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Abstract

Rossby wave packets (RWPs), are atmospheric perturbations linked to the occur-

rence of extreme weather events such as heatwaves, extratropical cyclone devel-

opment and other equally destructive phenomena. Under certain circumstances,

these packets can last from several days to 2–3 weeks in the atmosphere.

Therefore, forecast models should be able to correctly predict their formation and

development to enhance extreme weather events prediction from 10 to 30 days

in advance. In this study, we assess whether the NCEP and IAP-CAS sub-

seasonal forecast models can predict the evolution of observed RWPs that last

more than 8 days (long-lived RWPs or LLRWPs) during southern hemisphere

summer. Results show that the NCEP (IAP-CAS) model forecasts LLRWPs that

appear eastward (westward) from the observed LLRWPs. Both models forecasted

LLRWPs that rapidly lose energy after the 6th–7th lead day of simulation, which

could limit LLRWPs prediction to the synoptic time scale. Additionally, both

models better forecast LLRWPs when the packets manifest in the eastern Pacific.

Southern Annular mode (SAM) and El Niño Southern-Oscillation (ENSO) do not

seem to exert a large influence in the representation of LLRWPs. Nevertheless,

during the best LLRWPs forecasts, the observed circulation anomalies signal the

manifestation of negative SAM events. In contrast, both forecast models struggle

at forecasting LLRWPs when a blocking situation develops to the South of

Australia. Lastly, an inactive Madden Julian Oscillation (MJO) seems to favor the

development of accurate LLRWPs forecasts, whereas during phases 3, 5 in the

NCEP model and 3, 8 for IAP-CAS, the models struggle at forecasting LLRWPs.
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1 | INTRODUCTION

Rossby wave packets (RWPs) are upper-level atmospheric
synoptic scale perturbations located in mid-latitudes
that manifest as high amplitude meanderings of the jet

stream. These wave packets travel by downstream devel-
opment mechanisms, transporting large quantities of
energy in the process (Chang, 2000; Chang & Yu, 1999;
Yeh, 1949). RWPs are related to storm track variability
(Souders et al., 2014a), extratropical cyclone development
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(Chang 2005; Sagarra & Barreiro, 2020) as well as to the
manifestation of extreme rainfalls and heatwaves
(Chang, 2005; Grazzini & Vitart, 2015; O'Brien &
Reeder, 2017; Wirth et al., 2018). Furthermore, these
packets increase medium to extended range forecast uncer-
tainty in the areas they cross (Zheng et al., 2013). Most
RWPs last less than a week in the atmosphere, although
under certain circumstances they can last up to 2–3 weeks
before disappearing (Grazzini & Vitart, 2015). When RWPs
last more than 8 days in the atmosphere, they are referred
as long-lived RWPs or LLRWPs (Grazzini & Vitart, 2015;
Pérez et al., 2021).

Due to their link to extreme weather events and their
impact in atmospheric predictability, it is important that
numerical weather prediction models have a good repre-
sentation of the development of RWPs to obtain skillful
forecasts (Quinting & Vitart, 2019). An accurate represen-
tation of LLRWPs development can enhance extreme
weather events detection up to 10–30 days in advance.

Quinting and Vitart (2019) analyzed the representation
of RWPs in various sub-seasonal to seasonal models (S2S)
during northern hemisphere winter, concluding that S2S
models are able to give a good estimation of the character-
istics of the RWPs. However, that study focused on the
northern hemisphere, and did not distinguish between
short and long-lived RWPs. Recent studies have character-
ized RWPs in the southern hemisphere and show that in
the summer LLRWPs represent about 10% of the total
RWPs and their frequency of occurrence is influenced by
the Southern Annular Mode (SAM) and El Niño-Southern
Oscillation (ENSO) (Pérez et al., 2021; Sagarra &
Barreiro, 2020). As a continuation of these studies, here
we aim to analyze whether S2S models are able to forecast
the development and trajectories of LLRWPs. To do so, we
compare the trajectories of LLRWPs tracked in a reanaly-
sis against the trajectories of the LLRWPs forecasted by
two S2S models. Additionally, we studied whether
LLRWPs forecast is affected by the area where the
LLRWPs first manifested, the dominant SAM or ENSO
phase, or by the Madden Julian Oscillation (MJO).

