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Abstract: We estimate the drift and the level sets of the stationary distribution

of a Brownian motion with drift, reflected in the boundary of a compact set S ⊂ Rd,

departing from the observation of a trajectory of this process. We obtain the uni-

form consistency and rates of convergence for the proposed kernel-based estimators.

This problem has relevant applications in ecology, for example, when estimating the

home range and the core area of an animal based on tracking data. Recent attempts

to estimate the domain of a reflected Brownian motion have considered a uniform

stationary distribution; however in this case the estimation of the core area, de-

fined as a level set of the stationary distribution, is meaningless. We also give an

estimator of the drift function, based on the increments of the process. In order

to prove our results, we obtained several new theoretical properties of the reflected

Brownian motion with drift, under fairly general assumptions. These properties

allow us to perform the estimation for flexible regions close to reality. Lastly, the

theoretical findings are illustrated using simulated and real-data examples.

Key words and phrases: Core-area, drift estimation, home-range estimation, re-

flected Brownian motion with drift, stationary distribution.

1. Introduction

Given a reflected Brownian motion with drift (RMBD) inside a (smooth

enough) compact domain S, we consider three statistical problems: 1) estimating

the density of the stationary distribution; 2) estimating the level sets of this

density, with and without shape restrictions; and 3) estimating the drift function.

The practical motivation for these problems is made explicit in the following

paragraphs.

Level-set estimation falls within the field of nonparametric set estimation,

where the goal is to reconstruct (in the statistical sense) an unknown set S from

random data related to S. Usually, such random information comes from a

Corresponding author: Alejandro Cholaquidis, Iguá 4225, piso 16. 11400, Montevideo, Uruguay. E-mail:
acholaquidis@cmat.edu.uy.

https://doi.org/10.5705/ss.202018.0211
mailtos:acholaquidis@cmat.edu.uy


30 CHOLAQUIDIS ET AL.

sample of independent points drawn from an absolutely continuous distribution

with density f . In addition, the target set is either the support of f or a level

set of the {x : f(x) > λ} (which, depending on λ, can be viewed as a sort of

“substantial support” of the underlying distribution).

There are, however, two important practical applications of set estimation

techniques in which the assumption of independence is clearly unsuitable; in this

case, the above-mentioned RBMD approach might be particularly useful. The

first application estimates a so-called home range (the region where an individual

of an animal species develops its activities; Burt (1943)), and the second estimates

a core area (the sub-region of the home range where the individual spends most of

its time; see Hayne (1949), Worton (1987)). Recent advances in animal tracking

technology allow an almost continuous record of the movement. Therefore, in

both cases, it might be reasonable to assume that the sample information comes

from a grid of points along the (random) trajectory followed by the animal during

its activities. In our setup, core areas can be modeled by the level sets of the

stationary distribution, whereas the drift function provides information about

the dynamics of the movement of the animal.

This perspective was followed by Cholaquidis et al. (2016), where the home

range S is identified with the support of the stationary distribution of a reflected

Brownian motion (with no drift), and a suitable set estimator is proposed and

analyzed. However, under the (quite natural) regularity conditions on S con-

sidered in the aforementioned study, the stationary distribution of the reflected

Brownian motion is necessarily uniform (Burdzy, Chen and Marshall (2006)),

which can be somewhat restrictive. In particular, the problem of estimating a

core area (which should be addressed in terms of a level-set estimation) becomes

meaningless or uninteresting.

Thus, the main contribution of this study is to extend the approach of

Cholaquidis et al. (2016) to the case of an RBMD. Such an extension is be-

yond a simple technical generalization, because it enables us to estimate a core

area in terms of an appropriate level set of the stationary distribution of an

RBMD in the home range S. Note that this can be done because the stationary

distribution is non-uniform, in general.

As a by-product, we provide explicit conditions for the existence and geomet-

ric ergodicity of an RBMD on the domain. Lastly, the drift estimation problem

is also addressed.

Using a different approach, an exponential rate has been obtained in the

estimation of the stationary distribution of ergodic diffusions in unbounded do-
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mains (Dalalyan (2005)). See also Cattiaux, León and Prieur (2017), where a

similar problem is considered. The estimation of the stationary distribution of

a stochastic differential equation with drift, without reflection, has been studied

by several authors, including Veretnnikov (1999). More recently, Dalalyan and

Reiss (2007) estimated the drift and stationary distribution for the same model,

but without reflection, whereas Gobet, Hoffmann and Reiβ (2004) consider esti-

mation problems for one-dimensional diffusions, with and without reflection.

Before introducing the formal framework, we briefly discuss the application

of the proposed method to estimating the core area and drift from animal tracking

data. For a description of home-range estimation, see, for instance, Cholaquidis

et al. (2016), and the references therein.

1.1. Roadmap

This paper is organized as follows. In Section 2, we discuss the conditions

necessary for the existence, uniqueness, and geometric ergodicity of the RBMD.

The main results in this section are given in Propositions 1 and 2. Proposition

1 gives sufficient conditions for Harris recurrence and for the the domain to be

non-trap for the RBMD process {Xt} (a condition introduced in Burdzy, Chen

and Marshall (2006), which we describe in Section 2). In Proposition 2, we

show that if the domain is non-trap, we have an exponential rate of convergence

to the stationary distribution for the total variation norm. All proofs for this

section are given in Appendix B of the Supplementary Material. In Section 3,

Theorem 1 derives strong uniform convergence rates for the kernel estimators of

the stationary distribution, based on a trajectory of the RBMD. In Corollary

1 and Theorem 3, we prove the strong consistency of two families of level-set

estimators with respect to the Hausdorff distance. Theorem 4 estimates level

sets with given content, and Theorem 5 derives consistent estimators of the drift

function. Lastly, in Section 4, we consider simulated and real-data examples to

illustrate the behavior of the proposed estimation methods.

