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Abstract. We present a novel segmentation algorithm based on a hierarchical representation of images. The
main contribution of this work is to explore the capabilities of the a contrario reasoning when
applied to the segmentation problem and to overcome the limitations of current algorithms within
that framework. This exploratory approach has three main goals. Our first goal is to extend the
search space of greedy merging algorithms to the set of all partitions spanned by a certain hierarchy
and to cast the segmentation as a selection problem within this space. In this way we increase the
number of tested partitions, and thus we potentially improve the segmentation results. In addition,
this space is considerably smaller than the space of all possible partitions, and thus we still keep the
complexity controlled. Our second goal aims to improve the locality of region merging algorithms,
which usually merge pairs of neighboring regions. In this work, we overcome this limitation by
introducing a validation procedure for complete partitions rather than for pairs of regions. The
third goal is to perform an exhaustive experimental evaluation methodology in order to provide
reproducible results. Finally, we embed the selection process on a statistical a contrario framework
which allows us to have only one free parameter related to the desired scale.
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1. Introduction. Image segmentation is one of the oldest and most challenging problems
in image processing. In this work we will focus on the problem of low-level segmentation,
which means that our goal will be to find interesting partitions of the image, but without a
high-level interpretation of the objects present in the scene. This interpretation is application
dependent and should be performed by a different kind of algorithm, possibly using this low-
level segmentation as input.
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Although it is a simpler problem, even for a human observer, it is hard determining a
unique meaningful partition of an image, and it is even harder to find consensus between dif-
ferent observers. In general, the biggest problem is determining the scale of the segmentation.
The choice of this scale is application dependent, and thus the low-level segmentation task
should avoid it. In [20] Guigues, Coquerez, and Le Men remarked the idea that a low-level seg-
mentation tool should remain scale uncommitted and the output of such an algorithm should
be a multiscale description of the image. Higher-level information, as one single partition of
the image, could be obtained afterwards by using additional criteria or manually inspecting
that multiscale representation.

A usual approach is to find a multiscale representation of the image rather than an unique
partition. This representation usually takes the form of a hierarchy of nested partitions
which are usually constructed by means of region merging/region growing or split and merge
algorithms. In the case of region merging algorithms, the hierarchies are constructed in a
a bottom-up fashion, starting with small regions and iteratively joining similar ones until a
stopping criterion is met.

The literature on image segmentation is vast, and a complete review of all the families of
available algorithms is beyond the scope of this work. For this reason, we will focus on the
approaches based on merging algorithms, multiscale representation of images, and a contrario
models.

Region merging algorithms. According to Morel and Solimini [29], the first merging
algorithms presented in the literature aimed to consecutively merge adjacent regions until
a stopping criterion was met, thus yielding a single partition. All these algorithms share
three basic ingredients: a region model, which tells us how to describe regions; a merging
criterion, which tells us whether two regions must be merged or not; and a merging order,
which tells us at each step which couple of regions should be merged first. Many of the existing
approaches have at least one of the following problems: the use of region information alone
(no boundaries are taken into account), a very simple region model, a very simple merging
order, or a considerable number of manually tuned parameters. Most of the recent work in
this area has been directed to improving the merging criterion and the region model, but little
effort has been carried out towards the merging order and the reduction of the number of
parameters.

Regarding the merging order, Calderero and Marques [7] presented an improvement over
classic merging algorithms which uses a nonparametric region model and a merging order
depending on the scale. However, this work still has some free parameters and only one
feature (color) is taken into account in the merging criterion.

Regarding the parameter selection, Burrus, Bernard, and Jolion [5] introduced an a con-
trario model to remove the free parameters and a criterion combining different region descrip-
tors. However, they require a training process which is offline but very slow, and which has to
be done for each image size and for each possible parameter combination of the initialization
algorithm. In addition, segmentation results are heavily dependent on those initialization
parameters.

Multiscale image segmentation and representation. Instead of working at a single scale,
a more robust approach is to use the intermediate results of the merging process to build up
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a hierarchy of partitions, which is often represented as a tree structure. Once the hierarchy
is built, the tree is pruned according to some scale parameter [23]. However, most algorithms
ignore the fact that this hierarchy spans a subset of all the possible partitions of the image,
and that the segmentation problem could be cast as the selection of an optimal partition on
this subset. For example, in the approach of Koepfler, Lopez, and Morel [23] the hierarchy is
thresholded at a fixed scale, an operation we will call a horizontal cut. These kinds of cuts
explore only a smaller subset of the possible partitions spanned by the hierarchy.

On the other hand, when filtering the hierarchy to find the optimal partition, the selected
regions could exist at different scales on different parts of the image. This optimal filtering
has been extensively explored in the field of mathematical morphology under many forms.
In one of the first works using these ideas, Najman and Schmitt [32] extended the notion of
watershed to produce a saliency map, in which each contour of the watershed was labeled
with the importance or saliency of the contour. This structure encoded all possible output
partitions, and a particular segmentation could be obtained by thresholding this structure.
In [36] an approach based on constrained connective segmentation was used to produce a
hierarchy of partitions of the image by scanning all possible values of the range parameters.
In Guigues, Cocquerez, and Le Men [20], this selection was called a nonhorizontal cut of
the hierarchy and computed by minimizing a Mumford—Shah energy over the hierarchy. In
a recent work [28] the authors presented a detailed review of the theory and applications
of hierarchical segmentation in the framework of mathematical morphology. In this context
the optimal filtering is carried out by using the flooding operator, and the approaches of
Najman and Guigues are explained as applications of this framework. In [31] a unified theory
is proposed, in which every hierarchical segmentation can be represented as an ultrametric
watershed and vice versa. In particular, the saliency maps introduced in [32] are shown to be a
particular case of an ultrametric watershed. Finally, in a previous work [11], we used a similar
approach to overcome some of the usual problems of merging algorithms. In addition, our
algorithm used both boundary and region information within a statistical framework which
allowed us to select the optimal partition with only one free parameter, which acted as a scale
parameter.

The work of Guigues, Cocquerez, and Le Men [20] is very similar in spirit to the present
work. For this reason we will review some of its main features here and we will compare each
feature of our algorithm with that work both from the theoretical and experimental points of
view. The first contribution of Guigues is defining and characterizing the so-called scale-sets
representation. This representation is the region based analogue of the classical scale space
used in the context of boundary detection, which was first introduced by Marr [24] and later
formalized by Witkin [38] and Koenderink [22]. This representation holds two important
properties: causality and geometrical accuracy. These two conditions are equivalent to the
strong causality principle introduced by Morel and Solimini [29]. The second contribution
is characterizing how to build such a representation by means of an energy minimization
procedure. Finally, they prove that under certain conditions, the global minimum of these
energies can be efficiently computed by means of a dynamic programming algorithm. In
particular, it is important to remark that Guigues improves the locality of region merging
algorithm by providing a scale climbing algorithm that allows them to compute the global
optimum of a certain type of energy.
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Objective evaluation. Although segmentation is one of the most studied areas in image
processing, there are not too many works that rely on a precise evaluation methodology or that
show quantitative results. Another point to be mentioned is the reproducibility of published
algorithms, since there are very few binaries or source codes available, making it difficult to
determine their real capabilities and limitations.

In this sense, the work of Arbeldez et al. [4] is in the same spirit as the present work. They
propose a hierarchical approach constructed on top of a contour detector, which uses spectral
clustering techniques to integrate different features for the segmentation task. In addition,
they present a comprehensive quantitative evaluation of their experimental results.

Contributions. The main contribution of this work is exploring the capabilities of the a
contrario approach for image segmentation. In this framework, only ideas taken from classical
region merging algorithms have been proposed, which inherit the main problems of such
approaches. In this sense, we further improve the model from [11] by addressing two of its
main problems. First, we remove the locality introduced by validating only local merging
decisions, computing instead the meaningfulness of an entire partition of the image. Second,
we improve the behavior of the free parameter by introducing a theoretical estimation of the
number of tests. Some of these ideas were already presented in the morphology field and in
the work of Guigues. One of the original contributions of this work is to apply these ideas in
the a contrario framework. Finally, we present an exhaustive quantitative evaluation of our
results by testing our algorithm with publicly available databases and comparing the results
against human segmented images using several performance metrics. We have also created a
web page with detailed evaluation results and an online demo to validate our algorithm. Let
us mention that the source code can be downloaded, allowing the community to verify our
claims.!

QOutline of the paper. The rest of the paper is organized as follows. In section 2 we
review some background concepts related with our approach. In section 3 we review our
previous definitions of meaningful regions. An improved a contrario model, called meaningful
partitions, is introduced in section 4. In section 5 we build the proposed algorithm based
on that model. Section 6 shows experimental results of the proposed approach. In section 7
we discuss the implementation of the algorithm. And finally, in section 8 we summarize our
conclusions and discuss future work.

2. Background.

2.1. Hierarchies of partitions. A hierarchy of partitions H is a multiscale representation
of many possible segmentations of an image. For our purpose, it is a tree structure where each
node represents a region, and the edges represent inclusion between regions (see Figure 1).
This tree can be constructed in two ways: top-down or bottom-up. In the first case, the algo-
rithm starts with the coarsest possible partition, which is iteratively split until a convergence
criterion is met. In the second case, in which this work is contained, region merging algorithms
are used to construct the hierarchy. They usually start with an initial set of regions, often
called seeds, which conform the finest possible partition. Then two or more adjacent regions

"http://iie.fing.edu.uy /rs/wiki/ImageSegmentation Algorithms
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Figure 1. (a) Sample image composed of four regions of random noise with different means. (b) Corre-
sponding Mumford—Shah hierarchy, constructed from an initial partition composed of the four original regions
(labeled 0, 1, 2, 3). (c) Different choices for the partition search space. The yellow set represents the set of all
possible partitions that could be generated with the initial four regions. The blue set represents all possible par-
tititons spanned by the tree. The green set represents the partitions considered by the region merging algorithm
used to construct the hierarchy. Fach region is labeled with the corresponding node number in the hierarchy.
Note that there are possible partitions that are not spanned by the tree.

are iteratively merged, and the resulting regions on the graph are represented as a new node
which is the parent of the merged regions. One of the most popular ways to merge regions is
to minimize the well-known Mumford-Shah (MS) functional [30]. The binary tree resulting
from this merging procedure is often called a binary partition tree [34] or dendrogram in the
clustering literature.