The paper is organized as follows. Section 2 describes
the datasets, the RWPs tracking methodology and the
analysis performed to assess LLRWPs representation in
both models. Section 3 shows the results followed by a dis-
cussion and Section 4 presents a summary of the study.

2 | DATA AND METHODOLOGY

2.1 | Data

In this study we used the ERA 5 Reanalysis (Hans
et al., 2020), with an horizontal resolution of 0.25 � 0.25�,

and two S2S models: the NCEP CFSV2 (Saha
et al., 2014), hereafter NCEP, and the CAS FGOALS
f2 V1.3, hereafter IAP-CAS (Bao et al., 2019; Bao &
Li, 2020; He et al., 2019; Li et al., 2019). The NCEP
(IAP-CAS) model has a spatial resolution of 1.5 � 1.5�

(1 � 1�) and a forecast length of 45 (65) days. Both
models have daily reforecast data and 4-members
ensemble simulations (1 control and 3 perturbed).
Datasets were regridded to a spatial resolution of
2.5�, and the length of the forecast was limited to
45 days.

The period of study focuses in the southern hemi-
sphere summer (December to March, or DJFM) as done
in Sagarra and Barreiro (2020) and Pérez et al. (2021). We
restricted our analysis to the DJFM season between 1999
and 2010, due to time constrains of the NCEP dataset,
having 11 DJFM seasons available for the analysis.

RWPs propagate in the atmosphere as meanders of
the jet stream, producing a series of troughs and ridges
restricted to a certain latitudinal band and showing a
mainly eastward direction during austral summer
(Chang, 1999b). Therefore, RWPs can be characterized
by computing the envelope that surrounds the packet.
In order to compute the envelope (V300env, in m/s) we
used meridional winds at 300 hPa (V300) following
the methodology detailed in Pérez et al. (2021).
Given that RWPs propagation is mainly zonal during
southern hemisphere summer (Chang, 1999a, 1999b),
we average the data in the latitudinal band between
40 and 65� S.

2.2 | Description of RWPs tracking
algorithm and detection of LLRWPs

Prior to the application of the RWPs tracking algo-
rithm, we need to filter out low amplitude V300env data
to avoid tracking noise. Nevertheless, the selection of
the threshold is not obvious because there are no physi-
cal properties that separate one packet from another
(Souders et al., 2014b). We apply a threshold of 19 m/s
(Pérez et al., 2021) for ERA 5, and a threshold of
18 (17) m/s for NCEP (IAP-CAS) data. The chosen
thresholds are based on the distribution of 7-day run-
ning mean values of V300env, shown in Figure S1
(as done in Grazzini & Vitart, 2015; and Sagarra &
Barreiro, 2020). The method considers that V300env

values smaller than the median of the distribution are
noise and thus are set to zero.

The tracking algorithm is based on the maximum
envelope technique (Grazzini & Vitart, 2015; Pérez
et al., 2021; Sagarra & Barreiro, 2020), which locates
areas with the maximum daily values of V300env above a
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minimum threshold, identifying the RWPs center of
activity, and then follows their propagation to the east
assuming that the packets travel with speeds between
15 and 45�/day. After the tracking stage, the algorithm
links truncated trajectories using proximity criteria and
registers the RWPs characteristics. Afterwards, we
retained RWPs that lasted more than 8 days (LLRWPs)
and registered the dates when the LLRWPs are detected
(Td) and their areas of formation (Xd). A full detailed
description of the algorithm is available in Pérez et al.
(2021). Finally, it is important to highlight that this algo-
rithm requires a zonally symmetric wind flow
(Grazzini & Vitart, 2015), which is only observed during
austral summer (Chang, 2000).

To search for LLRWPs in the S2S models, we
downloaded the reforecast datasets starting the fore-
casts at days Td, and transformed V300 into V300env fol-
lowing the methodology mentioned in Section 2.1.
The tracking algorithm is then applied to each simula-
tion to search for forecasted LLRWPs. As we search

for RWPs that starts close to Xd, before the tracking
stage, V300env forecast outside the range [Xd � R
+ Vmin � (Tn � 1), Xd + R + Vmax � (Tn � 1)] for lead
days 1–3 of simulation is deleted from the datamatrix.
R is a typical Rossby radius (1000 km), Tn the lead day
of the forecast and Vmin (Vmax) the minimum (maxi-
mum) propagation speed of the packets, here consid-
ered as 10 (50)�/day to allow for small biases in the
reforecasted data.