2. RBMD

In this section, we establish the conditions necessary for the existence of an

RBMD and its stationary distribution, and study the connections between these

conditions and several geometric constraints on its support. All proofs for this

section are given in Appendix B of the Supplementary Material.
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2.1. Notation

Given a set S ⊂ Rd, we denote by ∂S, int(S), and S the boundary, interior,

and closure, respectively, of S. If S is a finite set, we denote its cardinal by

#S. The Borel sigma algebra in S is denoted by B(S). We denote by 〈·, ·〉
the usual inner product in Rd, and by ‖·‖ the Euclidean norm. A closed ball

of radius ε centred at x is denoted by B(x, ε), and an open ball is denoted by

B̊(x, ε). Given ε > 0 and a bounded set A ⊂ Rd, B(A, ε) denotes the parallel set

B(A, ε) = {x ∈ Rd : d(x,A) ≤ ε}, where d(x,A) = inf{‖x − a‖ : a ∈ A}. The

d-dimensional Lebesgue measure on Rd is denoted by µL.

2.2. Definition of the reflected Brownian motion

Let D be a bounded domain in Rd (i.e, a bounded, connected open set),

such that ∂D is C2. Given a d-dimensional Brownian motion {Bt}t≥0, departing

from B0 = 0 and defined on a filtered probability space (Ω,F , {Ft}t≥0,Px), we

examine the existence and uniqueness of the solution to a reflected stochastic

differential equation on D, given by

Xt = X0 +Bt +

∫ t

0
µ(Xs)ds+

∫ t

0
n(Xs)ξ(ds), where Xt ∈ D, ∀t ≥ 0, (2.1)

where the drift, µ(x), is assumed to be Lipschitz, and n(x) denotes the inner unit

vector at the boundary point x ∈ ∂D; this boundary satisfies some regularity

conditions (to be specified later). This equation is called a Skorokhod stochastic

differential equation. Its solution is a pair of stochastic processes {Xt, ξt}t≥0,

where the first coordinate {Xt}t≥0 is a reflected diffusion, called an RBMD, and

{ξt}t≥0 is the corresponding local time, that is, a one-dimensional continuous

nondecreasing process with ξ0 = 0 that satisfies ξt =
∫ t

0 I{Xs∈∂D}dξs. Because we

have assumed that ∂D is C2, we know that a ball of positive radius rolls freely

inside and outside D (see Walther (1999)). Then, using the same arguments as

those used to prove Proposition 3 in Cholaquidis et al. (2016), we can ensure that

the geometric shape conditions for the existence and uniqueness of a solution

to equation (2.1), as required in Saisho (1987), are satisfied. From Theorem

5.1 in Saisho (1987), it follows that there exists a unique strong solution to the

Skorokhod stochastic differential equation given in (2.1). The solution is a strong

solution in the sense of definition 1.6 in Ikeda and Watanabe (1981).

Remark 1. There exists a unique positive function p(s, x, t, y) satisfying P(Xt ∈
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Γ|Xs = x) = P (s, x, t,Γ) =
∫

Γ p(s, x, t, y)dy and, from Theorem 3.2.1 of Stroock

and Varadhan (1997), the function p satisfies the forward equation ∂sp+L∗p = 0

and lims→t− p(s, ., t, y) = δy, where δy is the point-mass at y, and L∗ is the adjoint

of L; that is, L∗h = (1/2)∆h− 〈µ,∇h〉.

2.3. Ergodic properties

We now introduce the concepts of an invariant measure and an ergodic pro-

cess, following Meyn and Tweedie (1993).

Definition 1. A probability measure π on S is said to be an invariant measure

for a time-homogeneous Markov process {Zt}t≥0 if
∫
S Px(Zt ∈ A)π(dx) = π(A),

for all t > 0 and all A ∈ B(S).

Definition 2. A Markov process {Zt}t≥0 with state space S is ergodic if there

exists an invariant probability measure π, such that limt→+∞
∥∥Px(Zt ∈ ·) −

π(·)
∥∥
TV

= 0, ∀x ∈ S. Here, ‖µ‖TV denotes the total variation norm of the

measure µ. In this case, π is called a stationary distribution.

Remark 2. If the drift is given by the gradient of some function f , that is

µ(x) = (1/2)∇f(x), then by Green’s formula, there exists a unique stationary

distribution, given by π(dx) = ce−f(x)IDdx = g(x)dx, where c is the normaliza-

tion constant.

Definition 3. A Markov process {Zn}n∈N with state space S is geometrically

ergodic if there exists an invariant probability π and real numbers 0 < ρ < 1 and

γ > 0, such that∣∣Px(Zn ∈ B)− π(B)
∣∣ ≤ γρn for all x ∈ S and all B ∈ B(S). (2.2)

2.4. Harris recurrence and the trap condition

Let D ⊂ Rd be an open, bounded set, and B ⊂ D. Define TB = inf{t >
0: Zt ∈ B} as the first hitting time of B by a stochastic process {Zt}t≥0.

Definition 4. A Markov process {Zt}t≥0 is Harris recurrent if for some σ-finite

measure µ, we have Px(TA <∞) = 1 whenever µ(A) > 0, for A ∈ B(D).

Under Harris recurrence, there exists a unique (up to a multiplicative con-

stant) invariant measure (see Azéma, Kaplan-Duflo and Revuz (1967)). For the

RBMD, Proposition 1 proves a sufficient condition for Harris recurrence (where,

in Definition 4, µ is the Lebesgue measure restricted to D), that is slightly
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stronger than the non-trap condition introduced in Burdzy, Chen and Marshall

(2006)).

Definition 5. We say that D is a trap domain for the stochastic process {Zt}t≥0

if there exists a closed ball B ⊂ D with positive radius, such that supx∈D ExTB =

∞, where Ex denotes the expectation w.r.t. Px. Otherwise, D is called a non-trap

domain.

The non-trap condition is mandatory when estimating the stationary distri-

bution and the drift function in order to visit infinitely many often a small ball

at each point x.

It is proved in Lemma 3.2 of Burdzy, Chen and Marshall (2006) that if

{Xt}t≥0 is a reflected Brownian motion (without drift) in a connected open set

D with finite volume, and B1 and B2 are closed nondegenerate balls in D, then

supx∈D ExTB1
<∞ if and only if supx∈D ExTB2

<∞.

Proposition 1. Let D ⊂ Rd be a bounded domain, such that ∂D is C2. Let

{Xt}t≥0 be the solution to (2.1). Then, for all Borel sets A, such that µL(A∩D) >

0, we have that supx∈D Ex(TA) <∞, where Ex denotes the expectation w.r.t. Px,

which implies Harris recurrence.

