constrained the
system’s properties, as can be seen in Table 1. The authors found
that TOI-216c is a warm Jupiter, TOI-216b is an eccentric warm
Neptune, and that the system is actually locked in 2:1 MMR. In par-
ticular, Dawson et al. (2021) discussed a libration behavior of the

MNRAS 000, 1–14 (2022)



4 C. A. Giuppone et al.

Figure 2. The 2:1 MMR width, 𝛿𝑎, represented in the space of period ratio vs. eccentricity of the less massive (perturbed) planet, 𝑚2, computed using the
semi-analytic model of GBG21. The results correspond to the HD27894 system with Δ𝜛 = 0◦. Each color line corresponds to different values of the eccentricity
of the more massive (perturbing) planet, 𝑚1. Left: assuming the actual mass of 𝑚1. Right: assuming a mass 𝑚1 ten times larger. See text for details.

Table 1. Dynamical parameters of the TOI-216 system, according to different
fits: Dawson et al. (2019) - D2019, Kipping et al. (2019) - K2019, and Dawson
et al. (2021) - D2021.

Data D2019 K2019 D2021

𝑚1 (𝑀⊕) 15.9 30 18.75

𝑚2 (𝑀⊕) 82.6 200 178

𝑃1 (days) 13.3 17.09 17.09

𝑃2 (days) 33.4 34.56 34.55

𝑒1 0.214 0.132 0.160

𝑒2 0.06 0.029 0.0046

𝜔1 (◦) 240 193 292

𝜔2 (◦) -30 275 190

𝑚★ (𝑀⊙ ) 0.76 0.874 0.77

resonant angle for a specific set of orbital conditions, and Nesvorný
et al. (2022) use the libration to put constraints on primordial planet
migration.

Considering the latest parameters of Dawson et al. (2021), we
construct a dynamical map for the TOI-216 system. The innermost
planet, TOI-216b, is also the least massive one and it is the one whose
parameters vary over the grid. The maps span a total integration time
of 200 years. This time span encompass about 50 libration periods
of the 2:1 MMR critical angle 𝜎1, and it is enough to reveal the
perturbations that affect the system, including secular perturbations.

Figure 3 shows the dynamical maps for the nominal TOI-216 sys-
tem, measuring maxΔ𝜎1 (top-left), maxΔ𝑒1 (top-right), maxΔ𝑎1
(bottom-left), and the MEGNO indicator ⟨𝑌∗⟩ (bottom-right). The
distinction between resonant and non-resonant regimes is well visu-
alized in the top-left panel, where the maximum amplitude of the
resonant angle inside the separatrix is smaller than 180◦, while out-
side is larger, indicating that 𝜎1 circulates. We recover the resonance

centers along a well defined law of structure2, represented by the lo-
cus of zero amplitude libration of 𝜎1 (dark blue in the top-left panel),
associated also to the least variations in 𝑒1 and 𝑎1. For very low ec-
centricities, the resonance centers occur for periods ratios slightly
greater than 2 (up to 𝑃2/𝑃1 ∼ 2.2), or slightly smaller semi-major
axes, in a regime known as pericentric paradoxical librations. In this
regime, the oscillations of the critical angle are not associated to a
separatrix, but they are small amplitude circulations around a center
that is displaced from the origin. This is the well known resonant
structure that is expected in any first order MMR with 𝑚2/𝑚1 > 1
and a very low eccentricity of the perturbing planet (𝑒2 ∼ 0). It is no-
ticeable the good correspondence between the map of critical angle
amplitudes and that of maximum eccentricity variation (top panels).

Both aligned and anti-aligned configurations of the pericenters
(Δ𝜛) yield the same resonant structure. In general, one should expect
the configuration with Δ𝜛 = 180◦ to be unstable. But in this system
the eccentricity of the more massive planet is 𝑒2 = 0.0046, i.e. it
is almost like a circular three body problem. Therefore, unless 𝑒2
increases significantly due to the perturbation of the smaller planet,
the alignment or anti-alignment of the apsides is irrelevant for the
stability. The fact that in this system the MEGNO map does not show
any differences in spite of the integration time span, as mentioned in
Sect. 2 (see also Fig. 14), seems to corroborate this.