After the tracking stage, we search in every simula-
tion for LLRWPs that start their propagation between
lead days 1–3 of the forecast. If the tracking algorithm
detects a LLRWP that matches this condition, we save
that trajectory as the forecasted evolution of a LLRWP
(hereafter FRWP), else, we assume that the simulation
failed to predict a FRWPs and proceed to the next simula-
tion. An example for the NCEP model is displayed in
Figure 1, where a LLRWP was detected in ERA 5, and
two NCEP simulations where FRWPs are close to the
observed LLRWP.

FIGURE 1 Hovmoller diagram of V300env (in m/s) during the propagation of a LLRWPs detected in the reanalysis at 06/01/2003 (upper

left), NCEP V300env forecast from the first 2 perturbed simulations (upper mid and upper right), plus graphical representation of the tracked

trajectories (down figure). Black lines in the upper figures identify the trajectory of the original LLRWPs (FRWPs) detected in the reanalysis

(forecast), and colored lines in the down figure identify the trajectories of the observed LLRWPs and FRWPs.
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2.3 | Representation of LLRWPs in the
forecast models, and the influence of SAM,
ENSO and MJO

We start by analyzing whether the forecast models can
predict the development of the LLRWPs. To do so, first
we measured the proportion of ensemble members able
to predict a FRWPs/FRWPs that lasted more than 8 days
during different ENSO/SAM phases. The classification of
the SAM and ENSO phases follows the same criteria as
in Pérez et al. (2021).

Second, in order to study how similar are the FRWPs
compared to the observed LLRWPs, we measured the
zonal displacement between the observed LLRWPs tra-
jectory and the FRWPs the first 9 days after the detection
of the observed LLRWPs. Additionally, in order to infer
how energetic are the FRWPs compared to the observed
LLRWPs, we studied the differences between the V300env

at the center of the observed LLRWPs against the
forecasted values of V300env found at the center of the
FRWPs.

Third, we classified simulations as best/good/bad/
worst forecasts as those that were able to predict the
development of a LLRWPs in (100–75)/50/25/0% of the
ensemble members, respectively. It is worth pointing out
that results of model performance may change by using a
larger ensemble.

Fourth, we examined whether LLRWPs forecast is
affected by the area where LLRWPs are first detected. To
assess this we considered six zonal bands: 0–60� E, 61–
120� E, 121–180� E, 181–240� E, 241–300� E, 301–359� E.

Next, we measured the differences in geopotential
height anomaly at 300 hPa (Za300) using reanalysis and
reforecast data during the best/worst LLRWPs forecasts.
This is to assess the differences in the mean atmospheric
circulation. In order to do so, we constructed the mean
Za300 from days Td � Td+10, being Td the starting dates of
simulations with the best/worst LLRWPs forecasts. After-
wards, we assess the statistical significance of the results
using a Student t-test at 10% level, comparing Za300 data
that belong to dates with best/worst forecasts of LLRWPs
against the rest of the dataset (Za300 data that do not
belong to best/worst forecasts).

Lastly, we studied MJO activity during the periods
with the best/worst LLRWPs forecasts to assess whether
the propagation of MJO during the LLRWPs lifetime
affects the LLRWPs forecast. To do so, we first calculated
the climatological frequency of having the MJO in every
stage (C), and its standard deviation (STD) during austral
summer between 1979 and 2020. Next, we calculated the
probability of finding every MJO phase during the first
10 days since day Td for the best/worst LLRWPs fore-
casts. If the relative frequency of occurrence of a certain

MJO phase during good/bad forecasts is outside the range
C ± STD, that MJO stage is more frequent/absent than
usual.

3 | RESULTS AND DISCUSSION

3.1 | LLRWPs tracking, ENSO and SAM
influence

We found 39 LLRWPs in the austral summer between
1999 and 2010 (around 3.5 LLRWPs per season),
20 LLRWPs were found during neutral SAM years, 14 in
negative SAM and 5 in positive SAM years. In the case of
ENSO events, 15 LLRWPs appear in La Niña events, 8 for
Neutral ENSO and 16 in El Niño years. These results are
consistent with Pérez et al. (2021) and with the fact that
during positive SAM the strengthening of the westerlies
diminishes the meandering of the flow.