The next proposition states that under the non-trap condition, the process

is geometrically ergodic. This result can also be derived using functional inequal-

ities, as proposed in Cattiaux, León and Prieur (2017); see Section 3.1.

Proposition 2. Let D ⊂ Rd be a bounded domain, such that ∂D is C2. Denote

by π the invariant distribution of {Xt}t≥0. If D is a non-trap domain for {Xt}t≥0,

then there exist positive constants α and β, such that supx∈D
∥∥Px(Xt ∈ ·) −

π(·)
∥∥
TV
≤ βe−αt.

3. Drift and Level-Set Estimation

In this section, we first obtain strong uniform convergence rates for the clas-

sical kernel density estimator ĝn of the density g of the stationary distribution

of a geometrically ergodic Markov chain (see Theorem 1). This allows us to

estimate the density, g, of the stationary distribution of the RBMD {Xt}t≥0 by

considering a sequence {Xkn1
}k∈N (the choice of n1 is given explicitly in the proof

of Proposition 2). As is well known, uniform convergence is crucial to obtaining

the convergence of level sets (see Theorem 3). Next, in Corollary 1 and Theorem

3, we show the convergence of two families of estimators of the level sets. In

Theorem 4, we estimate level sets with given content.
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The proof of Theorem 1 is based on some of the ideas proposed in Campos

and Dorea (2005); however, we aim to obtain uniform convergence, in order to

estimate the level sets. Before doing so, we need to introduce some notation.

Let {Xn}n∈N be a Markov process with state space S ⊂ Rd, and let µ0(dy)

be an arbitrary initial distribution. Let µn(dy) denote the distribution of Xn,

that is, Pµ0
(Xn ∈ A) =

∫
A µn(dy), for A ∈ B(S), where Pµ0

indicates that the

initial distribution is µ0. Similarly, Eµ0
indicates the corresponding expectation.

Let K : Rd → R be a bounded function, such that K ≥ 0 and
∫
K(t)dt = 1.

Consider the classical kernel estimator ĝn, based on {X1, . . . , Xn}, given by

ĝn(x) =
1

nhdn

n∑
i=1

K

(
x−Xi

hn

)
=

1

n

n∑
i=1

Kh(x− y),

where h = hn → 0 and Kh(x) = K(x/h)/hd.

The following generalization of the Bernstein inequality, obtained in Collomb

(1984), is used throughout this discussion. Recall that a stochastic process

{Xk}k∈Z is ϕ-mixing if supj∈Z σ(F j−∞,F∞j+n) → 0 as n → ∞, where Fkj =

σ(Xs, j ≤ s ≤ k).

Lemma 1. (Bernstein inequality for ϕ-mixing processes). Let Yi be a sequence

of ϕ-mixing random variables, such that E(Yi) = 0, |Yi| ≤ C1, E|Yi| ≤ η, and

E(Y 2
i ) ≤ D. Write ϕ̃(m) = ϕ(1) + · · · + ϕ(m), for each m ∈ N. Then, for each

ε > 0 and n ∈ N, we have

P

(∣∣∣ n∑
k=1

Yk

∣∣∣ > ε

)
≤ 2 exp

(
3e1/2n

ϕ(m)

m
− αε+ α2nC2

)
, (3.1)

where C2 = 6(D+4ηC1ϕ̃(m)), and α and m are any positive real number and any

positive integer less than or equal to n and satisfying αmC1 ≤ 1/4, respectively.

The numbers α and m may also depend on n.

Theorem 1. Let S ⊂ Rd be a compact set and {Xn}n∈N be a geometrically

ergodic Markov chain, with state space S and constants γ and ρ given by (2.2),

with a stationary distribution, π, that has a Lipschitz density g w.r.t. the Lebesgue

measure. Define g1 = maxx∈S g(x), and denote by Cg the Lipschitz constant of g.

Let ĝn(x) = (1/n)
∑n

i=1Kh(x−Xi), where K : Rd → R is a nonnegative bounded

Lipschitz function, such that
∫
K(t)dt = 1. Define κ =

∫
|u|K(u)du < ∞ and

k1 = maxK(x). Let h = hn → 0, αn → 0, and βn → ∞, such that βnhn → 0,

αn = o(1/βn), and log(n)/βn → 0. Then, for all ε > 0 and all n > n1 (n1 is
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given in the proof), we have

P
(
βn sup

x∈S

∣∣ĝn(x)− g(x)
∣∣ > ε

)
≤ CΓn + C ′hβn +

3c

hd(d+2)
exp

(
− εαn

4Γn

)
, (3.2)

where Γn = βn/(nh
d), C = 2k1γ

∑∞
n=1 ρ

n, C ′ = κCg, and c is a constant de-

pending only on d and µL(S).

Moreover, if βn and hn satisfy αnnh
d/(βn log(n))→∞, then βn supx∈S

∣∣ĝn(x)−
g(x)

∣∣→ 0 a.s.

Remark 3.

i) Taking h = n−1/ν and βn = nγ , the best attainable rate that can be derived

from Theorem 1 is for γ = 1/(d+ 2); that is, βn = O(n1/(d+2)).

ii) If we need uniform convergence only, we can relax the conditions in hn, and

replaced them with h = O((1/n)1/(d+1)).

Using Theorem 2 of Cuevas, Gonzalez-Manteiga and Rodŕıguez-Casal (2006),

we obtain the following direct corollary, which establishes the rate of consistency

for the Hausdorff distance of the boundary of the estimated level sets ∂Gĝn(λ)

(where Gg(β) = {x : g(x) > β}). Recall that d(a,C) = infc∈C d(a, c) and, given

two nonempty compact sets A,C ⊂ Rd, the Hausdorff distance between A and

C is defined as

dH(A,C) = max

{
max
a∈A

d(a,C), max
c∈C

d(c, A)

}
.

Corollary 1. Under the hypotheses of Theorem 1, suppose in addition that there

exists λ > 0, such that ∂Gg(λ) 6= ∅, and there exist γ > 0 and A > 0, such that if

|t− c| ≤ γ, then dH({g = c}, {g = t}) ≤ A|t− c|. Then, dH
(
∂Gg(λ), ∂Gĝn(λ)

)
=

o(1/βn) a.s.