The full lines in Fig. 3 show the resonance width, 𝛿𝑎1, computed
with the semi-analytical model of GBG21. For 𝑒1 ≳ 0.1, we recover
the V-shape of the separatrix, with a very good agreement between
the numerical simulations and the semi-analytical model. For smaller
eccentricities, however, the semi-analytical model does not fit well,
because the model provides the right libration amplitude only in
the regime where the separatrix exist. As the solution moves along
the law of structure towards smaller eccentricities and smaller semi-
major axes, into the regime of paradoxical librations, the model
fails to determine which is the actual libration amplitude. This is a
limitation of the model that assumes that the eccentricity 𝑒𝑖 is fixed

2 This law can be described approximately by:

𝑒1 =
𝐶1𝑚2

𝑀★

(
𝑃2
𝑃1

− 𝛽

) (3)

where 𝐶1 and 𝛽 are constants and 𝑀★ is the stellar mass (Charalambous
et al. 2017). For this particular case, 𝐶1 = 1.2 and 𝛽 = 2.01.

MNRAS 000, 1–14 (2022)
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Figure 3. Dynamical maps of the TOI-216b planet in the plane 𝑎1, 𝑒1 cosΔ𝜛, using the orbital fit of Dawson et al. (2021), i.e. 𝑒2 = 0.0046 fixed. The maps
show maxΔ𝜎1 and maxΔ𝑒1 (top panels), and maxΔ𝑎1 and MEGNO indicator ⟨𝑌∗ ⟩ (bottom panels). In the top-left panel, dark blue corresponds to the deepest
resonant orbits, while red represents non resonant orbits. In the other panels, dark blue represents the most regular orbits, while tones of green to red indicate
increasingly irregular or chaotic motion. The semi-analytic 𝛿𝑎1 is overlapped as full black lines. Crosses indicate the actual values of 𝑎1, 𝑒1 for TOI-216b.

during a single libration of 𝜎𝑖 , which is a bad approximation in the
regime of paradoxical librations.

The crosses in Fig. 3 indicate the fit values of 𝑎1, 𝑒1 for TOI-
216b, confirming that it is in a very stable region (⟨𝑌∗⟩ ∼ −2), deep
inside the 2:1 MMR, with libration amplitudes smaller than 60◦ and
maximum excursions of the eccentricity of 0.04. The errors in the
fit parameters do not affect the results, since they are of the order of
7 × 10−4 d for the periods and 3 × 10−3 for the eccentricities. The
current orbital fit also indicates that Δ𝜛 ≃ 102◦+50

−30.
The situation changes significantly when we consider a fictitious

TOI-216 system, in which we increase the eccentricity of the more
massive planet to 𝑒2 = 0.1. The dynamical maps corresponding to
this fictitious system are shown in Fig. 4. The law of structure is no
longer evident and the paradoxical librations at very low eccentrici-
ties (𝑒1 ≲ 0.07) seem to disappear. Nevertheless, the semi-analytical

model still reproduces well the separatrix of the libration regions that
appear in the map. For Δ𝜛 = 0◦, the libration region appears shifted
to higher values of 𝑒1.

The behavior observed in Fig. 4 arises because increasing the
eccentricity 𝑒2 of the more massive planet induces the bifurcation
of the paradoxical librations at low values of 𝑒1 into asymmetric
librations of 𝜎1, as shown in Figs. 5 and 6. Using the semi-analytical
model, we find that for 𝑒1 < 0.07 and Δ𝜛 = 0◦, the libration
center is no longer at 0◦, but two libration centers appear and shift
up to 𝜎1 ∼ 100◦ (full line in Fig. 5). These asymmetric librations
continue to exist for Δ𝜛 = 180◦ (dashed line in Fig. 5); the apparent
discontinuity between the full and dashed line in the figure has to
do with the fact that 𝜎1 suffers a change of phase by 180◦, but
topologically they are the same equilibria. This is shown in Fig. 6,
where we can see the transition from one symmetric libration center

MNRAS 000, 1–14 (2022)



6 C. A. Giuppone et al.

Figure 4. Similar to Fig. 3, but for a fictitious TOI-216 system, where the more massive planet’s eccentricity is set to 𝑒2 = 0.1. Regions in white correspond to
collision orbits.