In this work we will use an initial hierarchy H constructed by means of a greedy iterative
region merging algorithm, which minimizes the piecewise constant MS functional. However,
our results are easily extensible to other kinds of hierarchies, like trees of shapes (also called
component trees) [13].

2.2. A contrario framework. A contrario models were introduced by Desolneux, Moisan,
and Morel in [16], within the framework of the computational Gestalt theory (CGT). Given
a set of events the aim is to find the meaningful ones, according to the so-called Helmholtz
principle, which states that “we naturally perceive whatever could not happen by chance.”
To apply this principle, CGT algorithms rely on a background or noise model and then define
the interesting events as those extremely improbable under this model. To measure how
exceptional an event is, they define the number of false alarms (NFA), which is an upper
bound on the expected number of occurrences of a certain event under the background model.
If this expectation is low, it means that the considered event is meaningful and could not
arise by chance. Given an event O, its NFA is computed as NFA(O) = Niests. P(O), where
Niests is the number of possible events in the set and P(Q) is the probability of occurrence
of event . Defined in this way, it can be proven that if NFA(O) < €, then the expected
number of detections of event O in an image of noise generated by the background model is
lower than e. This reasoning is analogous to classical hypothesis testing, where one assumes
a null hypothesis (images are generated by the background model) and given an observation
one computes the probability of occurrence of the event under these assumptions. The null
hypothesis is then rejected if the computed probability is low enough (given a threshold). In



A CONTRARIO SELECTION OF PARTITIONS 1279

this context, the NFA plays the role of the type I errors, i.e., rejecting the null hypothesis
when the event was actually generated by it. In the a contrario jargon, this means to detect
meaningful objects in a noise image, which is a false alarm (or a false positive). For a more
detailed explanation of the a contrario approach please refer to [16].

3. Meaningful regions and mergings. The algorithm presented in this work is the natural
evolution of the algorithm presented in [11], which we will denote as GREEDY'. For this reason,
we will start by reviewing the basic concepts introduced in that work, and we will discuss its
main problems. The understanding of these concepts is crucial to understanding the present
work, and thus it is important to review them here. Please note that the material shown in
this section contains an excerpt of the aforementioned work, but with a more in-depth review
of some concepts and newly added sections.

The main idea of the GREEDY algorithm is to combine region and boundary information
to select the optimal partition from the set of all partitions spanned by the given hierarchy.
This selection is embedded into an a contrario model which states that a region is meaningful
if its gray level is homogeneous enough and its boundary is contrasted enough.

3.1. Region term. The region term of the model will define a meaningful region as a
region which is well adjusted to a certain model. In this work we use the simplified MS and
we will say that a region is meaningful when its error is small, in a way similar to [21]. To
explain this, let us review the data term in the MS model for a single region:

(1) Eg =Y (I(x) - pr)*

z€ER

where ppr is the mean gray value of region R. This can be seen as the Ly error when we
approximate each pixel of the region by ugr. We can also define the pixelwise error as ep(x) =
(I(z) — pr)?, so with this notation the error becomes Er = Y, per(z).

If we consider that Er is a random variable generated by the background model and we
define Ep as the observed region error, we can define the number of false alarms of a region
as

(2) NFA,(R) = N,.P(Eg < Eg),

where N, is the number of possible regions to consider. In practice, the number N, can be
estimated only for simple problems, so a common practice is to replace the number of possible
regions by the number of tested regions. Defined in this way, this NFA measures the goodness
of fit of the region pixels to the model given by the MS mean pp. If the probability P is very
low, it means that the error is extraordinarily small and could not arise by chance. Thus, the
NFA is small and the region will be marked as meaningful.

In order to complete the definition of (2) we need to compute the probability P(.) of the
error in each region. We do this in two steps: First, we estimate the probability density
function p(e) of the pixelwise error e(x). After that, we compute the probability that region
R has error less than or equal to Ep.

Note that the error ég(x) depends on pug, which in turn depends on the region the pixel
belongs to. Before the segmentation starts, we do not know which region the pixel will be
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assigned to, so we cannot compute this quantity. To overcome this, we can compute the error
with respect to all possible regions the pixel x could possibly be assigned to. In this way, we
are not computing the error with respect to a single partition, but to all the possible partitions
spanned by H. In Figure 2 we show the pseudocode of the pixelwise error computation, in
order to illustrate the estimation of the probability density function of the error in detail.

1. Let Q € R? be the image domain. Let R(H) be the set of all possible regions
belonging to the hierarchy H.

2. For each pixel z € ) find the set of regions X C R(H) such that R €
X ift z € R.

3. The maximum possible error e(z) will occur in the case that I(z) = 255
and pur = 0 or vice versa. The minimum possible error will occur when
I(x) = pg. Thus z(z) € [0, emaz] = [0, 255%].

4. Create an empty histogram h, of the error e(z) in the range [0, €,,4.] With
n bins.

5. For each R € X

e Compute the error of pixel x with respect to X. That is, eg(x) =
(I(x) — )
e Add eg(x) to the corresponding bin of h,.
6. Normalize h. such that Xh.(t)dt = 1.

Figure 2. Estimation of the probability density function of the pizelwise error over a hierarchy.

Computed in this way, h. could be regarded as an estimation of probability density func-
tion of an error of magnitude e given the hierarchy H, h.(€) = p(er(z) = ¢|H). We could argue
that this model is a contrario in the following sense. As we do not choose any segmentation,
the histogram of the error is computed from every possible region each pixel could belong to.
Note that, computed in this way, the probability density function of the error is independent
of any particular choice of a partition but depends on the initial hierarchy H chosen.

Finally, to compute P(Er < E r) we make the assumption of independence between image
intensities at the different locations of the n pixels of the region. Thus, looking at (2), the
random variable Eg is a sum of n independent and identically distributed (i.i.d.) random
variables er. Then, the probability can be approximated (for large values of n) by a normally
distributed random variable, using the central limit theorem (CLT). In practice, with n > 20
the Gaussian approximation of the CLT is very accurate.

3.2. Meaningful regions vs. meaningful mergings. From our definition of meaningful
region, it can be seen that the NFA associated with each region depends on the given initial
partition. Given a certain tree, it is a common practice to remove the leaves with small area,
in order to reduce the computational burden of the algorithm. Usually, leaves have small
errors, so removing one of them will decrease the probability of observing a small error. If we
remove a big number of small leaves, we will make the small errors less probable, thus making
all nodes more meaningful. This is not a desirable behavior, because we want the result of
our algorithm to be independent of the preprocessing performed.
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This problem arises because our definition of meaningful region is absolute, which makes
it strongly dependent on the histogram of the error. One way to overcome this problem is to
compare pairs of regions instead of validating each of them independently. For this reason,
we introduce a similar definition of meaningfulness but applied to mergings. We will say
that a certain merging is meaningful if it improves the previous representation, that is, if the
meaningfulness of the merged region is greater than the meaningfulness of considering the
regions as separate entities.

To compute the meaningfulness of a merging we must compute two quantities: the NFA
of the union of two regions, and the NFA of their separate existence. To compute the first
quantity, we can apply the definition of the previous section. However, we need to adjust the
number of tests, because now we are not testing all possible regions, but only those created
as a result of a union. Let R; and Ry be the regions to be merged, and let R, = R1 U R».
Thus, the NFA of the union is

(3) NFA,(RiURy) = N,.P(Eg, <ERg,),

where N, is the number of possible unions in the tree, which is exactly %, where NN is the
number of nodes of the tree. Here, as we modeled the union as a single region, the error ERu
is computed using the mean pu, of the union.

Now we need to consider the existence of two separate and independent regions R; and
Ro. In this case, we have a different model for each region, given by the means p; and po,
and the corresponding errors ER1 and E Ro- As the MS error is additive, we can consider that
the total error of approximating both regions by their means is ER1 .k, = Eg, + Fg,. Thus
we can define the NFA of two separate regions as

(4) NFAT(R1§ R2) = NC'P(ERl;Rz < ER1§R2)7

where N, is the number of possible couples (R, R2) which can also be approximated by %
As the involved quantities are probabilities which could take very small values, it is usual to
take the logarithm of the NFA, which we will call the LNFA. Thus, we will say that a merging
is meaningful if

(5) S, = LNFA,(R1 URsy) — LNFA,(Ry; Ry) < 0.

This condition is very similar to the Patrick—Fisher distance used for region merging in classic
approaches. For instance, in section 2.2 of [41], a parametric form of this test for the Gaussian
case is used to test whether two regions should be merged or not. This approach relies on
deciding whether both samples come from the same underlying distribution, and if true (up
to a confidence parameter), they should be merged. The main difference resides here in the
relative nature of our term, which does not compare both regions but decides whether the
union is a better explanation than the separate regions.

3.3. Boundary term. Regarding region boundaries, we propose merging two regions when
the boundary between them is not contrasted enough. In addition, we want to obtain the
regularizing effect of the boundary term in the MS functional, which favors short curves [30].
For this reason, we use a definition similar to that introduced by Desolneux, Moisan, and
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Morel [15] and Cao, Musé, and Sur [9], in the sense that we say a curve is meaningful if
it has an extraordinarily high contrast. However, we also penalize long curves by using the
accumulated contrast along the curve instead of the minimum as in Cao’s model. Thus, we
define meaningful regions as those having a short and contrasted boundary. To measure the
length of the curves we use the geodesic curve length

(6) £(r) = /F I(a(s))ds,

where [(x) = ¢g(|VI(x)|) is a pixelwise contrast detection function. Here g(x) yields small
(near 0) values in well-contrasted pixels and values near 1 in the low contrasted ones. In this
case we learn the background model from the image to be segmented, so we use the histogram
of the gradient as proposed in [9]. From the image, we can obtain the empirical distribution
of the gradient norm, or the distribution of /(z) which is a function of |VI|. However, we need
to compute the distribution of the sum over all the pixels of the curve, so our new random
variable will be L = >~ _pi(x). As we did in section 3.1 we can compute the probability by
means of the CLT from the distribution of I, and define the NFA of a curve I as

A

(7) NFA(T) = Newroes. P(L < L),

where Neyrves is the number of possible curves in the image, which is again approximated by
the number of curves tested. In our case, it is the number of curve segments separating two
neighboring regions in .

