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Abstract. Physics-Informed Neural Networks (PINNs) have emerged as a promising approach for solv-

ing scientific and engineering problems that involve partial differential equations or physical constraints.

PINNs are a type of neural network architecture that incorporates physical laws or governing equations

into its learning process. By combining the strengths of deep learning and physics-based modeling,

PINNs can learn complex patterns and relationships from data while simultaneously satisfying the gov-

erning equations or physical laws. In this work, we explore the capabilities of PINNs to solve physical

problems and identify the material properties. The first validation example is 1D problem, in which the

heat generation number is estimated in a rectangular fin with temperature dependant thermal conductivity

and heat generation. The second example illustrates the behavior of a 2D linear-elastic beam subjected to

a uniform traction at its tip, experiencing negligible strains and plane stresses. The goal in this example

was to estimate the Young’s modulus. Finally, the third example studying here is a three-dimensional

solid with a Neo-Hookean material, loaded with a compressive traction at the opposite end. In this case,

the estimated parameters were the first and second Lame’s parameters. The reliability of the results was

assessed comparing against the analytical solution of each case. The ground truth displacement data

were obtained from analytical solution of the problem evaluated in selected data points. These values

were used as input to evaluate the loss data function, while the remaining loss functions were derived

from the physics of each problem. The results of this study suggest that PINNs have the potential to be an

effective tool for both material identification problems and real-time prediction of the physical solution.
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1 INTRODUCTION

In the last decade, Deep Neural Networks (DNNs) have revolutionized various fields by

exhibiting exceptional capabilities in pattern recognition, image processing, natural language

understanding, and more (Krizhevsky et al., 2017; Alipanahi et al., 2015; Lake et al., 2015;

Mallampati and Almekkawy, 2021). These networks, inspired by the architecture of the human

brain, have showcased unparalleled prowess in capturing complex relationships within data, al-

lowing them to excel in tasks that are considered challenging for traditional algorithms if enough

data is available (Goodfellow et al., 2016). In this context, Physics-Informed Neural Networks

(PINNs), which where first introduced in Raissi et al. (2019), emerged as a novel framework

based on automatic differentiation where neural networks are not merely data-driven, but also

informed by the governing physics equations. Automatic differentiation (Paszke et al., 2017)

is a fundamental feature that allows the library to compute gradients or derivatives of func-

tions with respect to their input variables automatically. By incorporating physical laws as

constraints during the training process, PINNs aim to strike a balance between empirical data

and fundamental principles, leading to enhanced generalization and accurate predictions, even

with limited training data. This method offers several advantages over traditional solvers. One

key benefit is its mesh-free nature, relying on collocation points that can be placed anywhere.

Next, this architecture makes feasible the addition of physical knowledge (constraint, boundary

condition, physical laws, observational data) about any part of a complex system into the net-

work, this helps to guide the optimization to the solution and avoid unrealistic results (Fuhg and

Bouklas, 2022).

The paper follows a structured format, with Section 2 describing the methodology. Sub-

section 2.1 introduces Deep Neural Networks (DNNs) while Subsection 2.2 explores Physics-

Informed Neural Networks (PINNs). Subsections 3.1 to 3.3 provide theoretical foundations in

thermodynamics of a fin, linear elasticity, and hyperelasticity. Section 3 presents numerical re-

sults, including in Subsections 2.3 - stationary fin, 2.4 - linear elastic cantilever beam, and 2.5

- hyperelastic uniaxial compression. The paper concludes in Section 4, summarizing findings

and emphasizing the broader implications of this research.

2 METHDOLOGY

In this section, we elucidate the step-by-step procedures undertaken to achieve the study’s

objectives, encompassing experimental design, data collection and analysis methods, theoretical

frameworks, and computational tools.

2.1 Deep feedforward neural networks

DNNs consist of interconnected units called neurons organized into layers. Fig. 1 illustrates

a deep feedforward neural network composed of interconnected layers of neurons, which com-

pute an output layer (predictions) based on input data. The information is propagated forward

through the layers, creating a learning network with some form of feedback mechanism.

DNNs define a mapping between the output y and input x through the function y = f(x;θ),
and learns the value of the parameters θ that result in the best function approximation. To

find this θNN for a parametric family of distributions f(x;θNN) the negative log-likelihood

estimation is minimized through an optimization process (Goodfellow et al., 2016).

The layers are connected through weights W and biases b. For a particular layer l, the output
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Ŷl can be expressed as is presented in Eq. :

Zl = WlŶl−1 + bl,

Ŷl = σ(Zl)
(1)

where σ represents the activation function applied to the intermediate output Zl.