(top panel) to two asymmetric centers (bottom-left panel), and then
a phase shift of the asymmetric centers (bottom-right panel).

It is worth noting that the asymmetric librations described above
occur in a regime where no ACR exists. According to Beaugé et al.
(2006) and Voyatzis et al. (2009), the ACR for 𝑚2/𝑚1 > 1 only exist
for 𝑒1 > 0.1, and in that case the librations of both angles (𝜎1,Δ𝜛)
are symmetric (around 0,0). This is in agreement with the result
shown in Fig. 5, where for 𝑒1 > 0.07 the libration of 𝜎1 is symmetric
(around 0). The asymmetric librations of 𝜎1 occurring for 𝑒1 < 0.07
are not related to ACR and Δ𝜛 is circulating in this case.

The lack of resonant librations at very low eccentricities that is
evident in the left panel of Fig. 4 is an artifact caused because the dy-
namical map has been constructed for a fixed initial value of 𝜎1 = 0◦,
thus it fails to properly catch the asymmetric librations at very differ-
ent values of 𝜎1. The neck of the sand clock shape in Fig. 4 occurs
approximately at the eccentricity where the libration point bifurcates.
The MEGNO indicator shows that evolution inside the resonance for

moderate to low eccentricities becomes more chaotic. It is curious
that even in this hypothetical configuration, the current fit of TOI-
216b still falls in the resonant domain, although the observational
data do not support this configuration.
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Figure 5. The locus of the stable equilibria of the resonant angle 𝜎1 =

𝜆1 − 2𝜆2 + 𝜛1 as a function of 𝑒1 for the TOI-216b planet, considering a
fictitious system where the eccentricity of TOI-216c is 𝑒2 = 0.1. The plot
shows two possible configurations ofΔ𝜛: 0◦ (full line) or 180◦ (dashed line).
Values have been predicted by the semi-analytical model of GBG21.

Table 2. Dynamical parameters of the two innermost planets in the HD27894
system, according to Trifonov et al. (2017) - T2017

Parameter T2017

𝑚1 (𝑀⊕ ) 211.4

𝑚2 (𝑀⊕ ) 51.5

𝑃1 (days) 18.02

𝑃2 (days) 36.07

𝑒1 0.047

𝑒2 0.015

𝜔1 (◦) 132.2

𝜔2 (◦) 44.2

𝑚★ (𝑀⊙ ) 0.8

3.2 HD27894

HD27894 is a star of spectral type K2V with an estimated mass of
0.8 𝑀⊙ , and a metallicity of [Fe/H] = 0.30 ± 0.07 dex. Moutou
et al. (2005) announced HD27984b, a Jovian planet with a minimum
mass of 0.62 𝑀Jup, orbiting at a semi-major axis of 0.125 au in a
nearly circular orbit (eccentricity 0.049±0.008). Kürster et al. (2015)
studied the possibility of detecting an additional planet through the
RV data and found that an outer Saturn-mass planet, with a period
of ≈ 36 days, provides an even better fit to the data. Finally, Trifonov
et al. (2017) confirmed the presence of two additional planets.