3.4. Combination of terms. Using the two previous definitions of meaningful regions, we
developed an unified approach which is able to take into account both definitions at the same
time. For that purpose, we propose computing the following quantity:

(8) NFA;(R) = N,.P (ER < Ep: Log < ﬁaR) ,

where NN, is the number of tested regions and P is the joint probability of the region having a
small error and a contrasted boundary at the same time. A way to make this model computable
is to make the (strong) assumption of independence between boundary and region terms. This
allows us to factorize P and write the new NFA as

(9) NFAj(R) = N,.P(Er < ER).P(Lor < Lag).

Taking this into account, we say that a merging is meaningful using region and boundary
information if

(10) Sj = LNFAj(Rl U RQ) — LNFAj(Rl;RQ) < 0.

Definition (10) allows us to construct a parameterless algorithm; however, in practice we
verified that our algorithm tends to oversegment images. The explanation of this phenomenon
relies on our estimation of the number of tests. This estimation is very hard to compute
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analytically, so we used a very rough estimate (N, ~ N.). To overcome this problem, we
consider an alternate formulation based on the following observation. Remembering that

(11) P(R1URy) = P(Eg, < Eg,).P(Lor, < Lor,),
P(Ry; Ry)=P(ER,;r, < ERy;Rr,)-P(LoRy:R, < LoR::R)

we can expand (10) to explicitly show the number of tests, obtaining
(12) S; =log N,, + log P(R1UR3) —log N. —log P(R1; R2).

Thus, if we do not want to estimate both numbers of tests, we can merge them into a single
variable called «.. So, our definition of meaningful merging becomes

(13) S; =log P(R1 U Ry) —log P(Ry; R2) < a(Ry; Ra),

where a(Ry; Re) = log(%—i). For the sake of simplicity, we assume that « is a constant value
for every couple of regions (Rj, Rg). In [11] this parameter was set manually, but it could be
estimated as in [5].

3.5. The algorithm. To explain the GREEDY algorithm, we need to introduce some
notation. We define the height of a node n as the length of the longest branch starting on a
leaf and ending in node n. We also define N (h) as the set of nodes of height h. Starting from
an initial partition, composed either of all pixels or of a set of given regions, we iteratively
merge pairs of regions, as shown in Figure 3.

1. construct the initial partition P

2. build the hierarchy H

3. for each couple C' = (Ry, Ry) compute its LNFA
4. for each possible height h

(a
(b
(c
(d

while N (h) #£ 0
select the most meaningful couple C' = (R1, R)
merge the couple C

remove C from N (h)

~— — — N

Figure 3. Outline of the GREEDY algorithm.

3.6. Initial hierarchy. The presented algorithm does not need a particular choice of the
hierarchy H to be applied, as long as it can be encoded as a tree structure. However, the
results are dependent on the initial H chosen. As we mentioned in the introduction, in this
work we will use a greedy region merging algorithm which obtains a local minimum of the
piecewise constant MS functional. The implementation used is inspired by [23]. The first step
of the algorithm is to compute a region adjacency graph (RAG) of the pixels of the image; let
G be this graph. At the same time, we initialize the tree structure 7, where each node of the
RAG is a leaf. To speed up the computation, we create a heap with the initial edges of the
RAG, where the cost associated with each edge is the minimum value of A in which the node
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will be removed. Then we will iteratively merge adjacent regions, picking in each step the one
that will decrease the MS energy the most, taken from the top of the heap. Each time a pair
of regions is merged, the corresponding edge is removed from the graph, and a new node is
created in the tree. This node will be linked as the parent of the two merged ones and have as
an attribute the A value at which it has been created. This value is called scale of appearance
in Guigues, Cocquerez, and Le Men [20]. The algorithm stops when only one region is left
and the RAG is reduced to a trivial form; this node will be the root of the tree.

3.7. Complexity. The computational cost of the algorithm can roughly be divided in two
parts: computing the tree and selecting the meaningful regions on it. A usual way to construct
the tree is to use all pixels as the initial partition. So, for an n-pixel image, the tree will have
2n — 1 nodes. The computational cost of the second part is proportional to the number of
nodes of the tree, and thus we can reduce the computational cost by pruning the tree.

In practice we rarely segment regions of small area, and thus we remove the lower nodes
of the tree corresponding to the smaller regions. To explain this, let us recall the simplified
MS functional: given a partition P of the image, the energy F(P) = Er + A\Lsr balances
the data adjustment term Er with the regularity term L. The parameter A controls the
relative importance of each term. The pruning of the tree is performed with a fixed (and small
enough) value of the scale parameter A\, which avoids important regions being lost.

We start by estimating the complexity of the construction of the initial tree. The first
step is to construct the RAG, which has a complexity of ©(n). Then we build a priority
queue, using a binary heap as the underlying data structure, which will also cost ©(n). If
we merge only one region at a time, we will have n — 1 steps, and at each step we have to
remove the top of the heap and reorder it, which will take ©(logn) operations. In addition,
we have to update the A\ values of all the edges incident to the merged regions. Assuming
an average degree of k < n neighbors per node, and taking into account that changing the
value of an edge implies reordering, the complexity of this part will be ©(klogn) = ©(logn).
So the total complexity of the construction of H is ©(nlogn). Assume then a pruning that
keeps only N mnodes of the tree. Usually, N <« n and the reduction is more than linear, a
rough but reasonable estimate being N ~ n”, with v < 0.5. Regarding the complexity of
the region selection part, we need to visit all pixels to compute the MS terms on the initial
partition, which costs ©(N). Then we need to visit the nodes once to compute the error and
the probabilities. Then, at each step of the algorithm, we need to find the minimum LNFA
node, which costs ©(log V). Thus the complexity of this part is ©(/N). Given our assumption
that N < n, the overall complexity of the algorithm is dominated by ©(nlogn).

3.8. Implementation. For example, in the Church image (Figure 4) the total number of
pixels is 38400, but using A = 50 we have to process only 2297 regions, which results in a 94%
reduction of the computational cost. In spite of this pruning, the resulting image still retains
enough level of detail and no important objects are lost. Note that this preprocessing step is
optional and that the final result of the algorithm is independent of it; it is performed just to
speed up the algorithm.

4. Meaningful partitions. One of the main problems of the previous approach is its lo-
cality: as we are validating only one merging at a time in a bottom-up fashion, all further
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Figure 4. Results of the GREEDY algorithm on the (240 x 160) Church image. The original image has
38400 regions. Left: Initial regions after pruning with A\ = 50, 2297 regions. Right: Segmentation results with
a = 60, 24 regions.

decisions are conditioned by the previous merging performed. For this reason, in this section
we seek a more global definition of meaningfulness which would measure the goodness of fit
of a whole partition instead of the goodness of fit of a single merging operation.

4.1. Multiregions and meaningful partitions. We start by defining the basic concepts of
multiregions and multipartitions. Given a set of k disjoint meaningful regions R;, one can ask
whether the union R of them is a better explanation of the image than the separate regions
alone. To deal with this we define a multiregion k—R = {Ri}le as the entity resulting from
considering the k regions as separate entities. A multipartition, on the other hand, is a special
case of a multiregion where the union of the composed regions gives the whole image domain
Q, ie., UR; = Q.

We will define a k-multipartition Py as a partition composed of k regions, and the number
k will be called the order of the partition.

As explained in section 3.2 we can model the separate existence of k regions, using k
means u; and k corresponding errors E; obtained by approximating those regions with their
means. Thus the total error committed when approximating the image with k regions will be

Ep, =X, B
Then we can define the NFA of a multipartition as

(14) NFA(Pg) = N(n, k)P(EPk < Epk)ﬂ

where N(n, k) is the number of possible k-partitions that could be formed from an image
with n pixels. Again, the two key points here are the computation of N(.) and P(.). In the
following, we explain these computations in detail.

4.1.1. Number of multipartitions. In most existing a contrario models (see [16]) the
number of tests is computed analytically, because the events to be considered are simple
enough to enable the computation. However, in many cases, these computations are too
difficult to carry out analytically. This leaves us with two options: either estimate bounds on
these quantities or approximate them empirically. In our particular case, we need to count,
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for each of the image dimensions p, ¢ and for each order of partition k, the number N(p, ¢, k)
of possible partitions of &k regions that could be constructed in this image. This is a very hard
combinatorial problem which can be found under various forms in many fields of mathematics,
and it is a problem still open with no suitable solutions available for our case. One of the closest
problems studied comes from the clustering literature, where the number of separable clusters
that can be constructed with n unorganized points in R¢ are counted. In [1], the authors
propose bounds on the number N.(n,d, k) of ways in which & clusters can be constructed by
splitting those points with hyperplanes. The regions that can be built in this way are simple,
in the sense that they cannot contain holes. Thus, the number of regions estimated in this
way will be a rough lower bound on the total number of regions. The number of points to
be organized into regions in our case is n = pg, and our space has dimension d = 2; thus the
number of possible partitions could be expressed as N(n, k), and the lower bound under these
hypotheses is N(n, k) = O(n*+=2)),

4.1.2. A true a contrario model. The background model explained in section 3.1 com-
puted the empirical probability density function of the errors, considering all the regions a
pixel could belong to. However, those were not all possible regions but only those spanned
by the hierarchy #. This has two main problems: First, the statistics are dependent on the
hierarchy used, and thus it is not a true a contrario model; second, the computed statistics
are dependent on the preprocessing performed. The second problem was mostly alleviated by
the validation of mergings introduced in section 3.2; however, the first problem is still present.
To address this, we propose a new a contrario model, which states that under the hypothesis
of noise, we should not detect any region. A detection in our case is to find a meaningful
partition of the image, so if the image is generated by an i.i.d. noise, we should not find any
partitions and we should say that the image is composed of a single region. This is equivalent,
using our multipartition model, to saying that our random image is a P;. Thus, to compute
the probability, we will consider the error of approximation of the whole image by only one
global mean pu.