2.2 Physics Informed Neural Network

The architecture selected for all the PINNs has a number of layers NL = 8 with NNL = 20
neurons each, as it is shown in Fig. 1. The first part of the PINN (a DNN) receives the reference

position X as input and returns the predicted uNN . Now, consider the set of non-linear PDE

equations presented in Eq. (2):

Φ(x,u,Du,D2u, c) = 0 (2)

where Du, D2u represents gradient and Hessian of u respectively whereas Φ is generic nonlin-

ear function. To solve Eq. (2), the second part of the PINN, takes uNN as input and computes

three types of losses, which are chosen as the Mean Squared Error between the corresponding

values, as it is shown in Eqs. (3), (4), and (5). These losses are used backward to update the

weights, biases and the trainable material properties c. The required derivatives are computed

using automatic differentiation. Three losses are considered. The data loss Ldata, which is eval-

σ σ σ

σ σ σ

σ σ σ

X uNN

Ldata

LPDE

LBC

L

NL

NN

∂
∂X

Figure 1: Sketch of the PINN implemented.

uated at the data points point Nd with known θ values. The partial differential equation loss

LPDE (physics loss), is evaluated at NPDE collocation points. The boundary condition loss

LBC , evaluates at the boundary of the body, which is a point, a line, or a surface depending of

the case. Each loss is computed as it is described in the following Eqs. (3), (4) and (5):

Ldata =
1

Ndata

Ndata
∑

i=1

||ui
data − ui

NN ||
2

2
, (3)

LPDE =
1

NPDE

NPDE
∑

i=1

||Φ(ui
NN , ∂xu

i
NN , ∂xxu

i
NN)|Xi

PDE
||2
2
, (4)
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LBC =
1

NBC

NBC
∑

i=1

||Ωdata(X
i
BC)− Ω(ui

NN , ∂xu
i
NN , ∂xxu

i
NN)|Xi

BC
||2
2
. (5)

Φ(·) is the partial differential equations derived from the physics of each problem depending

on the neural network output (u), and its derivatives (∂xu, ∂xxu). Ω(·) is the boundary condi-

tion function and Ωdata(·) is the ground truth. Each one of these functions is evaluated in the

corresponding points, NPDE and NBC respectively.

Then, the total loss is computed using Eq. (6):

L = αdataLdata + αPDELPDE + αBCLBC (6)

where the αi is a weight associated to the loss i, which were manually tuned.

Loss weights are used to adjust the relative importance of these components in the opti-

mization process. The choice of loss weights influences how much emphasis the model places

on satisfying the data and physics constraints. Finding appropriate loss weights is crucial for

achieving a well-balanced model that respects both data and physics Xiang et al. (2022).

For all cases, the optimization algorithm employed was L-BFGS (Liu and Nocedal, 1989),

which is a second order algorithm. From this point, the tolerances set to solve with L-BFGS are

1× 10−11 for the loss absolute change and its gradient.

2.3 Thermodynamic of a fin

This problem is based on Oommen and Srinivasan (2022), in which a rectangular fin with

temperature dependant thermal conductivity and heat generation is considered. The governing

equation of this problem is well known as it is presented in Eq. (7):

∂

∂x

(

k
∂T

∂x

)

−
hP

A
(T − T∞) + q = 0 (7)

where k is the thermal conductivity and q is the internal heat source, which in this case varies

linearly with temperature. The non-dimensional form of Eq. (7) is presented as follows in

Eq. (8):

F =
∂

∂x∗

(

(1 + ϵcθ)
∂θ

∂x∗

)

−N2θ +N2G(1 + ϵGθ) = 0 (8)

with the following dimensionless numbers:

θ =
T − T∞

Tb − T∞

N =

√

hPL2

k0A
G =

q0A

hP (Tb − T∞)

ϵG = ϵ(Tb − T∞) ϵC = β(Tb − T∞)

(9)

where c = [G] is the heat generation number to be estimated, ϵC is the non-dimensional ther-

mal conductivity parameter, ϵG is the non-dimensional heat generation parameter and N is the

convection-conduction parameter.

2.4 Linear Elasticity

An elastic plate submitted to small strains and undergoing plane stresses can be modeled

with the Hooke’s Law. Hooke’s Law is a foundational principle in linear elasticity, stating that
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within the elastic limit of a material, stress is directly proportional to strain. The most common

representation of this relationship is using the Hooke’s law for linear elasticity, which can be

expressed in the tonsorial form as it is presented in Eq. (10):

σ = C · ε (10)

where: σ represents the stress tensor describing the distribution of stresses in the material, C
is the fourth-order stiffness tensor known as the elastic stiffness tensor or elasticity tensor. It

characterizes the material’s response to stress and relates it to strain, and ε represents the strain

tensor describing material deformation.