We choose to study this system because it represents a good exam-
ple of a system with two planets in the 2:1 MMR with a small 𝑚2/𝑚1
mass ratio. Actually, the system can be treated as a hierarchical sys-
tem, with the two innermost planets, HD27984b and HD27984c,
close to the 2:1 MMR, and the third massive outer planet, HD27984d,
located at a much distant orbit (𝑚3 ≃ 5.4 𝑀Jup and 𝑎3 ≃ 5.45 au).
Owing to this large separation, the secular perturbations of planet d
over the pair b-c can be neglected on the integration time span con-
sidered here. Indeed, we constructed dynamical maps including and
excluding planet HD27984d, to find that there are no appreciable
differences between them. Therefore, in the remaining numerical
simulations, planet HD27984d was not taken into account at all. The
proximity of the two innermost planets to the star may rise the ques-

Figure 6. Level curves of constant Hamiltonian in the 𝑎1, 𝜎1 space pre-
dicted by the semi-analytical model of GBG21 for the TOI-216b planet. Top:
topology at 𝑒1 = 0.1 and Δ𝜛 = 0◦, with only one libration center. Middle:
topology at 𝑒1 = 0.01 and Δ𝜛 = 0◦ and Bottom: Δ𝜛 = 180◦, showing two
libration centers, with a 180◦ phase shift.
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Figure 7. The locus of the stable equilibria of the resonant angle 𝜎2 as a
function of 𝑒2 for the HD27894c planet (in red; 𝑒1 = 0.047), and the K2-
24c planet (in green; 𝑒1 = 0.06), considering two possible configurations of
Δ𝜛 = 0◦ (full lines) or 180◦ (dashed lines). Values predicted by the semi-
analytical model of GBG21.

tion about relativistic effects on the orbits. Again, we constructed
dynamical maps including and excluding relativistic corrections to
find no differences between them. Following a similar reasoning, we
may conclude that tidal effects do not have any influence over the an-
alyzed time span either. Table 2 shows the relevant parameters used
to study the dynamics.

Since HD27984c is the least massive planet involved in the 2:1
MMR, we vary its orbital elements over a grid in the 𝑎2, 𝑒2 cosΔ𝜛
space, again assuming two initial values of Δ𝜛 = 0◦, 180◦. However,
we must take into account that this system should exhibit asymmetric
librations, i.e. librations of 𝜎2 around values different from 0◦, 180◦,
since 𝑚2/𝑚1 < 13. These asymmetric librations are predicted by
the semi-analytical model of GBG21, as shown in Fig. 7 (red lines).
For eccentricities ≲ 0.07 the resonant equilibria are at 𝜎2 = 0◦,
but for larger values the equilibrium points bifurcate and shift to
values of 𝜎2 > 60◦, depending on the apsidal configuration. These
asymmetric centers has to be taken into account when constructing
the dynamical maps. As we saw in section 3.1, if the map grid is fixed
at the same initial value of 𝜎𝑖 , the map will not properly capture the
libration dynamics. Therefore, we use the value of 𝜎2 predicted by
GBG21 model as a proxy for the initial value of 𝜎2 over the map
grid, depending on the initial eccentricity.

Figure 8 shows the dynamical maps of HD27984c. The full black
lines represent the semi-analytical resonance width, and the cross
indicates the current values of 𝑎2, 𝑒2 of the planet. The errors in the
fit parameters do not significantly affect the location of the planet in
the maps, since they are of the order of at most 0.001 au for the semi-
major axes and 0.02 for the eccentricities. The most relevant feature is
that, for initialΔ𝜛 = 0◦, there is no resonant libration region, not even
inside the predicted semi-analytic boundaries (and even if the map
grid is following the locus of the asymmetric librations). Librations
only occur for values of Δ𝜛 = 180◦, where the semi-analytic width
correctly encompasses the resonant domain. The map of MEGNO
also indicates that, for aligned pericenters, there is a chaotic onset of
orbits, and regular motion mostly occurs for anti-aligned pericenters.
We conclude that only under the condition Δ𝜛 = 180◦, the actual
planets pair would be locked into a resonant configuration. The orbital
fit, however, provides Δ𝜛 ≃ 88◦+10

−20, indicating that the system could

3 The asymmetric librations for 𝑚2/𝑚1 < 1 occur already in the framework
of the restricted circular three body problem (Beauge 1994).

not be evolving in the MMR. This is in agreement with the results
of Trifonov et al. (2017), who performed long term simulations of
the system and did not detect any resonant behavior over 10 My of
evolution.