4.1.3. Probability computation. For the computation of the probability in (14) we rely
again on the fact that errors are additive and use the CLT to estimate the probability, as
we did in previous sections. Since a Py is composed of k independent regions R;, under the
assumption of statistical independence we can compute its probability as

(15) P(Epk < Epk) = HP(EPW < ERi)?

7

and to compute the probability of each region, P(Eg, < E R,), we can use the CLT, as we did
in section 3.1.

5. The MULTIPARTITION (MP) algorithm. We have seen in the previous section a
way to compute the NFA for a given partition. After that, the straightforward procedure is
to evaluate this NFA for all possible partitions. However, as we have shown, the number of
partitions is enormous, and thus we cannot afford to explore all of them. For this reason, we
introduce a fast algorithm to compute probabilities over the hierarchy H. In the first place
we compute the mean value and the error for each node on the tree. Then the NFA for each
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1. Construct the initial partition P.

Build the hierarchy H.

3. For each internal node r;: compute the number n,, of possible partitions
spawned by its subtree, and its probability P(.) according to section 4.1.3.

4. Start from the root node.

5. Recursive step:

(a) For the current node r (let a,b be its siblings):
(b) Create a table of probabilities T, of length n,; in each position k of the
table, we will store the probability of a k-partition.
(c) For each possible partition of order k > 1 between 1 and n,: compute
the probability p calling the recursive function p = prob(r, k).
i. Find all possible couples of subpartitions of orders 7, (of nodes a
and b) such that i +j = k.
ii. Compute the probability as p(i, j) = prob(a,i) * prob(b, j).
iii. Return p as min; ; p(4, j).
(d) If £ =1, p(r,1) is the probability computed in 3,
(e) Store p in T, at position k.

6. For each order k in the root node table (T,40), compute the NFA from
the probabilities and the number of tests. Call these computed quantities
NFA(root, k).

. Select the final partition order as o = argmin, { NF A(root, k)}.

o

Figure 5. Outline of the MP algorithm.

multipartition is computed recursively over the tree starting from the root. The key point
to understanding our algorithm is to bear in mind that we are not only obtaining the best
overall partition, but we also keep the best k-multipartition for every possible k.

To explain this algorithm (outlined in Figure 5), let us start from the results it yields.
Given a hierarchy H with n leaves, the order of all possible partitions is bounded between 1 and
n. For each order k there is a subset of N(n, k) possible multipartitions to choose from, and
our algorithm will pick the best (lowest NFA) partition from that subset. The output of this
algorithm can be summarized as a table with the best NFA for each partition order, as shown
in Table 1. So at the end, to choose the best partition we will need only choose the order k
with the lowest NFA, among all multipartitions of each order, from P; to P,. Note in Table 1
the opposite effects of the probability (which in turn relates to data adjustment) and the
number of tests (which represents a notion of regularity or complexity of the partition). Thus,
the optimal partition comes from the balance between the number of tests and probability or,
as the previous interpretation suggests, a balance between complexity and data fidelity. An
interesting side effect of the way this algorithm works can be seen in Table 1. As we keep
the best partition for each order k, we could do a variant of the algorithm where we specify
the desired number of regions. This can be particularly useful in some applications where we
know beforehand how many objects we are looking for. Some examples of this approach over
real biological images are shown in section 6.11.
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Table 1
Sample result of the MP algorithm for the image in Figure 1. For each order k we compute the lower bound
of the number of partitions N(n, k), we select the best partition P* (the one with lowest probability), and we
compute its corresponding NFA. Note that the lower the LNFA value, the more meaningful the partition.

Order (k) | log N(n, k) | Error | log P(P*) | LNFA(P")
1 0 134.5 —0.68 -0.7
2 18.5 18.4 —2909.8 —2891.4
3 55.3 24.5 —7687.1 —7631.9
4 110.5 1.8 —11173.9 —11063.3

(a) (b)

Figure 6. Blobs: Ezample of segmentation over a synthetic image. (a) Original image: N = 76800 pizels.
(b) Initial regions after pruning with A = 7, N; = 117. (c) Segmentation results using only the data term
Ng =13. N, N;, and Nq are the number of regions of each stage, respectively.

(c

)

5.1. Synthetic images. To explain the basic behavior of our algorithm, we show in Fig-
ure 6 a simple synthetic example where the image is a piecewise constant image with Gaussian
noise added. In this case, the image fully complies with the model, so it is the best case for the
algorithm. The objects to detect are dark blobs over the light background. As explained in
section 5, the output of our algorithm is the NFA of each partition. In Figure 7 (left column)
the NFA is plotted against the order of the partition. As can be seen, the minimum NFA cor-
responds to order 13, which is the number of objects in the image. Looking at the probability
graph in Figure 7 we can see that, starting from a 1-partition, the probability shows a great
decrease every time we add a new region corresponding to one of the blobs. Once we add all
the blobs, we start adding subdivisions of the blobs (or the background) which improve the
model only slightly, so the rate of decrease is dramatically slowed. This phenomenon occurs
in all images, but it is more salient when working with this kind of synthetic image. The right
side of Figure 7 illustrates the same behavior in a more realistic case, which is the Church
image of Figure 4. In this case, we can see that the decrease of the probability shows softer
transitions around the desired number of objects, and it is not that clear how to choose the
optimal partition. In addition, as the probability is always decreasing, the algorithm would
select the finest partition available. But as the NFA graph shows, the number of tests acts as
a regularizer, penalizing finer partitions and thus helping to choose the correct segmentation
(around 36 regions in this case).



A CONTRARIO SELECTION OF PARTITIONS 1289

4000 T : ! : . ; 10000
3500(
8000
3000(
2500r 6000
2000f
1500k 4000
10001
2000
5001
0 1 L L L 1 L 0 T L L L L L L L L
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70 80 90 100
5 4
0x10 . ; 0X10 T
-05 |
-1
i Y‘
-15F 25
\
2t |
-3F
-2.5 |
-3r 4
-35 —
5 —_— ]
—4F
_45 . . . . L . 6 , , , . . , .
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70 80 90 100
5 4
05210 . . 2x10‘
o 16
-05
ok
it
_15F g
|
—2r 210
|
-25 Rl
—3r
-4
-35 - I
_4f 5
_45 . . . . L . 6 , , , . . , .
0 10 20 30 40 50 60 70 10 20 30 40 50 60 70 80 90 100

Figure 7. Analysis of the results on the Blobs image of Figure 6 (left) and the Church image of Figure 8
(right). In each row we show the values of the different terms in (14). First row: logarithm of the number of
tests. Second row: logarithm of the probability. Third row: LNFA. Note that the lower the LNFA value, the
more meaningful the partition.

5.2. Real images. In the case of the Church image, the algorithm has selected the parti-
tion with 36 regions as the optimal one. However, as the difference in probabilities is low we
are not certain which one is the best partition. In this case we can also output a ranking of
segmentations and provide the user with the top M segmentations and let him /her choose the
one most suitable for his/her application. In Figure 8 we show the results of such an approach.
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The numerical results corresponding to this experiment are shown in Table 2, where we can
confirm the fact that most of the top selected partitions have similar meaningfulness.

Figure 8. Ranking of partitions ordered by the NFA for the Church image. From left to right: Original
image and the five best partitions selected (using the data term only).

Table 2
Best partitions selected by the MP algorithm for the Church image.

Order (k) | LNFA (best P)
36 —47374.1
35 —47373.5
37 —47371.7
39 —47369.9
38 —47369.1

5.3. Recursive computation. The results in Table 1 can be computed in a recursive way
as follows. First we compute the NFA for each region in #, using (14). Consider the subtree
{6,2,0} in the hierarchy of Figure 1(b): it can span only two partitions, a P; composed by
node 6 and a Py composed by nodes {2,0}, whose probabilities are shown in Table 3. The
same reasoning can be applied to the {5,3,1} subtree. Thus, when analyzing the whole tree,
we can see that the two possible P3 can be obtained by combining P; and Po from both
subtrees. Then, as we are interested in the most meaningful Ps, we will pick the one with
lowest probability (which is {6,3,1}). In that way, we can compute the probability of any P
from the probabilities of -P and j-P, with i + j = k, obtained from the subtrees associated
with its siblings. The expensive part of this algorithm is the computation of the MS data
adjustment term (error) from (1), which needs to be evaluated for every pixel on a given
region. In addition, each pixel can be assigned to many different regions in H, and thus the
computation is repeated many times for each pixel. One way to avoid this overhead is to take
advantage of the fact that the error (but not the probability) is additive. In this way, we can
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Table 3
Intermediate results of the MP algorithm for the image in Figure 1. For each internal node (5 and 6) we
compute all possible partitions spanned by the corresponding subtree.

Node 5 (subtree {5,3,1})
Order (k) | log N(n,k) | MS error | log P (best P)
1 0 23.86 —2394.6
2 18.47 1.20 —5539.0
Node 6 (subtree {6,2,0})
Order (k) | log N(n,k) | MS error | log P (best P)
1 0 42.99 —751.8
2 18.47 0.60 —5640.3

compute the error of the P3 composed of regions {5,3,1} from the errors of partitions {5}
and {3,1}. In this way, each error is computed only once per region.

5.4. Optimality and complexity. Our procedure for computing the probabilities is based
on a dynamic programming scheme and thus computes the globally optimal partition by taking
local decisions at each level. It is important to determine whether we can achieve the global
optimum with this procedure, which is discussed in the following theorem.