Plane stress is a simplification used in the analysis of materials and structures where the

stress variation in one dimension is negligible compared to that of the other two dimensions. In

this case, this assumption allow us to consider the stresses only in x and y direction.

Lamé’s parameters (λ and µ), Young’s modulus (E), and Poisson’s ratio (ν) are intercon-

nected material properties that describe the mechanical behavior of isotropic linear elastic ma-

terials. These properties are used to model how materials respond to external forces and defor-

mations, and are related as follows in Eq. (11):

λ =
E

3(1− 2ν)
µ =

E

2(1 + ν)
. (11)

The equilibrium equations for a 2D plate relate the internal stresses to the external loads

applied to it. These equations ensure that the sum of forces and moments in each direction

is zero, maintaining equilibrium. In the case of linear elasticity this can be mathematically

expressed through Eq. (12):

Φ = ∇.σ − Fext = 0 (12)

where Fext is the vector of external forces.

2.5 Hyperelasticity

A body made of a isotropic and homogeneous hyperelastic material under finite deformation

is considered. The body occupies the solid region Ωs. The mapping function φ of material

points X from the reference configuration to the current configuration x is expressed in Eq.

(13):

x = φ(X) = X+ u. (13)

The deformation gradient F is defined in Eq. (14), by computing the material derivatives of

φ(X).
F = ∇φ(X) (14)

where ∇ represents the material gradient operation.

The equilibrium equations are given by Eq. (15):

∇ ·P+ f = 0 X ∈ Ωs

u = û X ∈ ΓD

P.n = t̂ X ∈ ΓN

(15)

where P represents the first Piola-Kirchhoff stress, f is the body force, ∇· the divergence op-

erator, and n the outward normal unit vector in the reference configuration. A set of external
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traction forces t̂ represents the Neumann boundary conditions applied at ΓN region, while û

accounts for the Dirichlet boundary conditions at region ΓD.

The constitutive law for Hyper-elastic materials satisfies Eq. (16):

P =
∂Ψ(F)

∂F
(16)

where Ψ is the strain energy density function specific for each material model assumed.

3 NUMERICAL RESULTS

Within this section, the results of three examples with incremental complexity are presented.

The first one is a 1D heat transfer problem, while the second and third are 2D and 3D solid prob-

lems, respectively. Furthermore, in the first two, one material parameter is identified, whereas

in the 3D problem, two are identified. For the resolution of this problems we use 3.10 Python

version and the machine learning framework PyTorch 1.13 (Paszke et al., 2019).

3.1 Example 1D: Stationary fin

The profile of temperatures in nine equispaced points of a rectangular fin with temperature

dependant thermal conductivity and heat generation is considered for the evaluation of the Ldata.

Eq. (8) depends on several variables: the non-dimensional thermal conductivity parameter is

εC = 0.4, the non-dimensional heat generation parameter is εG = 0.6 and the convection-

conduction parameter is N = 1.

Moreover, the boundary conditions considered for the LBC are given by Eq. (17):

θ(x∗)|x∗=0 = 0
∂θ(x∗)

∂x∗

|x∗=1 = 0 (17)

where the first one represents the imposed (or known) temperature at x∗ = 0 of the fin and the

second one is the adiabatic end. These boundary condition were imposed in different ways.

The Dirichlet boundary condition is set as input such that θ(x∗)|x∗=0 is zero, ensuring that

the network effectively enforces the dimensionless temperature to be zero at x∗ = 0 (only

one point). The Neumann boundary condition is imposed as a loss that has to be minimized,

therefore the network tend to modify the output to fulfill this condition (at one point). For the

computation of the LPDE the Eq. (8) is evaluated in 50 collocation points, and the weights of

the losses αi are all considered as 1.

The results are shown in the following figures. One the one hand, Fig. 2 shows that the

predicted temperature distribution (blue dashed line) are in agreement with the data provided as

input (golden dots). On the other hand, a continuous decrease of the total loss with the advance

of the iterations is observed. Fig. 3 shows the evolution of the predicted heat generation number

with the iterations. It can be seen that the G value predicted converges to the G value ground

truth. Especifically, the value predicted by the PINN was GNN = 0.705 while the real value

was Greal = 0.703. This difference represents a 0.3% of error in the prediction.