On the other hand, Fig. 9 shows the dynamical maps for a fictitious
HD27984 system, where the masses of both planets b and c have
been scaled down by a factor of 20. The resonance width in this
case is narrower, as expected, but the libration region clearly appears
for both values of Δ𝜛. The resonant domain shows a sand clock
shape, with the neck displaced to high eccentricities (cf. Fig. 2). It
is worth noting that this particular configuration is not supported by
the current observations of the system, but its analysis will help to
better interpret the maps of the actual system.

The differences between Figs. 8 and 9 can be understood by ana-
lyzing the behavior of the resonant angle 𝜎2 over a short time scale.
Figure 10 shows this behavior in the 𝑃2/𝑃1, 𝜎2 space considering
the actual masses of the system (left panels) over a time span of 10
years, and the scaled-down-mass system (right panels) over a time
span of 20 years. For the actual masses and Δ𝜛 = 0◦, the mutual
perturbations between the planets quickly destroy any resonant be-
havior, and librations only survive when Δ𝜛 = 180◦. Moreover, the
MEGNO indicator in Fig. 8 shows that the actual planetary masses
lead to chaotic behavior inside the resonance, where few islands of
regular motion are found. On the other hand, for the scaled down
masses, the mutual perturbations are not so strong, and the resonant
librations survive for any configuration of Δ𝜛.
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Figure 8. Dynamical maps of the HD27894c planet in the plane 𝑎2, 𝑒2 cosΔ𝜛, with 𝑒1 = 0.047 fixed. The maps show maxΔ𝜎2 and maxΔ𝑒2 (top panels),
and maxΔ𝑎2 and the MEGNO indicator ⟨𝑌∗ ⟩ (bottom panels). The color coding is the same as in Figs. 3-4. White regions correspond to collision orbits. The
maps have been constructed using a grid where 𝜎2 varies with 𝑒2 as shown in Fig. 7. The semi-analytic 𝛿𝑎2 is overlapped as full black lines. Crosses indicate
the actual values of 𝑎2, 𝑒2 for HD27894c.

3.3 K2-24

Petigura et al. (2016) reported the discovery of two sub-Saturn
planets orbiting K2-24, a bright (V = 11.3) metal-rich ([Fe/H] =

0.42±0.04 dex) G3 dwarf, in the K2 Campaign 2 field. These authors
provided mass measurements of 𝑚1 = 23.2 𝑀⊕ and 𝑚2 = 31 𝑀⊕
based on Keck/HIRES RVs spanning one observing season. They
also predicted TTV amplitudes of several hours, based on the prox-
imity of the planets to the 2:1 MMR. The two planets have orbital
periods of 20.9 days and 42.4 days, lying only 1% outside the nominal
2:1 MMR. Mass constraints were updated by Dai et al. (2016) using
additional RV data, obtaining 𝑚1 = 19.8 𝑀⊕ and 𝑚2 = 26 𝑀⊕ . A
more recent study by Petigura et al. (2018) resulted in orbital fits that
show low, but non-zero, eccentricities of 𝑒1 ≃ 𝑒2 ≃ 0.06± 0.01, and
masses of 𝑚1 = 19 ± 2 𝑀⊕ and 𝑚2 = 15 ± 2 𝑀⊕ . K2-24c is only

20% less massive than K2-24b, despite being 40% larger; their large
sizes and low masses imply larger envelopes (Petigura et al. 2018).
The variety of orbital fits is reflected in Table 3.

We choose to study this system because it represents a good exam-
ple of a 2:1 MMR system with 𝑚2/𝑚1 ∼ 1 mass ratio. Nevertheless,
since the exterior planet is slightly less massive than the interior
one, this system should also display asymmetric librations in a simi-
lar way as the HD27894 system. Therefore, we construct dynamical
maps considering a grid in the 𝑎2, 𝑒2 cosΔ𝜛 space, i.e. varying the
parameters of K2-24c while keeping planet b fixed. The values of
𝜎2 vary over the grid following the predicted values in Fig. 7 (green
lines), in order to account for the presence of the asymmetric li-
brations. It is worth noting that 𝜎1 will also display asymmetric
librations, and these have been taken into account when setting the
initial conditions of the simulations over the grid.