Theorem 5.1 (optimality). Given the number of regions N of the partition of the image, the
recursive computation of probabilities gives the optimal partition.

Note that the background model ensures that the probabilities of false alarms are always
strictly greater than zero. Indeed, the only way to obtain a zero probability is to compute
P(ER < —o0), but that could not happen because the error Egr is always finite.

Proof. Suppose A is a node of the hierarchy and B, C are its sons.

(Binary case). Let P4 be the partition of A which is optimal for n sets (the partition is
formed by n sets and is optimal between all of the partitions of n sets).

Let P4 N B be the partition of B made of the sets (say nj) of P4 that are in B, and
let P4 N C be the partition of C made of the sets (say my) of P4 that are in C. Note that
n =mni + ng.

Let us prove that P4 N B is an optimal partition of B with n; sets. Otherwise, there exists
a partition of B with n; sets Pp such that NFA(Pp) < NFA(Pa N B). By replacing P4 N B
by Ppg, we have that NFA(Pg)NFA(P,NC) < NFA(PANB)NFA(P,NC) = NFA(Py),
and this is a contradiction.

Similarly, P4 N C is an optimal partition of C with ns sets. Thus, given the number
of regions N of the partition of the image, the algorithm gives the optimal partition in the
hierarchy with IV sets. |

As we are sure that we could reach the optimal partition, we can use this very efficient
dynamic programming scheme to compute our probabilities.

From the practical point of view, we can also ensure that the probabilities are strictly
positive. The problem could arise when they very small, because we can reach the precision
of the data type and have representation errors leading to an exact zero value. However, as
we internally work directly computing the logarithms of the probabilities, we circumvent this
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representation problem and never get an exact zero value.?

Regarding the complexity of the algorithm, again it has two parts: constructing the hi-
erarchy and selecting the optimal partition. Assume an n-pixel image and a pruned tree of
N leaves. From the analysis of the GREEDY algorithm in section 3.7, we have a cost of
O(nlogn) to construct the tree. However, in this case, the selection part is slower, because
for every node we need to compute the probabilities of every possible partition spanned by it
which has a great number of combinations to explore, because we keep the best partition for
every possible level. On the other hand, in the GREEDY case we need only find a minimum
NFA couple at each step. The analysis of the complexity of the NFA computation is not
trivial, and it is shown in Appendix A, as that computation shows that the complexity of this
part is ©(N?). If we make no initial pruning, the complexity will be ©(n?), which is unusable
in practice for medium sized images. If we make a reasonable pruning of N ~ n” with v = 0.5,
as mentioned in section 3.7, the complexity will be ©(N'%). Finally, if we want our algorithm
to run fast, we need to prune the tree to N ~ n'/3. This could be a reasonable amount of
pruning in practice (around 100 regions for a 1024 x 1024 image), and it is better as n grows.
If that condition holds, the worst case complexity of this selection could be reduced to ©(n).
From this we can conclude that the complexity of the algorithm can be reduced to ©(nlogn)
if proper pruning is applied.

5.5. Boundary term. In the MP case, our data term is based on a piecewise constant
model and has no regularization term. For this reason, when faced with images which do not
comply with the model, it presents some problems. Mainly, it tends to oversegment almost
flat regions with a slow varying intensity gradient. This phenomenon is shown in Figure 9(c).
To overcome this problem, we could add a boundary term in just the same way we did
with our previous algorithm in section 3.3. That is, instead of computing the probability
P(R1) = P(Egr, < Egrp), we could add another term measuring the meaningfulness of the
boundary so that P(R1) = P(Ep < ERl).P(LRl < ﬁRl), where Lp; is the length of the
boundary of region R1 computed with (6). However, this introduces the need to consider the
relative importance of each term, which in turn leads us to introducing some kind of weighting
parameter. In addition, due to the way probabilities are constructed, we were not able to find
a definition of this term holding the decreasing property needed for a proper scale-climbing
algorithm. For this approach to work, the length term should always be decreasing with scale,
and our term is decreasing in almost every case, so we cannot guarantee this property.

For these reasons, we propose the use of the boundary term as a postprocessing, in order
to refine the partition selected by the data term. Thus after the best partition is selected, as
shown in section 5, we test every edge separating each pair of neighboring regions, and if the
boundary between them is not meaningful, we merge them into a single region.

So far, we have shown examples of the MP algorithm using the data term only, and, as we
have mentioned before, in images like Church we see that our algorithm tends to oversegment
large uniform regions, which are clearly far from the piecewise constant model. In Figure 9
we show how the boundary term solves this problem and gives a more accurate segmentation.

2We can also limit the probabilities using a small threshold ¢ > 0, P = max (P, €), or we can add € to the
probabilities and then normalize them to sum one.
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(c) (d)

Figure 9. Results of the MP algorithm on the Church image. (a) Original image: N = 38801. (b) Initial
regions after pruning with A = 10, M = 628. (c) Segmentation results using only the data term Ng = 36. (d)
Segmentation results after adding the boundary term N. = 29.

5.6. Extension to multivalued images. So far, we have presented our algorithms for gray-
level images. In this section we will extend them to color images and to the more general case
of vector-valued images. In this case, an image will be a vector-valued function I : Q — R<.
We start by rewriting the MS data term in (1) as

(16) Er=Y_ d(I(z),pn),

z€ER

where pp € R? and d(z) is any monotone function of a norm in R?. In addition, this
formulation leaves the door open to see this term as the goodness of fit of the image value
I(x) to the region R, which leads us to the more general formulation

(17) Br="p(I()|R),

z€ER

where p(.) is the probability that pixel x belongs to region R. This formulation gives us
a general and flexible way to improve our results by choosing different region models and
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metrics. In the particular case of color-valued images (d = 3), to complete our model we need
to choose a color space and a suitable metric in that space. Two important requirements
for this space are to have a clear separation between color and intensity channels and to be
coherent with human perception. For this reason, we choose the CIELab color space, in which
equal color differences approximate equal differences perceived by a human observer, thus
making it possible to compare colors using a Euclidean norm. For this reason, to compute
the error term we choose d(z) as the squared Euclidean norm in R3.

5.7. Color-valued gradient. The final step on the extension to the multivalued case is
to extend the boundary detection algorithm of Cao, Muse, and Sur [9] to work with vector
images. The notion of gradient for multichannel images is not well defined; however, there
are some works in the literature that try to define similar notions. In this work we follow
the ideas of Di Zenzo [17], which proposes computing the structure tensor and obtaining
its eigenvalues. In this setting, the largest eigenvector represents the direction of maximum
change and its corresponding eigenvalue the magnitude of that change. As we are interested
in finding contrasted boundaries, we will compute the probability of the minimum value of
the magnitude of the largest eigenvalue along the curve as we did with the gradient in the
scalar case.

5.8. Parameter choice. The algorithm, as presented in previous sections, does not have
any free parameters. For that reason, it does not allow us to select the desired scale. Without
any parameters, it works at a fixed scale which usually gives oversegmented images. This
is explained by the collaboration of two phenomena. First, we have a lower bound on the
number of tests that is a very loose estimate. Second, as we are using the approximation of
independence between pixels to use the CLT, in many cases we obtain lower bounds of the
joint probability by factorizing it into independent terms. These two approximations have the
effect of making finer partitions more meaningful than coarser ones.

Summarizing, the main problem of the algorithm is to find the correct scale of an image.
From a practical point of view, it would be interesting to have a way to select the optimal scale
given a set of examples. We recall from section 4.1.1 that our lower bound for the number
of partitions was N(n,k) > ©(n®*=2). We have simulated this bound for the k = 2 case
and varying n, and we have found that the difference between the actual quantity and the
bound increases with n. As the number of tests is related to the complexity of the partition,
underestimating this quantity will lead the algorithm to oversegment partitions.

With this in mind, we propose adding a simple correction of the form N (n, k) > O(n®*+=2)),
where parameter « is introduced as an exponent to n to reduce the increasing gap between
both quantities. This gives us the flexibility to adjust the o parameter to match the correct
scale; this parameter is tuned according to the dataset used and the application. The value
« = 6 is the theoretical estimate of the lower bound of the number of tests, and it will be
called the default value of the parameter.

Tuning parameters is a difficult and time consuming task. For the sake of simplicity for
the end user, we provide here an automatic way to determine « for a given dataset. We
achieve this by optimizing a simple cost function given by the difference of the number of
regions detected by the algorithm and by human subjects. Thus, given a parameter value «,
which gives the segmentation @); for image i and a ground truth segmentation P;, the error
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function is
N

E(a) =Y (#P — #Qi)*.

7

Then we perform a simple empirical error descent on this cost function and find the optimal
value for . In section 6.5 we will discuss how to find suitable values for this parameter for
the database used in the experiments, how the algorithm behaves with different values of «,
and how it compares with the automatically tuned value. In the following, the variant of the
algorithm using the default value will be called MP-D, and the variant using the modified «
will be called MP-M. When « is selected automatically, we denote the algorithm as MP-S (S
stands for “supervised”).

6. Results.

6.1. Real images. In the first place, we present here qualitative results of the MP al-
gorithm. In Figure 10 we show the results of the algorithm in a few selected images of the
Berkeley Segmentation Database (BSDS300 subset) [27], with different values of the parame-
ter. As this figure shows, the results are quite good even with the great variability presented
by the images. However, we also observe that using the default parameter value, our algorithm
tends to give oversegmented results in most of the cases. In addition, these illusory bound-
aries are not completely removed by the boundary term. However, when adjusting the scale
parameter the results are greatly improved and the results are visually pleasant. Finally, as in
this example we are not using texture descriptors; in natural images presenting a camouflage
effect (last row of Figure 10), the algorithm performs poorly regardless of the choice of the
parameter.