Remark 4. As pointed out in Cuevas, Gonzalez-Manteiga and Rodŕıguez-Casal

(2006) in Section 2.4 point 1, the hypotheses of Corollary 1 are satisfied if g is C2

on a neighborhood E of the level set λ, and the gradient of g is strictly positive

on E.

3.1. Level-set estimation under shape restrictions

In this subsection, we propose another estimator of the level sets, under a

quite general shape condition. We assume that there exists an r > 0, such that
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Figure 1. A general r-convex set. The small ball has radius r.

Gg(λ) is compact and r-convex; that is, Gg(λ) = Cr
(
Gg(λ)

)
, where

Cr
(
Gg(λ)

)
=

⋂{
B̊(x,r) : B̊(x,r)∩Gg(λ)=∅

} (B̊(x, r)
)c

is the r-convex hull of Gg(λ).

This condition has been studied extensively in the context of set estimation;

see, for instance, Cuevas, Fraiman and Pateiro-López (2012), and Rodŕıguez-

Casal (2007). It is also related to the level-set estimation problem; see Walther

(1997). Although r-convexity is much less restrictive than convexity, inlets that

are too sharp are not allowed; see Figure 1.

Following the notation in Federer (1959), let Unp(S) be the set of points

x ∈ Rd with a unique projection on S, denoted by ξS(x). That is, for x ∈ Unp(S),

ξS(x) is the unique point that attains the minimum of ‖x− y‖, for y ∈ S.

Definition 6. For x ∈ S, let reach(S, x) = sup{r > 0 : B̊(x, r) ⊂ Unp(S)
}

. The

reach of S is defined by reach(S) = inf
{
reach(S, x) : x ∈ S

}
, and S is said to

be of positive reach if reach(S) > 0.

The relation between r-convexity and reach has been studied in Cuevas,

Fraiman and Pateiro-López (2012).

Definition 7. The outer Minkowski content of S ⊂ Rd is given by L0(∂S) =

limε→0 µL(B(S, ε) \ S)/ε, provided that the limit exists and is finite.

Definition 8. Let S ⊂ Rd be a closed set. A ball of radius r is said to roll

freely in S if, for each boundary point s ∈ ∂S, there exists some x ∈ S, such that

s ∈ B(x, r) ⊂ S. The set S is said to satisfy the outside r-rolling condition if a

ball of radius r rolls freely in Sc.
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λ

Figure 2. If g′(x) = 0 for x ∈ Gg(λ), it is not necessarily true that dH(Gg(λ+ ε), Gg(λ−
ε))→ 0.

We also assume the following condition.

HR: A level set Gg(λ) satisfies HR if there exist δ0 > 0 and r > 0, such

that Gg(λ+ ε) is r-convex for all −δ0 < ε < δ0.

Theorem 2 in Walther (1997) gives sufficient conditions for HR to hold,

expressed in terms of the gradient of g. Thus, we have the following result.

Theorem 2. Let g : Rd → R and −∞ < l ≤ u < sup g. Assume that g ∈ C1(U),

where U is a bounded open set that contains Gg(l − η)\Gg(u+η), for some η > 0;

∇g satisfies ‖∇g‖ ≥ m > 0 on U , as well as, the following Lipschitz condition on

U (or on ∂Gg(λ)): for all λ ∈ (l, u), ‖∇g(x)−∇g(y)‖ ≤ k‖x− y‖, for x, y ∈ U
(or in ∂Gg(λ)). Then, for each λ ∈ (l, u), Gg(λ) and Gg(λ)c are r0-convex, with

r0 = m/k.

Lemma 2. Let g : S → R, where S ⊂ Rd is a compact set. Assume that

g ∈ C2(S), and that λ is such that there exists 0 < δ1 < λ, for which ∇g(x) 6=
0 for all x ∈ Gg(λ− δ1) \ Gg(λ + δ1) := Gg(λ, δ1). Then, for all ε < δ1,

dH
(
Gg(λ − ε), Gg(λ + ε)

)
≤ 3Mε/m2, where M = max{x∈Gg(λ,δ1)} ‖∇g(x)‖ and

m = min{x∈Gg(λ,δ1)} ‖∇g(x)‖.

Consider ĝn, as before. We study the convergence in the Hausdorff distance

of the following estimator:

An(λ) = Cr
(
{Xi : ĝn(Xi) > λ}

)
, (3.3)

that is, the r-convex hull of the sample points belonging to the λ level set of

ĝn. The rates of convergence for (3.3) in the independent case are provided in

Saavedra-Nieves, González-Manteiga and Rodŕıguez-Casal (2016), along with an

estimator for the parameter r. Note that it is not necessary to compute the

whole set Gĝn(λ) (which, in practice, is not feasible in most cases), because the
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estimator proposed in Corollary 1 is based only on sample points that belong to

the set Gĝn(λ). Moreover, for the two-dimensional case, the r-convex hull can

be computed easily using the R software package alphahull (see Pateiro-López

and Rodŕıguez-Casal (2010)).

Theorem 3. Under the hypothesis of Theorem 1, assume further that g and λ

are defined as in Lemma 2, and that condition HR holds. In addition, assume

that 0 < g0 < g(x), for all x ∈ S. Denote as Ψn the right-hand side of (3.2),

with ε = 1. Let εn → 0, such that εnβn > 1 for all n, and assume that εn <

min{δ0, δ1} for all n, where δ0 is defined in condition HR, and δ1 is defined in

Lemma 2, Then, for all n > n2 (n2 is given in the proof),

P
(
dH
(
An(λ), Gg(λ)

)
≤ 3M

m2
εn

)
> 1− 3Ψn.

The following corollary follows directly from condition HR and Theorem 3

in Cuevas, Fraiman and Pateiro-López (2012).

Corollary 2. Under the hypotheses of Theorem 3, with probability one, limn→∞
dH
(
∂An(λ), ∂Gg(λ)

)
= 0.