MNRAS 000, 1–14 (2022)
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Figure 9. Same as Fig. 8, but for a fictitious HD27894 system, with the planetary masses 𝑚1, 𝑚2 scaled down by a factor of 20.

Table 3. Dynamical parameters of the K2-24 system, according to different
fits: Petigura et al. (2016) - P2016, Dai et al. (2016) - D2016, and Petigura
et al. (2018) - P2018.

Parameter P2016 D2016 P2018

𝑚1 (𝑀⊕ ) 23.2 19.8 19.0

𝑚2 (𝑀⊕ ) 31.0 26.0 15.4

𝑃1 (days) 20.89 - 20.89

𝑃2 (days) 42.36 - 42.34

𝑒1 0.24 0.24 0.06

𝑒2 < 0.39 < 0.58 < 0.07

𝜔1 (◦) - - -

𝜔2 (◦) - - -

𝑚★ (𝑀⊙ ) 1.12 1.12 1.07

Since the planets have similar masses, it is relevant in this case to
analyze the variations of the orbital elements of both planets. The
dynamical maps are shown in Fig. 11. The left panels display the

variations in the orbit of K2-24c, while the right panels display the
variations in the orbit of K2-24b. In spite of the small eccentricities
of both planets, the resonant portraits resemble again a sand clock
shape, with the neck shifted to about 𝑒2 ∼ 0.1. The semi-analytical
model predicts a resonance width in very good agreement to the
numerical simulations.

The planets would be interacting in crossing orbits for values of
𝑒2 ≳ 0.3-0.4, depending onΔ𝜛. The maximum width of the resonant
domain occurs approximately at the same eccentricity of the crossing
orbits. The planets would be protected form close encounters only
inside the resonance. For Δ𝜛 = 180◦, this protection mechanism
seems to extend to very high eccentricities. On the other hand, for
Δ𝜛 = 0◦, there is a region at 𝑒2 ∼ 0.5 where the protection mech-
anism inside the resonance fails, but it is present again at higher
eccentricities where only 𝜎2 librates.

The region of the sand clock neck does not display librations of
𝜎2, but it does display of 𝜎1. We also note that the variations in 𝑒1, 𝑒2
may be significant there (∼ 0.05-0.1). This region is associated to the
bifurcation of𝜎2, that passes from a symmetric libration at 𝑒2 ≲ 0.08
to asymmetric librations at higher eccentricities. The fact of having
planets with similar masses may cause perturbations that contribute
to destroy the librations of 𝜎2, in the same way as in the HD27894
case (cf. Fig. 10).
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Figure 10. Short numerical integration of the orbit of HD27894c, for different initial values of 𝜎2 and 𝑎2 (or 𝑃2/𝑃1), assuming 𝑒1 = 0.047 and 𝑒2 = 0.015
fixed. Top panels correspond to initial Δ𝜛 = 0◦. Bottom panels correspond to initial Δ𝜛 = 180◦. Left panels consider the actual masses of the planets, as in
Fig. 8; the integration time span is 10 years. Right panels consider the scaled down masses, as in Fig. 9; the integration time span in 20 years.

The actual system, represented by crosses in Fig. 11 lies close to
the resonance border but well outside the MMR. The errors in the
fit parameters do not affect this result, since they are of the order of
10−3 d for the periods and the eccentricities are bounded to 0.1. It is
worth noting that the pericenter longitudes are not constrained from
the observational data.

3.4 The sand clock

Along the previous sections, we have verified that whenever the
eccentricity of the more massive planet is equal or higher than∼ 0.05,
the shape of the resonant domain in the 𝑎, 𝑒 space resembles that of
a sand clock, instead of the classical V-shape.