In Figure 11 we show results over real images taken from the test set of the BSDS500
database. For each image, we show the corresponding saliency map which serves to assess the
quality of the hierarchical segmentation obtained. The saliency map is constructed by labeling
each contour with its scale of disappearance o, which is the maximum scale at which a region
is present in the output partition. These results show two important properties. First, the
obtained stack of partitions is causal; i.e., as the scale parameter increases the segmentation
gets coarser. This can be verified by observing the values of o™ assigned to each contour. If
a contour has a high o~ value, it means that it will survive for a long time in the merging
process. On the other hand, small values mean that it will be removed at early stages. As
the figure shows, the highest values of o~ are assigned to the most coarse segmentation. And
second, the stack of partition is geometrically accurate; i.e., the borders present in each scale
are a strict subset of the previous (finer) scale. If they were not included, they would be
seen as new contours in the saliency map. These results empirically show that the obtained
hierarchy holds the strong causality property.

In Figure 12 we show a comparison of the hierarchy of partitions generated by the MP
algorithm against the initial hierarchy over the same set of real images. The results obtained
by the MP algorithm are similar to those from the initial partition, with the difference that
less salient boundaries are detected in the slowly varying regions. This is mainly due to the
introduction of the boundary term weighted by the gradient. An important property of this
model is that even with the smallest possible parameter value the finest possible partition in
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Figure 10. Results of the algorithm over real images extracted from the BSDS300 (images numbered 167062,
249061, 42049, 138078, 134008, respectively). From left to right: original image, initial partition, segmentation
using the default parameter (o = 6), segmentation using a manually tuned parameter (o = 50). In the last three
images of each row, segmented regions are filled with their mean color and the boundaries are superimposed in
black. The corresponding number of detected regions for each image is shown in Table 4.

the initial hierarchy cannot be obtained. This is due to the regularizing effect of the CLT
approximation of the probabilities, which favors partitions with bigger regions.

6.2. Noise levels and threshold analysis. In Figure 13 (top) we show the behavior of the
algorithm under different noise powers, on a 1000 x 1000 gray-level version of Figure 1. The
regions have the following means: 50, 100, 150, 200. FEight test images were created, with a
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Table 4
Number of detected regions corresponding to images shown in Figure 10.
Image Partition sizes
Initial | MP-D | MP-M
Wolf (167062) 39 19 4
Sea (249061) 135 62 11
Bird (42049) 102 28 10
Boat (138078) 91 43 14
Cheetah (134008) 41 22 3
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Figure 11. Results of the algorithm over selected images of the BSDS500 (test set). For each example we
show the original image on the left and a saliency map of the MP algorithm in the middle. The value of each
contour corresponds to the scale of appearance a™ of each region. In the right images we show a pseudosaliency

map for the Guigues algorithm [20]. In this case, each contour is labeled with the number of times the contour
appears in the hierarchy.

zero mean Gaussian noise of power o added. The lower (logarithmic) bound for the number
of tests has the same value of 165.8 for all cases. As we are modeling regions by their means,
when we increase noise power the adjustment to that model becomes worse, and thus the
meaningfulness of the selected partition is lower. However, the algorithm is able to select the
correct partition (four regions) in each case, even under heavy noise conditions.
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Figure 12. Results of the algorithm over selected images of the BSDS500 (test set). For each example
we show the following images. Left: original image. Middle: the saliency map of the MP algorithm. Right:
saliency map of the initial hierarchy. For the MP algorithm the value of each contour corresponds to the scale
of appearance o~ of each region. For the initial hierarchy the value of each contour corresponds to the scale of
appearance X~ of each region (where X is the scale parameter in the MS model).

In most a contrario approaches there is a notion of detection: if the meaningfulness is
lower than a threshold, they detect objects, and if it is greater, they give no detections. On
the contrary, our algorithm always selects a partition, and it does not have a notion of no-
detection. This happens because we are not thresholding the NFA of each partition, but
selecting the one with the lowest NFA. As Table 1 shows, all the partitions are meaningful
which means that our threshold on the NFA is not well adjusted. This is a common problem in
a contrario approaches and was studied in detail in [19]. Another problem with this approach
has to deal with the size of the images: if we have two images with the same content and
different sizes, the NFA values will change due to the use of the CLT and with bigger images
all structures will be more meaningful. In Figure 13 (middle and right) we show an experiment
with an image composed of one region with a mean of 128. In addition, Gaussian noise with
different powers was added, and two different image sizes were considered. As the figure
shows, the values for a bigger image are more extreme: meaningful partitions become more
meaningful and nonmeaningful ones become even less meaningful. However, our approach
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Figure 13. Left: LNFA of the best partition (four regions) selected against noise power. Middle and right:
Effects of the size of the images and noise power on the NFA. In each image the LNFA is plotted against
the number of regions of the partition for two image sizes (250 x 250 and 500 x 500 in middle and right
images, respectively). o is the power of the added noise. The color codes green, blue, cyan, magenta, and black
correspond to the increasing o values of 15, 20, 30, 50, 100, respectively.

does not attempt to say whether an individual partition is meaningful or not, but tries to get
the partition that better explains the data in a way relative to the other partitions, so in the
end, we are immune to these problems.

6.3. Performance metrics. In order to compare our results against human segmentations,
we need suitable metrics to compare two different partitions of the same image. There are
many metrics proposed in the literature, but most of them are heuristic and lack theoretical
background and validation. One of the most interesting works in this area is by Martin [25],
where the BSDS was built and some metrics consistent with human perception were proposed.
In a posterior work Cardoso and Corte-Real [12] introduced a new set of metrics which aim
to improve Martin’s proposal, while maintaining the same basic idea. One way to evaluate
the performance of a segmentation algorithm is to model the (qualitative and quantitative)
properties of human made partitions and then verify whether a given segmentation has these
properties. On the contrary, rather than model human segmentation, these works compare
two given segmentations of the same image in a way which is consistent with our perception.

In the following we will briefly review Martin’s work [25]. One key concept introduced is
the notion of mutual refinement. Given two partitions P and Q, P is a refinement of Q if for
every region R; € P, there exists S; € @) such that R; C S;. On the other hand, P and Q are
mutual refinements if R; N S; is either equal to R; or S; or it is the empty set. This means
that locally, either P refines Q or vice versa.

One of the conjectures in Martin’s work is that human segmentations of the same scene
are mutual refinements of each other and that all possible human segmentations of a scene
could be organized in a perceptual tree. Thus, each human made partition is just a selection
of regions around this tree. It is important to note that this tree induces a notion of scale, not
in the scale-space sense, but regarding the granularity of the partition. Put in this way, each
human segmentation differs from each other in the scale selected. However, this scale notion
is somehow loose, because it is not global but local. The conclusion from these observations is
that differences due to mutual refinements are perceptually less important than those produced
by misplaced regions.

Cardoso and Corte-Real [12] propose three different metrics to quantitatively evaluate
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results. We give here only an intuitive idea about how they work; for a detailed definition
please refer to [12]. Given two partitions P and Q to be compared, the following quantities
are defined:
e SPD(P,Q): this quantity roughly reflects the percentage of incorrectly classified pixels.
It does not tolerate mutual refinements.
e APD(P,Q): same as SPD, but it does not count errors on pixels where P is a refinement
of Q.
e MPD(P,Q): same as SPD, but it does not count errors on pixels where P and Q are
mutual refinements.
These metrics are bounded between 0 and 1, and they count errors; thus small values mean
good performance and vice versa. It is also important to note that SPD and MPD are
symmetric with respect to their arguments, while APD is not. In the following we will denote
the human partition as P and the algorithm result as @Q; and we will call this set of metrics
partition distances (PD).

Although these metrics are not additive, SPD should roughly reflect the total amount of
error, which in turn is related to the sum of APD(P,Q) and APD(Q, P). This means that
two partitions with the same SPD have the same performance, and the differences between the
APD show us the balance between oversegmentation and undersegmentation. However, this
interpretation alone could be misleading, because SPD includes errors of different nature. For
instance, if a region in the human partition is divided into two regions in the computer seg-
mentation, for the SPD this error counts the same as if the region were completely misplaced.
Even between human observers (see [25]) partitions are not consistent in terms of an exact
matching but rather in terms of mutual refinements. For this reason, global performance could
be measured with the SPD, but the value of MPD should be verified too. While it is tempting
to summarize both measures into only one, we believe that this would be too simplistic and
we would lose the richness of the information of these metrics. For this reason our measure
of overall performance will be a qualitative interpretation of both SPD and MPD.

6.4. Quantitative evaluation. Most of the images used in this paper for the validation
process come from the BSDS, which is a subset of 1200 images from the Corel Database, with
human made segmentations available. Each input image was manually segmented by at least
five different subjects. One of the publicly available datasets, the BSDS300, is composed of
300 images of 481 x 321 pixels, divided into train and test subsets of 200 and 100 images,
respectively. Ground truth segmentation is provided for all images. The instructions given to
the subjects were not to identify objects but uniform regions on the images, which makes this
database well suited for low-level image segmentation. In order to test the independence of
our results from the BSDS300, we also conducted experiments with the Lotus Hill Institute
(LHI) database [40], which is a publicly available database with a ground truth labeling of
the objects present in the image, mainly designed for object recognition tasks. Recently, a
new version of the BSDS was released under the name of BSDS500, which adds 200 new test
images, along with a new set of benchmarks. In the final part of this section, we also present
results using this database.

We present here just a brief excerpt of the extensive validation conducted; full results
and detailed analysis of each algorithm can be found at http://iie.fing.edu.uy /rs/wiki/Image
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Table 5
Quantitative evaluation of the proposed algorithms over the BSDS300 using PD metrics. The number n is
the average number of detected regions for each algorithm.

Alg. SPD |APD(P,Q)|APD(Q, P)| MPD N
initial (A = 50) 222.5
MP-D (e =6) || 0.56 0.54 0.09 0.07 63.8
MP-M (a = 50)|| 0.40 0.32 0.17 0.10 16.0

Table 6

Quantitative evaluation of the proposed algorithms over the BSDS300 using using PD metrics.