3.2. Estimation of level sets with a fixed content

Theorem 4. Let S ⊂ Rd be a compact set and {Xn}n∈N be a geometrically

ergodic Markov chain with state space S. For τ ∈ (0, 1), define lτ = inf{λ > 0 :

π(Gg(λ)) ≤ 1 − τ}, where π denotes the stationary distribution. Assume that π

has a C2 density g, such that ‖∇g(x)‖ 6= 0 for all x ∈ U , where U is an open

set containing Gg(lτ − ε0) \ Gg(lτ + ε0), for some τ > 0 and 0 < ε0 < lτ . Let

ĝn(x) = (1/n)
∑n

i=1Kh(x−Xi), with K a bounded Lipschitz density. Let h = hn
be such that h = O((1/n)1/(d+1)). If we define

l̂τ = inf

{
λ > 0 :

1

n
#
{
i : Xi ∈ Gĝn(λ)

}
≤ 1− τ

}
,

then, with probability one, dH
(
Gĝn(l̂τ ), Gg(lτ )

)
→ 0.

3.3. Drift estimation

In what follows, we propose an estimator of the drift function. Assume that

{Xt : t ≥ 0} is uniformly sampled at times {t = t1, . . . , tn} in the interval [0, T ],

where T > 0; that is, a sample of size n of the process Xt, {X∆n,T
, . . . , Xn∆n,T

}
is observed at ti = i∆n,T and ∆n,T = T/n. To simplify the notation, we re-
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fer to ∆ rather than ∆n,T . Fix x ∈ int(S). Define Nx = #
{

1 ≤ i ≤ n :

Xti ∈ B(x, hn)
}

, for some hn → 0. Then, we define the estimator, µ̂n,T (x) =

(1/∆Nx)
∑n

i=1(Xti+1
−Xti)I{Xti∈B(x,hn)}.

Theorem 5. Assume that T →∞, ∆→ 0, hn → 0, ∆nh2
n →∞, and ∆nh3

n →
0. Then, for all x ∈ int(S), µ̂n,T (x)→ µ(x) in probability.

The proof is given in Appendix C of the Supplementary Material. According

to Remark 2, in the gradient case, the drift estimator can be derived easily from

the stationary density estimator using the plug-in rule

µ̂1(x) =
1

2
∇ log(ĝn(x)). (3.4)

4. Examples

In this section, we first use a simulation study to assess the performance of

the r-convex hull of the sample points belonging to the level set of the estimator,

as proposed in (3.3). Then, we present the results of applying this method to

real data.

4.1. Simulations

The discrete version of the RBMD (2.1) is produced using the Euler scheme

proposed in Bossy, Gobet and Talay (2004), as follows. We first choose a step

δ > 0, and denote by sym(z) the symmetrization of the point z with respect to

∂S. Start with X0 = x, and suppose that we have obtained Xi ∈ S. To produce

the following point, set Yi+1 = Xi+Zi+δµ(Xi), where Zi is a centered Gaussian

random vector, independent w.r.t. Z1, . . . , Zi−1, with covariance matrix δ(Id)R2 .

Then: 1) if Yi+1 ∈ S, set Xi+1 = Yi+1; 2) if Yi+1 /∈ S and sym(Yi+1) ∈ S, set

Xi+1 = sym(Yi+1); and 3) if Yi+1 /∈ S and sym(Yi+1) /∈ S, set Xi+1 = Xi. In

our example, we consider an RBMD in the set S = E \ B((4/5, 0), 1/2), where

E = {(x, y) ∈ R2 : 4x2/9+y2 ≤ 1}, with drift function given by µ(x, y) = −(x, y).

The trajectory is shown in Figure 3 for δ = 0.001 in the first row, and δ = 0.003

in the second row. The values for N are 10,000; 50,000; and 100,000 in the

first, second, and third columns, respectively. The stationary density is shown

in Figure 4 a), the estimated density using a Gaussian kernel with bandwidth

h = 0·2 is shown in Figure 4 b), and the estimated density using an Epanechnikov

kernel with bandwidth h = 0·4 is shown in Figure 4 c). In all cases, we used

the trajectory shown in Figure 3, with δ = 0.003 and N = 100,000. Because we

can estimate the support, we have forced the estimation to be zero outside the
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Figure 3. The trajectory of the RBMD, for different values of δ and N , in a), b), and c),
δ = 0.001 and N = 10,000, N = 50,000, and N = 100,000, respectively. In d), e), and
f), δ = 0.003 and N = 10,000, N = 50,000, and N = 100,000, respectively.
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Figure 4. a) Real density, b) estimated using Gaussian Kernel with h = 0·2, c) estimated
using Epanechnikov kernel with h = 0·4.

estimation of the support.

For the level sets, we consider the levels λ = 0.44, 0.41, 0.34, 0.27, and 0.03.

Figure 5 a) shows the theoretical level sets for the considered values of λ, and

b) shows the corresponding estimated level sets. The estimation is based on

a trajectory with δ = 0.003 and N = 500,000, using (3.3) with r = 0.4. We

use the Gaussian kernel with h = 0·1. The choice of an optimal bandwidth for

level-set estimation has been studied recently for the independent and identically
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Figure 5. a) Theoretical level sets. b) Estimation using (3.3) for r = 0.4, with a Gaussian
kernel and bandwidth h = 0.1. Red indicates a core area.
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Figure 6. (Left) Theoretical drift. (Right) Estimation using (3.4).

distributed (i.i.d.) case; see Qiao (2018). Although it should behave similarly

for geometric mixing processes, extending the results of Qiao (2018) is beyond

the scope of this study. It is clear that the hole in the domain will produce

border effects for the density estimation, and therefore for the level sets. A way

to overcome this problem (which is computationally very expensive) is to first

estimate the support using the r-convex hull of the trajectory, and then to use a

variable bandwidth kernel estimate, where the bandwidth is given by the lesser

of a fixed h and the distance from the point x to the boundary of the support.

The left side of Figure 6 shows the theoretical vector field corresponding to

the drift, and the right shows the estimator (3.4) based on the trajectory given

in Figure 3 f), using the Gaussian kernel and bandwidth h = 0.45.
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Figure 7. a) Trajectory and 0.02-convex hull, b) density estimator using Gaussian Kernel
with h = 0.01, c) r-convex hull of level sets, d) Estimation of the drift.