At variance with the V-shape, that is symmetric with respect to
Δ𝜛 = 0◦, 180◦, the sand clock is not symmetric and the neck of the
clock, i.e. the place where the width 𝛿𝑎 is minimum, always occur
for Δ𝜛 = 0◦. This neck is related to the occurrence of bifurcations
of the 𝜎 libration centers. For the outer planet, 𝜎2 passes from a
symmetric libration at low 𝑒2 to asymmetric librations at high 𝑒2.
For the inner planet, 𝜎1 passes from a symmetric libration at high 𝑒1
to asymmetric librations at low 𝑒1. For Δ𝜛 = 180◦ the shape of the
resonant domain appears as a continuation of the lower bulb of the
sand clock.

We may try to characterize the sand clock shape using two quan-
tities: (i) the width of the neck, and (ii) the eccentricity of the less
massive (perturbed) planet at which the neck occurs. Figure 12 shows
the first quantity as a function of the eccentricity of the more massive
(perturbing) planet. The different line colors correspond to different
mass ratios, and we have considered two different scenarios: one with
a large mass of the more massive planet (left panel), similar to the
TOI-216 or HD27894 systems (∼ 200 𝑀⊕), and another with a small
mass of the more massive planet (right panel), similar to the K2-24
system (∼ 20 𝑀⊕).

We can see that, in both cases, the neck width increases with
the eccentricity of the more massive planet, and tends to zero for a
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Figure 11. Dynamical maps of the K2-24 system in the plane 𝑎2, 𝑒2 cosΔ𝜛, considering the orbital fit of Petigura et al. (2018), i.e. 𝑒1 = 0.06 fixed. The
maps show, from top to bottom, the maxΔ𝜎𝑖 , maxΔ𝑒𝑖 , and maxΔ𝑎𝑖 for each planet. Left panels display the variations of K2-24c, while right panels display
the variations of K2-24b, both computed over the same grid (i.e. varying K2-24c). The value of 𝜎2 varies with 𝑒2 depending on the locus of the asymmetric
libration centers (cf. Fig. 7). The value of 𝜎1 also varies accordingly. The color coding is the same as in Fig. 3. White regions correspond to collision orbits.
The semi-analytic 𝛿𝑎2 is overlapped as full black lines. Crosses indicate the actual values of 𝑎2, 𝑒2 for K2-24c.

circular orbit (as in the case of TOI-216b, cf. Fig. 3). The neck width
decreases for increasing mass ratios 𝑚2/𝑚1. It also decreases with
the mass of the more massive planet, and if we take the neck width as

a proxy of the overall resonance width, this latter behavior is already
expected4.

4 Recall that in the restricted circular three body problem, the resonance
width scales as √𝑚pert.
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Figure 12. The width of the sand clock neck as a function of the eccentricity
of the more massive (perturbing) planet. The panels correspond to different
masses of the perturbing planet, and the color lines represent different mass
ratios. For 𝑚2/𝑚1 = 1, 𝑒perturbing is assumed to be 𝑒1. Values computed with
the semi-analytical model of GBG21

On the other hand, Fig. 13 shows the eccentricity locus of the
neck as a function of the eccentricity of the more massive planet.
Again, the different line colors correspond to different mass ratios,
and the left(right) panel correspond to a large(small) mass of the more
massive planet. Here we can see that the locus of the neck shifts to
higher eccentricities of the less massive planet as the more massive
planet’s eccentricity increases (cf. Fig. 2). For 𝑚2/𝑚1 ≤ 1, the neck
is shifted to eccentricities larger than the more massive planets’s
eccentricity, but this trend saturates at 𝑒 ∼ 0.3. For 𝑚2/𝑚1 > 1, the
neck is always shifted to eccentricities smaller than the more massive
planet’s eccentricity. This behavior is independent of the mass of
the more massive planet, which would be expected if the neck is
associated to a change of topology as in the case of an equilibrium
bifurcation.