3.2 Example 2D: Linear-Elastic Cantilever Beam

An homogeneous two-dimensional body that occupies a prismatic domain denoted by Ω =
[0, Lx] × [0, Ly], as depicted in Fig. 4 is studied. The dimensions of this domain are Lx = 30
mm, Ly = 10 mm.
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Figure 2: left: Temperature profile known vs predicted - right: Evolution of the losses for each

L-BFGS iteration

Figure 3: Evolution of the predicted heat generation with L-BFGS iterations

Figure 4: Plane stress traction sketch.

On the surface ∂ΩLx
at x = Lx, a nominal total force, t = [1, 0, 0] N is applied uniformly

over the surface. The boundary faces at x = 0 mm (∂ΩX), y = 0 mm (∂ΩY ) are considered

to have frictionless contact. The remaining boundary (∂ΩLY
) is free and no tension is applied.
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The mathematical expressions of the Dirchlet boundary conditions are given by Eq. (18):

u(x) · (e1) = 0 ∀ x ∈ ∂ΩX

u(x) · (e2) = 0 ∀ x ∈ ∂ΩY

(18)

and Neumann boundary conditions are presented in Eq.(19):

P(x)[e1] = t ∀ x ∈ ∂ΩLx
(19)

P(x)[e2] = 0 ∀ x ∈ ∂ΩLY
(20)

As the body is considered submitted to a plane stress state, the constitutive law presented in

Eq. (10) is simplified to Eq. (21) as follows:

σ = G







2

1− ν
(ux + νvy) ux + vy

ux + vy
2

1− ν
(vy + νux)






, (21)

and substituting Eq. 21 into Eq. 12, the expression to use in the LPDE:

Φ = ∇.σ − Fext = G







2

1− ν
(uxx + νvyx) + uxy + vyy

2

1− ν
(vyy + νuxy) + uxx + vyx






− Fext = 0 (22)

where G is the shear modulus which can be computed from E and ν as: G = E/2(1 + ν).
For this example, C = [E] is the parameter to be estimated by the PINN (which should be 10),

while ν = 0.3 is a known parameter.

In the reference configuration, 1000 training points are uniformed placed in the square do-

main. These points are used to evaluate the loss terms for the PDEs. Additionally, 300 training

points are used to evaluate the loss for the displacement field. Finally, for the application of

Dirichlet and Neumann boundary conditions (see Eqs.(18) and (19)) the strategy was the same

than that in the previous example. For the Dirichlet boundary condition the zero displacement

point were provided as input data, while for Neumann boundary condition, 30 points were de-

fined at the sides of the 2D plate where the loss of the boundary condition (LBC) was evaluated.

After several computations it was found that LPDE is a few orders smaller than the Ldata, or

even the LBC . In this case, the weights of the losses play a key role to make comparable the

magnitudes. The weights αi were manually tuned to αdata = 1, αPDE = 500, and αBC = 1,

and the learning rate was 3e0.
The results are shown in Fig. 5. During the training process, we concurrently test the per-

formance of the PINN by evaluating both the losses and the predicted material parameters. The

evolution of the total loss against the training iterations is shown in Fig. 5a. The total loss grad-

ually decreases from O(100) to approx O(10−6) despite some fluctuations, indicating that the

PDEs, BCs and the displacement data are all satisfied.

As the training proceeds, the inferred material parameters almost reaches the reference values

(ENN = 9.86 vs Ereal = 10), representing in this case, the predicting error in the identification

is around a 1.3%
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(a) Evolution of losses functions. (b) Evolution of material parameters E.

Figure 5: Plane stress example training process.

3.3 Example 3D: Hyperelastic Uniaxial Compression

An homogeneous body that occupies a prismatic domain denoted by Ω = [0, Lx]× [0, Ly]×
[0, Lz], as depicted in Fig. 6 is solved. The dimensions of this domain are Lx = 3 mm,

Ly = 1 mm, and Lz = 1 mm. On the surface ∂ΩLi
at x = Lx, a nominal force per unit

area, t = [−5, 0, 0] MPa is applied. The boundary faces at x = 0 mm (∂ΩX), y = 0 mm

(∂ΩY ), and z = 0 mm (∂ΩZ) are considered to have frictionless contact. The remaining two

boundaries are free and no tension is applied. The mathematical expressions of the Dirchlet

boundary conditions are given by Eq. (23):

u(x) · (e1) = 0 ∀ x ∈ ∂ΩX

u(x) · (e2) = 0 ∀ x ∈ ∂ΩY

u(x) · (e3) = 0 ∀ x ∈ ∂ΩZ ,

(23)

and the Neumann boundary satisfies the following Eq. (24):

P(x)[e1] = t ∀ x ∈ ∂ΩLi
(24)

P(x)[ni] = 0 ∀ x ∈ ∂Ωi (25)

where ∂Ωi represents all the solid surfaces excluding ∂Ωi, ∂ΩX , ∂ΩY , ∂ΩZ .