4.2. Real-data examples

We considered a data set from the Movebank database, where a natural

barrier acts as a boundary on an animal’s movement. GPS collars were placed

on elephants in Loango National Park in western Gabon. The area is protected

by the Atlantic Ocean on the west and by Lagoon Iguéla to the east. Figure 7

a) shows the movement of an elephant (in red) using an estimator N = 1,633 for

recorded positions. The blue lines represent the boundary of the r-convex hull

estimator for r = 0.02. The estimated density is shown in b), using the Gaussian

kernel with bandwidth h = 0.01. The r-convex hulls of the level sets are shown

in c) for λ1 = 100, λ2 = 600, λ3 = 1,100, λ4 = 1,600, and r = 0.02. In d) we

show the estimation of the drift, using (3.4) with h = 0.5.

Supplementary Material

The proofs for lemma 2 in Section 3.1 and Lemmas 3 and 4 given in Ap-

pendix A are provided in Appendix A1 of the online Supplementary Material.

In addition, the proofs for results in Sections 2 and 3.3 are given in Appendix B

and C, respectively, in the Supplementary Material.
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A. Appendix

Here we include the proofs of the propositions stated in Section 3.

Proof of Theorem 1. We will deal separately with each term on the right hand

side of the following inequality:

βn sup
x

∣∣g(x)− ĝn(x)
∣∣ ≤ βn sup

x

∣∣g(x)− Eπ(ĝn(x))
∣∣+ βn sup

x

∣∣ĝn(x)− Eπ(ĝn(x))
∣∣.

(A.1)

First we bound the bias term.∣∣Eπ(Kh(x−Xk))− g(x)
∣∣ ≤ ∣∣∣∣∫

S
Kh(x− y)g(y)dy − g(x)

∣∣∣∣
≤
∫
S
Kh(x− y)|g(y)− g(x)|dy

≤ hCg
∫
Rd
‖u‖K(u)du = κCgh.

(A.2)

Observe that Eµ0
(Kh(x−Xk)) =

∫
SKh(x−y)µk(dy). Recall that k1 = maxxK(x).

Now, by (2.2), since ‖Kh(x− y)‖∞‖µk − π‖TV ≤ (k1/h
d)γρk.∣∣∣∣∫

S
Kh(x− y)µk(dy)−

∫
S
Kh(x− y)dπ(y)

∣∣∣∣ ≤ k1

hd
γρk. (A.3)

Observe that E(ĝn(x)) = (1/n)
∑n

k=1 Eµ0
(Kh(x −Xk)), and Eπ(Kh(x −Xk)) =∫

SKh(x− y)g(y)dy. Hence (A.3) implies

βn sup
x

∣∣∣∣∣ 1n
n∑
k=1

[
Eµ0

(Kh(x−Xk))− Eπ(Kh(x−Xk))
]∣∣∣∣∣ ≤ CΓn (A.4)

which, together with (A.2), entails

βn sup
x

∣∣E(ĝn(x))− g(x)
∣∣ ≤ C βn

nhd
+ κCghβn. (A.5)
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Since S is compact, we can cover S with ν ≤ c/hd(d+2) balls of radius hd+2

centred at some fixed points {x1, . . . , xν} ⊂ S, c being a positive constant de-

pending only on d and µL(S). For i = 1, . . . , ν, P
(∣∣ĝn(xi) − E(ĝn(xi))

∣∣ > ε
)

equals

P

∣∣∣ n∑
j=1

[
Kh(xi −Xj)− Eµ0

(Kh(xi −Xj))
]∣∣∣ > nε

 .

By proposition 4.1 of Campos and Dorea (2005), the sequence {Xn}n∈N is ϕ

mixing with ϕ(n) = 2γρn (γ as in (2.2)). Let x ∈ S and xi be such that

‖x − xi‖ < hd+2. Since K is Lipschitz, denote by R the Lipschitz constant of

K, then |ĝn(x) − ĝn(xi)| ≤ R‖x − xi‖/hd+1 ≤ Rh. Hence,
∣∣ĝn(x) − E(ĝn(x))

∣∣ ≤∣∣ĝn(xi)− E(ĝn(xi))
∣∣+ 2Rh. If we take n so large that 2Rh < ε/(2βn), we get

P

(
sup

x∈B(xi,hd+2)

∣∣ĝn(x)− E(ĝn(x))
∣∣ > ε

βn

)
≤ P

(
|ĝn(xi)− E(ĝn(xi))| >

ε

2βn

)
.

Now use the Bernstein inequality (3.1) with Yj = K((x−Xj)/h)−Eµ0
(K(x−

Xj)/h) and C1 = 2k1. Recall that g1 = maxx∈S g(x). Let us take n0 such

that for all n > n0 ρn/(hdng1µL(S)) < 1 and 2Rh < ε/(2βn). Denote by

C ′′ = 2k1γg1µL(S), then for n > n0, by (A.3), Eµ0
(K ((x−Xj)/h)) ≤ k1γρ

n +∫
SK ((x− y)/h) g(y)dy ≤ k1γρ

n + k1h
dg1µL(S) ≤ C ′′hd.

Hence η = 2C ′′hd, D ≤ 2k1C
′′hd , and ϕ̃(m) ≤

∑∞
i=1 2γρi < 2γ, so C2 =

12k1C
′′hd(1 + 16γ). Since αn = o(1/βn), if m = bβnc, then αnC2h

−d < ε/(4βn)

and αnmC1 < 1/4 for n large enough. On the other hand, since log(n)/βn → 0,

3e1/2n(ϕ(m)/m) → 0, as n → ∞. Let us take n1 > n0, such that for all n >

n1, βnαnC2h
−d < ε/4, αnmC1 < 1/4 and 2 exp(3e1/2n(ϕ(m)/m)) < 3. Now

Bernstein’s inequality implies that, for all n > n1

P
(∣∣ĝn(xi)− E(ĝn(xi))

∣∣ > ε

2βn

)
≤ 2 exp

(
3e1/2n

ϕ(m)

m
− αnε

2Γn
+ α2

nC2n

)
≤ 3 exp

(
−εαn

4Γn

)
.