4 CONCLUSIONS

In this work, we have addressed the dynamics of the planetary 2:1
MMR through the technique of dynamical maps. These maps have
been constructed from short term simulations of the dynamical evo-
lution. We have applied this technique to three real planetary systems,
which are good representatives of resonant planets pairs covering a

Figure 13. Similar as Fig. 12, but for the locus of the sand clock neck in the
eccentricity of the less massive (perturbed) planet. Note that the black and
red lines overlap each other.

wide range of mass ratios. We have also applied the semi-analytical
model of GBG21, that resulted to provide a very good agreement to
the numerical simulations, and helped to understand the underlying
dynamics observed in the maps. Our conclusions can be summarized
as follows:

• The family of stable resonant equilibria may bifurcate from
symmetric to asymmetric librations, depending on the planets’ and
eccentricities and mass ratios. The bifurcation, however, does not
depend on the individual masses.

• The semi-analytic width of the MMR fits very well, in general,
to the outcomes of the dynamical maps

• For mass ratios𝑚2/𝑚1 > 1, increasing the eccentricity 𝑒2 of the
perturbing planet (i.e. the more massive planet) causes a bifurcation
of the resonance center in 𝜎1, passing from one symmetric point at
high eccentricities 𝑒1 of the perturbed (less massive) planet, to two
asymmetric points at low eccentricities.

• For mass ratios𝑚2/𝑚1 < 1, increasing the eccentricity 𝑒1 of the
perturbing planet causes also a bifurcation of the resonance center in
𝜎2, passing from one symmetric point at low eccentricities 𝑒2 of the
perturbed planet, to two asymmetric points at high eccentricities.

• The occurrence of asymmetric librations must be taken into
account in constructing the dynamical maps, in order to correctly
assess the behavior of the system.

• The resonant domain in the 𝑎𝑖 , 𝑒𝑖 space, when considering non
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zero eccentricities 𝑒 𝑗 of the more massive planet, is represented by
a sand clock shape. The neck of the sand clock, i.e. the region where
the width 𝛿𝑎𝑖 is the smallest, is related to the bifurcations of the
resonant centers of 𝜎𝑖 .

• Within the uncertainties of the current orbital best fit, the TOI-
216 system is locked in the 2:1 MMR, independently of the values
of Δ𝜛.

• The HD27894 system would be locked in a 2:1 resonant libration
state only if Δ𝜛 = 180◦, which is not the solution supported by the
observations.

• Within the uncertainties of the current orbital fit, the K2-24
system is not locked in the 2:1 MMR, independently of the values of
Δ𝜛.
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Figure 14. Maps of the MEGNO chaos indicator for the TOI-216 system in the plane 𝑎1, 𝑒1𝑐𝑜𝑠 (Δ𝜛), computed over a simulation time span of 1 000 years
(left) and 10 000 years (right). These shall be compared with the fourth panel in Fig. 3, that was computed over 100 years.

Figure 15. Dynamical maps for the TOI-216 system in the plane 𝑎1, 𝑒1𝑐𝑜𝑠 (Δ𝜛), showing the variations of the more massive planet, maxΔ𝜎2 and maxΔ𝑒2.
Panels shall be compared to Fig. 3. It is noteworthy the libration of 𝜎2 for values of 𝑒1 ≳ 0.15, which, combined with the libration of 𝜎1, is consistent with the
presence of ACRs in that region (e.g. Michtchenko et al. 2008a)
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Figure 16. Dynamical maps for the HD27894 system in the plane 𝑎2, 𝑒2𝑐𝑜𝑠 (Δ𝜛), showing the variations of the more massive planet, maxΔ𝜎1 and maxΔ𝑒1.
Panels shall be compared to Fig. 8. The libration of 𝜎1 observed here for the whole range of 𝑒2Δ𝜛 < 0, combined with the libration of 𝜎2 about 𝑒2Δ𝜛 ∼ −0.02,
implies in the occurrence of ACRs consistent which the theoretical predictions for the mass ratio considered (e.g. Michtchenko et al. 2008b).

MNRAS 000, 1–14 (2022)


	Introduction
	Methodology
	Results
	TOI-216
	HD27894
	K2-24
	The sand clock

	Conclusions
	Appendix