As each model has four simulations available,
there are 156 simulations available per model. The
NCEP model was able to forecast the formation of
FRWPs in 86% of the simulations, and 52% of them
surpassed the 8 days threshold. FRWPs showed a
mean lifespan of 9.1 ± 4.7 days. The IAP-CAS fore-
casted the development of FRWPs in 84% of the simu-
lations, although barely 40% of them lasted more than
8 days. FRWPs tracked last around 8.2 ± 4.4 days.
Oppositely, observed LLRWPs displayed a mean life-
span of 13.0 ± 2.7 days. Therefore, forecast models can
predict LLRWPs development but underestimate their
lifespan. A distribution of observed LLRWPs and
FRWPs lifetime is shown in Figure S2.

Table 1 shows the proportion of total FRWPs/FRWPs
that lasted more than 8 days that were correctly fore-
casted by the models during different SAM/ENSO events.
In the NCEP model, the proportion of FRWPs found
during years with positive SAM is lower compared to
other SAM phases, and neutral ENSO shows the largest
proportion of detected FRWPs. Overall, in the IAP-CAS
model we have similar results to those observed in
NCEP. Nonetheless, for FRWPs that surpassed the 8 day
threshold, the highest (lowest) proportion is found during
positive SAM events in the NCEP (IAP-CAS) model. This
large difference between models might be due to the low
number of cases during positive SAM events, which
makes the results very sensitive to small differences.
Meanwhile, for ENSO events the NCEP model shows the
highest (lowest) proportion of FRWPs that surpassed the
8 days threshold in La Niña (neutral) years. In contrast,
for the IAP-CAS model, the highest (lowest) proportion
of FRWPs with lifespan above 8 days is detected in
neutral (La Niña) years.
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We generally find lower frequencies of FRWPs that
lasted more than 8 days in IAP-CAS. This is consistent
with the fact that FRWPs detected by the NCEP model
have longer lifespans compared to those found in
IAP-CAS.

3.2 | Model representation of LLRWPs
and influence of the MJO

Figure 2 shows the zonal displacement between the loca-
tion of the observed LLRWPs and the FRWPs the first

TABLE 1 Proportion of total FRWPs and FRWPs that lasted more than 8 days found in forecasts during different SAM and ENSO stages

in NCEP and IAP-CAS model.

Total FRWPs detection (%) El Niño Neutral La Niña SAM+ SAM neutral SAM�
NCEP 85 97 78 70 89 85

IAP-CAS 87 84 76 75 87 79

Frequency of FRWPs that lasted more than 8 days in
the simulation/ total FRWPs detection (%)

NCEP 51 38 59 64 38 59

IAP-CAS 41 59 28 20 46 39

FIGURE 2 Frequency histogram of the FRWPs displacement from the original LLRWPs found in the reanalysis in each lead day.

Positive (negative) bias signals that the FRWPs appear more westwards (eastwards) compared to the observed LLRWPs. Black lines signals

the area of 0 bias whereas red (blue) lines show the median location of the FRWPs tracked in the ensemble mean for NCEP (IAP-CAS)

forecast.

P�EREZ-FERNÁNDEZ and BARREIRO 5 of 11

 1530261x, 2023, 10, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/asl.1175 by C
ochrane U

ruguay, W
iley O

nline L
ibrary on [23/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



9 days of the packets lifespan. FRWPs detected in the
NCEP (IAP-CAS) model tend to appear more to the east
(west) from the observed packet. This pattern remains
approximately constant after day one until the 8–9th lead
day, when the median of both distributions is near zero.
This change could be attributed to the loss of FRWPs as
the simulation advances.

In Figure 3, we display the difference of V300env at
the center of the packet between the observed LLRWPs
minus the tracked FRWPs in each lead day of
simulation. Positive (negative) values signal that the
forecast model underestimates (overestimates) the
energy contained within the packet. Initially, the NCEP
model does not greatly differ from the reanalysis.
Nonetheless, starting on the 6th lead day of the simula-
tion, the energy contained in FRWPs decays rapidly,
indicating that FRWPs are less energetic compared to

the observed LLRWPs. Nevertheless, wave packets
tracked in the IAP-CAS always tend to underestimate
the energy contained in the observed wave packets.
Thus, even though both models detect a similar num-
ber of FRWPs, IAP-CAS is much less energetic com-
pared to the reanalysis.