Lastly, for n > n1,

P
(

sup
x

∣∣ĝn(x)− E(ĝn(x))
∣∣ > ε

βn

)
≤

ν∑
i=1

P
(∣∣ĝn(xi)− E(ĝn(xi))

∣∣ > ε

2βn

)
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≤ 3c

hd(d+2)
exp

(
− εαn

4Γn

)
which, together with (A.1) and (A.5), implies (3.2).

To prove the almost surely convergence, observe that αn/(4Γn log(n))→∞
and nh → ∞, imply that (1/ log(n))

[
εαn/(4Γn) + (d(d + 2)) log(h)

]
→ ∞, and

then we can apply Borel-Cantelli’s Lemma.

Proof of Theorem 3. Let us consider n > n1 where n1 is given in Theorem 1.

Let us denote An = {βn supx |ĝn(x) − g(x)| < 1}, we now that P(An) > 1 − Ψn

for all n > n1. Since εnβn > 1 and εn < δ0, by condition HR, P(An(λ) ⊂
Gg(λ−εn)) > 1−Ψn for all n > n1. By Lemma 2 it is enough to prove that there

exists n2 such that for all n > n2, P(Gg(λ+εn) ⊂ An(λ)) > 1−2Ψn or what is the

same we have to prove that for n > n1, P(∃xn ∈ Gg(λ+εn) : xn /∈ An(λ)) ≤ 2Ψn.

Let us denote Xn = {X1, . . . , Xn} and

Cn =
{
∃xn ∈ Gg(λ+ εn) such that ∃yn : xn ∈ B(yn, r),#

{
Xn ∩ B(yn, r)} = 0

}
.

Then,{
∃xn ∈ Gg(λ+ εn) : xn /∈ An(λ)

}
⊂ Cn∪{

{∃xn ∈ Gg(λ+ εn) such that ∃yn : xn ∈ B(yn, r),#
{
Xn ∩ B(yn, r)} > 0

}
∩
{
∀Xi ∈ B(yn, r), ĝn(Xi) ≤ λ

}}
= Cn ∪ Fn.

Since g is Lipschitz if xn ∈ Gg(λ+εn), g(z) > λ+εn/2 for all z ∈ B(xn, νn) where

νn = εn/(2Cg). Then on An, for all n > n1 ĝn(z) > λ, for all z ∈ B(xn, νn). The

set En defined as follows fulfills,{
∃xn ∈ Gg(λ+ εn) such that ∃yn : xn ∈ B(yn, r),#{Xn ∩ B(yn, r)} > 0

}
∩
{
∀Xi ∈ B(yn, r) ∩ B(xn, νn), ĝn(Xi) ≤ λ

}
⊂ Acn.

And then, P(Fn) ≤ P(En) ≤ Ψn.

Let us bound P(Cn) ≤ Ψn. To do that, let us introduce, for each fixed

n > n1, the random variables Zk(y) = K
(
‖Xk − y‖/r

)
k = 1, . . . , n, where K

is a Lipschitz function such that I[0,1/2](x) ≤ K(x) ≤ I[0,1](x) and K(x) > 0 for

all x ∈ (1/2, 1), then P(Cn) ≤ P
(

infy∈S(1/n)
∑n

k=1 Zk(y) = 0
)
. Proceeding as in

(A.4),
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sup
y∈S

∣∣∣∣∣ 1n
n∑
k=1

[
Eµ0

(Zk(y))− Eπ(Zk(y))
]∣∣∣∣∣ ≤ 2γ

n

∞∑
k=1

ρk. (A.6)

Since g(x) > g0 > 0 for all z ∈ S,

Eπ(Zk(y)) =

∫
B(y,r)

K

(
‖t− y‖

r

)
g(t)dt ≥ g0

(r
2

)d
ωd > 0. (A.7)

Let us fix 0 < ε < g0(r/2)dωd/3, from (A.6) and (A.7), if we take n large enough

such that (2γ/n)
∑∞

k=1 ρ
k < g0(r/2)dωd/3, it is enough to prove that there exists

n2 such that for all n > n2,

P

(
sup
y∈S

∣∣∣ 1
n

n∑
k=1

[Zk(y)− Eµ0
(Zk(y))]

∣∣∣ > ε

)
< Ψn.

As before, since S is compact, we can cover it with ζ ≤ c/ιd balls of radius

ι centred at some fixed points {x1, . . . , xζ} where c is a constant which de-

pends only on d and µL(S). First, observe that if (2γ/n)
∑∞

k=1 ρ
k < ε/5, then,

supyi
∣∣(1/n)

∑n
k=1[Eµ0

(Zk(yi))− Eπ(Zk(yi))]
∣∣ ≤ ε/5.

If µL(B(yi, r)4B(y, r))g1 < ε/5, where g1 is the maximum of g,

sup
yi∈B(y,ι)

∣∣∣∣∣ 1n
n∑
k=1

[Eπ(Zk(yi))− Eπ(Zk(y))]

∣∣∣∣∣ ≤ ε

5

sup
y∈S

∣∣∣∣∣ 1n
n∑
k=1

[Eπ(Zk(y))− Eµ0
(Zk(y))]

∣∣∣∣∣ ≤ ε

5
.

Using Berstein inequality, we can bound, for a fixed y,

P

(∣∣∣ 1
n

n∑
k=1

[Zk(y)− Eµ0
(Zk(y))]

∣∣∣ > ε

βn

)
≤ 3 exp

(
−εαnn

4βn

)
. (A.8)

where αn = o(1/βn) and log(n)/βn → 0. Then

P

(
sup
y∈S

∣∣∣ 1
n

n∑
k=1

[Zk(y)− Eµ0
(Zk(y))]

∣∣∣ > ε

)
≤ I1 + I2,

where I1 = P
(

supyi∈B(y,ι) |1/n
∑n

k=1[Zk(y) − Zk(yi)]| > ε/5
)

and I2 = P
(

supyi
|1/n

∑n
k=1[Zk(yi)− Eµ0

(Zk(yi))]| > ε/5
)
.
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Since K is Lipschitz (let us denote CK the Lipschitz constant of K) we can

bound I1 ≤ CKι/r and from (A.8), I2 ≤ (3c/ιd) exp
(
− εαnn/(4βn)

)
. Now take

ι = hn (being hn as in Theorem 1), then I1 + I2 ≤ Γn.