Alg. | sep | app(r.@) | aPD(@.P) | MPD
Results over the complete database
MP-D (o = 6) 0.56 0.54 0.09 0.07
MP-G (o = 6) 0.49 0.43 0.16 0.12
GREEDY 0.57 0.54 0.12 0.10
Results over the 100 test images
MP-D (a=6) 0.56 0.54 0.10 0.08
MP-S (a0 = 21) 0.46 0.41 0.13 0.09
MP-M (« = 50) 0.41 0.31 0.19 0.11
MP-M («a = 150) || 0.38 0.18 0.28 0.09
GREEDY 0.58 0.54 0.13 0.10
MP-G (a = 6) 0.50 0.45 0.17 0.13
MP-G-S (o =21) || 0.42 0.31 0.23 0.14

SegmentationAlgorithms. We have also made available the source code and an online demo
to run the algorithm via a web page. We developed a new benchmark based on PD metrics,
and the code to run it is also available online.

In Table 5 we show the average value of the performance metrics over all the images
in the BSDS for the MP algorithm with two different parameter values. The small MPD
value shows that most of the partitions given by the algorithm are coherent with the human
segmentation, meaning that we get only a few overlapping regions that are not refinements,
and thus our result is a mutual refinement of the human segmentation. Moreover, as we
have seen in the qualitative evaluation, the MP-D algorithm tends to over-segment. This
conclusion is reinforced by the small value of APD(Q, P), which indicates that there are very
few undersegmented regions. On the other hand, the big value of APD(P,(Q) also indicates
that the number of oversegmented regions is high. In addition, the similarity between SPD
and APD(P, Q) and the small value of MPD tell us that most of the errors come from choosing
the incorrect scale (finer) rather than having misplaced regions.

When we increase the parameter value «, we see that the number of false positives
(APD(P,Q)) is reduced and the number of false negatives is increased (APD(Q,P)). In
addition, the number of detected regions is lower, which suggests that « is acting as a scale
parameter.

In Table 6, we show a comparison of performance among all the presented algorithms. We
can see that the MP algorithm outperforms the GREEDY algorithm, improving almost every
performance metric by around 2%. However, as the MP algorithm uses color information, in
order to make the comparison fair we have made a gray-level variant of it called MP-G.
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The first point to be noticed is that the gray-level version of the algorithm presents a more
balanced result in terms of the SPD and MPD, but the overall performance is slightly worse
than the MP color case, because it presents higher values for both SPD and MPD. However,
the difference is not as big as we could have expected. One of the main problems of the MP
algorithm is oversegmentation, and since MP-G does not use color information, all regions are
more similar and we expect the algorithm to make more mergings and give coarser partitions.
In this sense, discarding color information diminishes oversegmentation, and thus the results
are better than expected.

There are two remarkable points in the results of the comparison between the MP-G al-
gorithm and the GREEDY one: first, the MP-G algorithm shows better performance overall,
showing a considerable improvement in SPD and a lower decrease in MPD; second, and proba-
bly more important, these results were computed by tuning the o parameter of the GREEDY
algorithm and without tuning any parameter in the MP-G case. These two observations
together show the importance of validating complete partitions rather than single merging
decisions.

Up to this point, we have shown only average values over the BSDS300 database, but it is
also interesting to show how these quantities are distributed over the database. In Figure 14
we show such distributions for each measure. This figure confirms the conclusions drawn
from the average values shown before. The SPD is concentrated towards high values, while
the MPD lies around small values. The shift to the left of the values of APD(P, Q) shows
that the algorithm with this parameter value has very few undersegmented images. On the
contrary, the higher values of APD(Q, P) show that we have many oversegmented images.

In addition, in the first row of Figure 15 we show the distribution of the number of
regions detected by human subjects and by the MP algorithm, which clearly confirms that
our algorithm with the default parameter value is oversegmenting.

6.5. Parameter learning. What is left to complete the algorithm is to choose a suitable
value of the scale parameter a. As we stated in the introduction, there is no such thing as
the correct scale for the general case. This notion is application and dataset dependent. Even
given a dataset like the BSDS, not every image has the same scale, and thus we should define
an optimal set scale, which is the best scale one can choose for the complete dataset, and an
optimal image scale, which is different for every individual image. In this work, a represents
the notion of optimal set scale.

In the first place, we proceeded to tune the a parameter manually, using the training
subset of the BSDS to find a suitable value for a. The goals established were the following;:
obtaining more balanced results in terms of the APD, the diminishing SPD, and keeping the
increase of MPD controlled. As a result, we found that o = 50 is a good compromise for this
set of metrics and for this database. The results of this choice of the parameter are shown in
Table 6, where we can see that the results are better than those of the previous algorithms.

Regarding the automatic parameter tuning, for the particular case of the BSDS, we ran
the parameter estimation algorithm presented in section 5.8 with the 200 images from the
training set and obtained a value of o =~ 21. We also ran the same procedure with the gray-
level version of the algorithm, and we called these variants multipartition-supervised (MP-S)
and multipartition-gray-supervised (MP-G-S). Their results over the test set of 100 images are
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Figure 14. Distribution of performance measures over the BSDS300 database. From left to right, and from
top to bottom: SPD, APD(P,Q), APD(Q, P), MPD.

shown in Table 6. As this table shows, the training procedure greatly reduces the number of
false positives (FP) and slightly increases false negatives (FN), so the overall performance is
clearly improved (10% reduction in SPD) and the FP and FN are more balanced. Moreover,
in Figure 15(c) we can see how the distribution of the number of detected regions is shifted
to the left, meaning that on average we are detecting fewer regions than before.

The training procedure presented before provides a considerable improvement of the results
over the default value of the parameter, but its performance is lower than the manually selected
parameter. Looking at both APD we can see that the results are still slightly unbalanced.
Please note that the optimization goal was to optimize the number of regions, but not any
particular metric. Regarding this supervised procedure, two more points need to be remarked.
First, the kind of parameter that needs to be learned is very simple, so we do not really need
a big number of training images, and the performance of that training is not affected when
using only a few images, as opposed to [26], which requires a very complex training process.
Second, our optimization goal is not a particular performance metric as in most reference
works, but to choose the correct scale. This means that our optimization procedure does not
guarantee a decrease in the APD, SPD, or any other performance metric, just in the number
of detected regions. This optimization goal makes the results independent of the metrics used.
In addition, in Figure 15 we show the distribution of the number of regions detected by human
subjects and by the proposed algorithms. From this figure we can conclude that each version
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Figure 15. Distribution of the number of detected regions over the database. From left to right, and from
top to bottom: human detected regions, result of the unsupervised (MP-D) algorithm, result of the supervised
(MP-S) algorithm, result of the manually tuned (MP-M) algorithm.

of the algorithm improves the previous ones in terms of detected regions and that the MP-M
achieves the distribution most similar to the human subjects.

Although the effort of quantifying the results of the algorithms is praiseworthy and consti-
tutes a good step towards the objective evaluation of scientific work, we should bear in mind
that every set of metrics has its drawbacks and they are still far from our subjective percep-
tion. Overoptimizing the algorithms with respect to a particular metric is a dangerous path to
follow and could lead to results which are far from human perception. In the particular case
of this algorithm, the best numeric results are obtained with o = 150 (see Table 6); however,
from a subjective point of view we think that those results are not as good as those obtained
with o = 50. In our experience this is because we tend to penalize subsegmentation more
than oversegmentation, and thus the results using o = 50 are more pleasant to the human
eye.

Finally, when comparing with human made segmentation, caution should be exercised,
because there are fundamental differences among the processes of segmenting an image by a
human observer and a machine. The human segmentation uses a higher level of abstraction
than our low-level tools, and thus the latter have a natural limit on their performance, which
explains the differences we see with the human subjects.
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Table 7
Quantitative evaluation of the proposed algorithms over a selected subset of the LHI database, using per-
formance metrics from Cardoso and Corte-Real [12].

Alg. SPD | APD(P,Q) | APD(Q,P) | MPD
MP-D || 0.62 0.61 0.08 0.07
MP-S 0.55 0.52 0.10 0.08
MP-M || 0.50 0.46 0.18 0.15

6.6. Other datasets. In order to extend our results we conducted the same validation
procedure in the LHI database. One important remark about this database is the fact that
it was designed for object recognition, and the human segmentations provided are of a higher
level of abstraction; i.e., objects are marked as persons, cars, etc. In Table 7 we show the
results of the proposed algorithms on 75 images from the following LHI subsets: Badminton,
Highway, Ibis, Polo, Snowboarding, Street. The obtained results are quite good in quality,
although the scale is generally finer than the ground truth segmentations. In the case of the
MP-S algorithm, we did not train the algorithm again but used the parameter obtained on
the BSDS300. The first observation about these results is that all the conclusions extracted
from the BSDS are still valid here, namely, the oversegmentation shown by the MP algorithm,
and the further improvements provided by the MP-S and MP-M algorithms, which present
more balanced results. The second observation is that the performance is lower than in the
BSDs. This is coherent, since the human segmentations provided by the LHI database are
of a higher level of abstraction, which in general corresponds to coarser partitions than those
from the BSDS.

6.7. Comparison. As we stated before, there are very few published algorithms presenting
quantitative results. The first work on this area which presented an extensive evaluation
was [26], followed by [2, 39]. These three works use the BSDS database and the precision-
recall framework, which is good because it allows the community to compare results from a
quantitative perspective. However, this comparison is performed from a boundary detector
oriented perspective, and the results are not well suited to benchmark partitioning algorithms.
The objections raised to this approach are discussed in detail in [12]. In [39] they also use the
probabilistic Rand index (PRI) and the variation of information (VOI) to measure the quality
of the results. In addition, [6] shows quantitative results on a custom database (not publicly
available at the moment of writing) using the metrics from Cardoso and Corte-Real [12].