Giannakaki and Martius (2016) showed that forecast
models in the northern hemisphere usually underesti-
mate the area and strength of the waveguide. Moreover,
Gray et al. (2014) concluded that in the northern hemi-
sphere, the potential vorticity fields where RWPs propa-
gate fall rapidly with lead time in numerical weather
prediction models. Therefore, an underestimation of
the potential vorticity anomaly fields as the forecast
advances, causes that V300env in the forecast diminishes
faster than in the reanalysis. It is plausible to think
that a similar process can be at work in the southern

FIGURE 3 Analogous to Figure 2, but for V300env differences at the center of the wave packet on the observed LLRWPs against its

forecasted trajectory. Positive (negative) values signal that the FRWPs have lower (higher) V300env, thus, RWPs forecasted by the model are

less (more) energetic compared to the observed LLRWPs.
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hemisphere, therefore, LLRWPs forecasts might be lim-
ited to the synoptic scale.

When we focus on the classification of the simula-
tions, near 18% of the NCEP simulations belong to the
worst forecasts, 23% to bad forecasts, and 59% to good or
the best forecasts. Conversely, 36% of the IAP-CAS simu-
lations belong to the worst forecasts, 26% to bad forecasts,
whereas only 38% belong to the good/best forecasts.
These results further suggest that the NCEP model is bet-
ter at forecasting LLRWPs compared to the IAP-CAS.
Figure 4 shows the areas where the total proportion of
FRWPs/FRWPs with lifespan above 8 days. Both models
show that most of FRWPs were first detected in the east-
ern Pacific (241–300� E), and western South-Atlantic
basins (301–359� E). But when we retain simulations that
are part of good and/or best forecasts, most of FRWPs
were first detected at the central-eastern Pacific basin
(180–300� E) in the NCEP model, and in the eastern
Pacific (241–300� E) for the IAP-CAS model. One

possibility that might explain these results is that the
eastern Pacific basin has a maximum of baroclinity
(Solman et al., 2003), which favor RWPs development.
Thus, RWPs that appear in the eastern Pacific basin will
propagate toward the Atlantic-Indian sector where the jet
stream, which acts as a waveguide where RWPs propa-
gate, reaches its maximum intensity. Consequently,
FRWPs gain stability and propagate for longer periods.

We next examine the mean atmospheric flow in the
reanalysis and forecast models during the best/worst
forecasts (Figure 5). It is worth mentioning that Pérez
et al. (2021) concluded that the northward displacement
of the jet stream (this is, during negative SAM events)
causes the development of a cyclonic circulation to the
southwest of New Zealand. This enables the extension of
the waveguide where RWPs propagate into the Pacific,
thus favoring LLRWPs. In agreement with this study,
Figure 5 shows in all panels an anomalous cyclonic circu-
lation to the southwest of New Zealand. Moreover, this

FIGURE 4 Detection areas of total FRWPs/proportion FRWPs that lasted more than 8 days in the simulations.

P�EREZ-FERNÁNDEZ and BARREIRO 7 of 11

 1530261x, 2023, 10, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/asl.1175 by C
ochrane U

ruguay, W
iley O

nline L
ibrary on [23/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



cyclonic circulation is strongest and is accompanied by
generally low geopotential height anomalies between
40� S and 60� S during the best forecasts. In addition,
Za300 in high latitudes significantly increases during the
best forecasts which, together with the negative Za300 in
midlatitudes signal the manifestation of negative SAM
events. Consequently, results suggest that LLRWPs fore-
casting might be more feasible during negative SAM
years. Alternatively, during the worst forecasts, the circu-
lation anomalies do not show a clear common global pat-
tern. There seems to exist a stationary wave extending
from Australia southwards in both models. However, in
NCEP forecasts, there are several positive Za300 anomalies
in subtropical latitudes, that are not present in IAP-CAS.
These findings suggest that some atmospheric processes
might lead to the development of a stationary wave near

New Zealand which impedes RWPs propagation into the
Pacific. Furthermore, the spatial structure suggests that
the wave patterns of Figure 5 may be at least partly
forced from the tropical region. To further look into that
we explore the possibility that the MJO may play a role.