In order to prove Theorem 4 we will need two lemmas. For the first, recall

that given a probability distribution P , A is a P -uniformity class if supA∈A |Pn(A)

− P (A)| → 0 whenever Pn → P weakly. Theorem 5 in Cuevas, Fraiman and

Pateiro-López (2012) proves that the class of sets with reach bounded from below

by a positive constant included in a compact set is a P -uniformity class.

Lemma 3. Let S ⊂ Rd be a compact set and g : S → R a C2 function such

that that there exists an ε0 > 0 and a c > 0 such that ‖∇g(x)‖ > m for all

x ∈ U , where U is an open set containing Gg(lτ − ε0) \ Gg(lτ + ε0). Then

{Gg(λ) : lτ − ε0/2 ≤ λ ≤ lτ + ε0/2} is a P -uniformity class for all probability

distributions P on S absolutely continuous w.r.t. Lebesgue measure.

Lemma 4. Under the hypotheses of Lemma 3, for all 0 ≤ ε < ε0/2 and all

lτ − ε < λ < lτ + ε, Gg(λ − ε) \ Gg(λ + ε) ⊂ B
(
∂Gg(λ), 3εM/m2

)
where M =

max{x∈Gg(lτ−ε0)\Gg(lτ+ε0)} ‖∇g(x)‖ and m = min{x∈Gg(λ−δ1)\Gg(λ+δ1)} ‖∇g(x)‖.

Proof of Theorem 4. By Remark 3 ii) we have that supx∈S |ĝn(x)− g(x)| → 0

a.s. We will prove that l̂τ → lτ a.s. Define L(λ) = π(Gg(λ)), L̂(λ) = (1/n)#{i :

Xi ∈ Gĝn(λ)} and L̃(λ) = (1/n)#{i : Xi ∈ Gg(λ)} and I(ε0, lτ ) = [lτ − ε0/2, lτ +

ε0/2] ,

sup
λ∈I(ε0,lτ )

|L(λ)− L̂(λ)| ≤ sup
λ∈I(ε0,lτ )

|L(λ)− L̃(λ)|+ sup
λ∈I(ε0,lτ )

|L̃(λ)− L̂(λ)|.

|L̃(λ)− L̂(λ)| = 1

n

∣∣∣#{i : Xi ∈ Gg(λ)} −#{i : Xi ∈ Gĝn(λ)}
∣∣∣

=
1

n

(
#{i : Xi ∈ Gg(λ) \Gĝn(λ)}+ #{i : Xi ∈ Gĝn(λ) \Gg(λ)}

)
.

Since supx |ĝn(x) − g(x)| → 0 a.s., we have that for all λ and ε, Gg(λ + ε) ⊂
Gĝn(λ) ⊂ Gg(λ− ε) with probability one, for n large enough. Then, with proba-

bility one, for n large enough, for all 0 ≤ ε < ε0/2,

sup
λ∈I(ε0,lτ )

|L̃(λ)− L̂(λ)| ≤ sup
λ∈I(ε0,lτ )

2

n
#
{
i : Xi ∈ Gg(λ− ε) \Gg(λ+ ε)

}
.

By Lemma 3, Gg(λ) is a P -uniformity class. Hence,

sup
λ∈I(ε0,lτ )

∣∣∣∣ 1n#
{
i : Xi ∈ Gg(λ− ε) \Gg(λ+ ε)

}
− π

(
Gg(λ− ε) \Gg(λ+ ε)

)∣∣∣∣→ 0
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and π
(
Gg(λ − ε) \ Gg(λ + ε)

)
≤ g1µL

(
Gg(λ − ε) \ Gg(λ + ε)

)
, where g1 =

maxx∈S g(x). By Lemma 4,

sup
λ∈I(ε0,lτ )

µL
(
Gg(λ− ε) \Gg(λ+ ε)

)
≤ sup

λ∈I(ε0,lτ )
µL

(
B

(
∂Gg(λ),

3εM

m2

))
.

For a fixed ε > 0, µL
(
B
(
∂Gg(λ), 3εM/m2

))
is a continuous function of λ, and so

its maximum is attained in some λ0 ∈ I(ε0, lτ ). Since reach(∂Gg(λ0)) > 0, the

outer Minkowski content of Gg(λ0) and Gg(λ0)c exist, and so by corollary 3 of

Ambrosio, Colesanti and Villa (2008), supλ∈I(ε0,lτ ) µL
(
Gg(λ − ε) \Gg(λ + ε)

)
=

O(ε), from which it follows that supλ∈I(ε0,lτ ) |L̃(λ)−L̂(λ)| → 0. Using Lemma 3 it

follows that supλ∈I(ε0,lτ ) |L(λ)− L̃(λ)| → 0, then supλ∈I(ε0,lτ ) |L(λ)− L̂(λ)| → 0.

To prove that l̂τ → lτ a.s., let 0 < ε < ε0/2 and γ = min
{

1 − τ − L(lτ +

ε/2), L(lτ − ε/2) − (1 − τ)
}
. Now observe that γ > 0 since L is decreasing in

lτ−ε0 ≤ λ ≤ lτ+ε0. Let n be so large that supλ∈I(ε0,lτ ) |L(λ)−L̂(λ)| < γ/2. Then

lτ − ε/2 < l̂τ < lτ + ε/2. To conclude the proof, observe that since ‖∇g(x)‖ > m

for all x ∈ U , where U is an open set containing Gg(lτ − ε0) \ Gg(lτ + ε0),

it follows that {x : g(x) < λ} = {x : g(x) ≤ λ} for all lτ − ε0 < λ < lτ +

ε0. Now we apply theorem 2.1 of Molchanov (1998), which implies that, with

probability one, supλ∈I(ε0,lτ ) dH
(
Gĝn(λ), Gg(λ)

)
→ 0. Lastly, the result follows

since dH
(
Gĝn(l̂τ ), Gg(lτ )

)
≤ dH

(
Gĝn(l̂τ ), Gg(l̂τ )

)
+ dH

(
Gg(l̂τ ), Gg(lτ )

)
, and the

second one converges to zero by Lemma 4.
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