The constitutive material behaviour is a Neo-hookean with a strain energy function presented

in Eq. (26):

Ψ(C) =
µ

2
(Tr(C)− 2− ln(J)) +

K

2
(J − 1)2 (26)

where C is the Cauchy-Green strain tensor, J =
√

(det(C), µ is the second Lamé’s parameter

and K is the bulk modulus. In this example c = [K,µ] and the reference values are K = 1.538
MPa and µ = 3.33 MPa respectively.

The analytic solution of the problem can be obtained solving the following Eqs. (27) and

(28) :

µ−
µ

α2
+

Kβ2

α
(β2α− 1) = −p(t) (27)

µ−
µ

β2
+K(α2β2 − α) = 0 (28)
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Figure 6: Uniaxial-compression sketch.

where α = (1+ux/Lx), β = (1+uy/Ly) and ux, uy are the displacements at x = (Lx, Ly, Lz).
In the reference configuration, a total of 100 training points are placed randomly in the square

domain. These points are used to evaluate the loss terms for the PDEs. Additionally, 25 training

points are used to evaluate the loss for the displacement field. Finally, for Dirichlet and Neu-

mann boundary conditions in Eqs.(23) and (24), 50 points randomly distributed at each face are

employed to evaluate the training loss.

The results are shown in Figs. 7 and 8. During the training process, we concurrently test

the performance of the PINN by evaluating the predicted material parameters in Fig. 8. As the

training proceeds, the inferred material parameters reaches the reference values. In this case,

the final identification of K and µ were 3.290 and 1.549 respectively, while the real values were

3.333 for K and 1.538 for µ. The values results in an identification error of 1.3% in K and 0.7%
error in µ.

The evolution of the loses against the number of training iterations is shown in Fig. 7. The

loses gradually decrease from O(101) to approx O(10−6) despite some fluctuations, indicating

that the PDEs, BCs and the displacement data are all satisfied.

Figure 7: Evolution of losses functions.

The results obtained suggest that the PINN has sufficiently utilized the conditions from

physics and data and accurately recovered the reference material parameters.

C.A. DIAZ CUADRO, M.C. VANZULLI, P.A. GALIONE1192

Copyright © 2023 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 8: Evolution of material parameters K and µ.

4 CONCLUSIONS

In the three presented examples, the PINN was able to identify the material parameters with

an error of less than 1.3% in all cases in only a few minutes, making it an interesting framework

to be extended to more real and complex problems. One of the main findings was that once

the PINN was implemented for the first studied case, extending it to the other analyzed cases

was straightforward, requiring only the implementation of the corresponding equations to the

physics of each particular problem. This allows for a considerably rapid extension to many

problems where the solution to the inverse problem could be of great interest. Based on these

results, it is concluded that PINNs are a versatile tool, easy to extend to a wide variety of cases

with different numbers of input and output variables. Moreover, an interesting capability of

PINNs is that they allow to incorporate as much constraints, conditions, and information as

known at any point of the body, which can be a difficult (or even impossible) task in FEM.

Some disadvantages are that tuning loss weights manually has limitations. It’s time-consuming,

lacks systematic guidance, and is sensitive to initial choices. This can lead to suboptimal conver-

gence and performance. More structured optimization strategies are needed to get better results.

In that direction, gradient-based optimization techniques or utilizing hyperparameter optimiza-

tion algorithms, could offer a more robust and efficient approach to fine-tune loss weights.

Moreover, despite that at first sight PINNs are a framework that does not require meshing the

geometry, when Neumann boundary conditions are present it is necessary to inform the network

about the normal vector to the surface at the points where this boundary condition is evaluated,

which implies the need to provide the network with more information about the geometry.

There are several paths to explore as a future works, some of them being: material identifi-

cation in more realistic cases in both material behavior and geometries; nonlinear behavior on

materials with nonlinear mechanical responses, like elastoplastic or viscoelastic materials; ap-

plication of PINNs to time-dependent systems, such as dynamic material properties or transient

behaviors.
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