Figure 6 shows the probability of occurrence of a cer-
tain MJO phase during the best/worst forecasts against
their climatological frequency. During the best fore-
casts, both models show an anomalously inactive MJO,
and phases 4–8 are specially absent, particularly in the
IAP-CAS model. Also, the probability of finding phases
1–3 is near climatology. By contrast, during the worst
forecasts in the NCEP model, the MJO is more active
than usual in phases 3 and 5, oppositely, phases 1–2 are
mostly absent, whereas the remaining phases occur
near climatology. In the IAP-CAS model, the worst

FIGURE 5 Za300 fields from Td–Td+10, being Td the dates when we obtained the best/worst forecast skill in the NCEP and IAP-CAS

models. Left (right) figures show the Za300 field obtained using the reanalysis (forecast) data. Orange (blue) areas signal positive (negative)

anomalies.
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forecasts are also characterized by an active MJO, par-
ticularly in phases 3 and 8, appearing with much higher
frequency than the climatology. Thus, in both models
the best (worst) forecasts are characterized by an inac-
tive (active) MJO.

The Za300 patterns shown in the composite of the worst
forecasts of the NCEP and IAP-CAS models (Figure 5), do
not match with circulation anomalies associated with their
most frequent stages of the MJO (see Figure 1 of Alvarez
et al., 2016). One reason that might explain these results is
that because the MJO is more active than usual in certain
phases, the anomalies observed are a mixture of signals
without a defined structure. Therefore, the maps obtained
are not similar between models, and usually show weaker
Za300 values that are less significant than the anomalies
associated with the best forecasts.

Results show that an active MJO degrades the
LLRWPs forecast, which might be attributed to the inter-
action between the tropically excited and mid-latitude
waves. Nonetheless, we have to take into consideration
that even though the MJO forecast is reliable until
25 days in advance (Fu et al., 2013), current biases in the
representation of the MJO and its teleconnections (Lim
et al., 2018) may degrade LLRWP predictions.

4 | CONCLUSIONS

RWPs are considered precursors of extreme weather
events. Under certain circumstances they can last for
several days to weeks in the atmosphere, thus, studying
the representation of these long-lived packets might
improve extreme weather event detection in the sub-
seasonal time scale. Here we considered two S2S models
(NCEP and IAP-CAS), and showed that they are capable
of forecasting long-lived RWPs. Nevertheless, packets
forecasted by NCEP (IAP-CAS) model are systematically
shifted to the east (west) from the original packet,
although they propagate with similar speeds. Both
NCEP and IAP-CAS models struggle to forecast RWPs
that last more than a week because predicted packets
rapidly lose energy after the first week of simulation,
which might limit long-lived RWPs forecast to the syn-
optic scale. Both models accurately represent long-lived
RWPs that appear in the eastern Pacific sector, and also
during negative SAM events. However, the worst fore-
casts of both models manifest a stationary wave train
that blocks the propagation of wave packets to the south
of Australia. Moreover, MJO influences LLRWPs fore-
cast in the models, such that during simulations with

FIGURE 6 Relative frequency of the MJO phases detected during the propagation of LLRWPs for the best (left figures) and worst (right

figures) forecasts found in NCEP and IAP-CAS models. Orange dots represent the mean climatological probability of finding the MJO in a

specific phase whereas back lines show the range between mean climatological probability ± its standard deviation.

P�EREZ-FERNÁNDEZ and BARREIRO 9 of 11

 1530261x, 2023, 10, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/asl.1175 by C
ochrane U

ruguay, W
iley O

nline L
ibrary on [23/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



good LLRWPs forecasts the MJO is anomalously inactive
in both models. In contrast, during the worst LLRWPs
forecasts, some MJO phases are more active than usual
(phases 3, 5 in the NCEP model and 3, 8 for IAP-CAS)
and results show a mixture of signals with lower signifi-
cance and amplitude that do not seem to be linked to a
specific MJO phase. These differences between models
may be due to distinct simulated MJO dynamics and tel-
econnections, or could be related to the misrepresenta-
tion of the MJO in the forecast, complicating the
identification of MJO phases that might favor LLRWPs
forecast. Nevertheless, our results suggest that LLRWPs
prediction in two sub-seasonal models is influenced by
the activity of the MJO, and inactive (active) periods of
MJO lead to improve (degrade) LLRWPs forecasts.
Future studies should focus on determining whether the
misrepresentation of the MJO in forecasts models
greatly affects RWPs predictions in the mid-latitudes of
the southern hemisphere.
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