In addition, in [3, 33] the authors also did the great work of running the benchmarks for
some state of the art algorithms:

e FH: “Efficient Graph Based Segmentation,” Felzenszwalb and Huttenlocher [18].

e CM: “Mean shift,” Comaniciu and Meer [14].

e NC: “Normalized Cuts,” Shi and Malik [35].

e MS: “Multiscale algorithm for image segmentation,” Koepfler, Lopez, and Morel [23].

o WS: “Geodesic saliency of watershed contours and hierarchical segmentation,” Najman
and Schmitt [32].

e MFM: “Learning natural image boundaries,” Martin, Fowlkes, and Malik [26] and
Canny [8].
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Those authors have made their code or binaries publicly available, but no quantitative results
are given. Note that they had to tune the parameters of the algorithms manually to perform
a fair comparison. We also want to comment on the fact that many researchers are comparing
with NC, FH, and CM, since they have made their codes and/or results available, although
the results are not always the state of the art.

Even counting the aforementioned results, the number of algorithms with quantitative
evaluation amounts to a couple of dozen, counting this work, which is clearly insufficient for
a broad area like low-level image segmentation.

Finally, partition-based performance measures are rarely used, so the results are hard to
compare in this sense. We hope that this work can contribute to spreading these kinds of
evaluation metrics and that we see works using them in the future more.

For the aforementioned reasons, in this section we show the comparison using Cardoso’s
metrics only for two algorithms: texture and boundary encoding-based segmentation (TBES)
[33] and ultrametric contour maps (UCM) [2, 3]. We have chosen these algorithms because
they have state of the art results and they provide a means to reproduce their results. In order
to benchmark these algorithms, we ran the code provided by the authors with the parameters
provided by them. The results of such a comparison are shown in Table 8, and they show
that our algorithm presents a comparable (and slightly better) performance with the reference
works.

The work of Guigues is very similar in spirit to our algorithm, and thus it is important
to compare with his approach. We did our best to compare in a quantitative way, but at the
moment of writing we did not have access to a suitable executable/source code to run the
benchmarks.?> For these reasons we show in Figure 11 only a qualitative comparison for a
few random images taken from the BSDS500; the only criterion used to select them was to
choose one image from each different category (city, animals, people, objects). The current
implementation of the scale-sets representation uses a piecewise constant MS model, using the
three RGB channels as features. As this figure shows, Guigues has the same problem in slowly
varying intensity regions, where they appear fragmented due to the piecewise constant model.
This can be seen in the sky of the city image, where some salient boundaries are detected. In
addition, some salient boundaries are detected in the background bird image which are more
salient than the bird itself, due to the camouflage effect.

These results show that the quality of the hierarchy obtained by the MP algorithm is better
than that from Guigues, because the most salient boundaries better match the structures
present in the images.

6.8. Alternative performance metrics. Although we believe that the metrics presented by
Cardoso and Corte-Real [12] are the best choice for the evaluation of low-level segmentation
algorithms, we faced the fact that very few works used them to present results. For that
reason, and to ensure reproducibility, we present here performance results using the metrics
proposed by Martin [25]. In that work, two sets of metrics are introduced: region based

3The authors pointed us to the open source Seascape software [37], which has a graphical user interface
which runs Guigues’s algorithm. However, it was not possible to run it in batch mode in order to compute
the results for the whole database. We also tried to develop our own executable based on Seascape code but
without luck.
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Table 8
Quantitative comparison of algorithms over the BSDS using performance metrics from Cardoso and Corte-
Real [12].

Results over the 100 test images
Alg. SPD | APD(P,Q) | APD(Q,P) | MPD
MP 0.56 0.54 0.10 0.08
GREEDY 0.58 0.54 0.13 0.10
MP-S 0.46 0.41 0.13 0.09
MP-M (« = 50) 0.41 0.31 0.19 0.11
MP-M (a = 150) || 0.38 0.18 0.28 0.09
UCM 0.39 0.32 0.14 0.09
TBES 0.41 0.34 0.17 0.11

Table 9

Quantitative evaluation of the proposed algorithms over the BSDS300 using the F-measure.

Results over the 100 test images of the BSDS300
Alg F-meas P R
Human 0.79 X X
MP 0.64 | 0.736 0.564
GREEDY | 0.544 | 0.772 0.420
MP-S 0.624 | 0.606 0.644
MP-M 0.590 | 0.505 0.710

and boundary based. From these metrics, we want to highlight the F-measure, which is the
most widely used at the moment. The definition of the F-measure [25] relies in turn on
the definition of two quantities: precision and recall. Precision (P) is the probability that
a machine-generated boundary pixel is a true boundary pixel. Recall (R) is the probability
that a true boundary pixel is detected. The F-measure is a way to summarize both quantities
in a unique performance metric, and it is computed as the harmonic mean of P and R. The
F-measure is bounded between 0 and 1, and values closer to 1 mean better performance. Note
that precision and recall are boundary-based metrics, and thus they are not well suited (nor
are they the F-measure) to evaluate region-based algorithms.

The results using the aforementioned metrics are shown in Table 9. In spite of some
differences, these results confirm the conclusions obtained from our first evaluation. First,
they confirm that the MP algorithm clearly outperforms the GREEDY one. And second,
they confirm that the MP-S algorithm improves MP performance and gives more balanced
results in terms of FP and FN.

Regarding the supervised procedure, as we explained in section 6.5, it is not tuned to
any particular metric, which could explain why our MP-S algorithm does not improve the
F-measure obtained by the original MP algorithm.

In order to extend our comparison, we compare our algorithms with the state of the art
using the F-measure. In Table 10 we present an excerpt of results presented in [3, 33] with
the addition of our results. Note that c-UCM and g-UCM refer to the canny-owt-UCM and
the gPb-owt-UCM algorithms presented in [3]. We report here only the F-measure for the
optimal dataset scale (ODS), because some of the precision-recall values from the reference
works are not available.
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Table 10
Quantitative comparison of the proposed algorithms with the state of the art. Results computed over the
test BSDS300 subset using the F-measure (ODS). Results were taken from Figure 4 of [2] and Table 1 of [3].

Alg F-meas Alg | F-meas Alg | F-meas
Human 0.79 Results from [2] Results from [3]
MP 0.639 UCM 0.67 c-UCM | 0.58
GREEDY | 0.544 MS 0.63 g-UCM | 0.71
MP-S 0.624 WS 0.62 CM 0.63
MP-M 0.590 MFM 0.65 FH 0.58
TBES [33] | 0.645 ||| canny | 0.58 NC | 0.62

As these results show, our algorithm has a performance similar to that of the other state
of the art algorithms, measured with the F-measure. Some algorithms have a significantly
better performance than the MP algorithm.

6.9. Multiscale evaluation. So far we have shown single scale results using the PD met-
rics for a selected number of scales. In this section we show a multiscale evaluation based
on these metrics, in the same spirit as the BSDS multiscale evaluation. In Figure 16 we
show the results of varying the o parameter in the range [6,200] for the BSDS300 database.
As this figure shows, with the smaller parameter choice we have an oversegmentation (high
APD(P,Q), low APD(Q, P)), as the parameter changes the balance of FP vs. FN towards
an undersegmentation. This supports our claim that o behaves as a scale parameter.

03 . 0115

026 0105
.

apd2
°
mpd
°

0.22 0.095

018 L L L L L L L ] 0.085 L L L L L L L
0.16 0.18 02 0.22 0.24 026 028 03 042 038 0385 0.39 0.395 04 0.405 0.41 0.415 0.42

spd

Figure 16. Results of the region-based multiscale evaluation proposed in this work, using the BSDS300
database. Top: APD(P,Q) vs. APD(Q,P). Bottom: SPD vs. MPD.

6.10. Results over the BSDS500 database. In this section, we extend the evaluation
to a third dataset, the 200 test images from the BSDS500 database. These images are new
(not included in the BSDS300), and no training or tuning of the algorithms was carried out
in this database. We use the exact configuration tested in the BSDS300. This evaluation
was computed with the new version of the Berkeley Benchmark, which now includes the
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Table 11
Quantitative evaluation of the proposed algorithms over the BSDS500 using Berkeley-boundary based mea-
sures.

Results over the 200 test images of the BSDS500
Alg. ODS (o = 10.8) oIS
Alg P R F-meas P R F-meas AP
MP || 0.70 | 0.61 | 0.65 0.72 | 0.66 | 0.69 0.51

computation of some region-based quantities (PRI, VOI, Covering).

The boundary-based results are shown in Table 11. These results confirm what we pre-
viously commented about the F-measure; i.e., it is unfair with region-based approaches. It is
also interesting to note that the chosen ODS corresponds to ov = 10.8, which is very different
from the chosen scale to optimize the PD metrics a = 150. In Figure 17 we show the results
of the boundary-based multiscale benchmark of Berkeley. These results confirm that « acts
as a scale parameter: when « is small, the algorithm shows high precision and low recall
values, which corresponds to a segmentation with a big number of FN and a low value of FP;
when « increases the balance leans towards oversegmentation, i.e., precision falls and recall
rises. Finally, to complete the boundary-based evaluation, in Table 12 we compare with the
reference works using the F-measure on the BSDS500. As the results show, we obtain state of
the art results, surpassed only by Arbeldez et al. [4]. Note that the difference in performance
between Arbeldez’s algorithm and ours is bigger when quantified with the F-measure, which
is explained by the fact that Arbeldez’s algorithm is trained with the F-measure as the opti-
mization goal. As our algorithm uses an initial pruning, the R = 0 value is never attained,
and the same happens with P = 0; thus the P-R curve is not complete. This means that the
measured AP value is not accurate.

In Table 13 we show the results of the Berkeley region-based metrics. In the ODS case,
we show the value of « that achieved that result. In Table 14 we compare our results with
the available results from [4] using the Berkeley region-based metrics. As these results show,
our algorithm obtains good results, surpassed only by the work of Arbeldez et al. [4], which
is significantly better. For the rest of the compared algorithms we obtain better values for
almost every metric.

6.11. Fixed number of regions. As we stated before, our approach gives us the flexibility
of specifying the number of desired regions beforehand. This could be particularly useful in
a number of applications, such as skin lesion detection, were we wanting to detect one single
mark in the skin [10]. In Figure 18 we show the result of such an approach for the detection
of melanomas in dermatological images. As this figure shows, the original algorithm gives the
correct number of regions in some cases and fails in some others. In these cases the fixed
region variant helps solve the problem.

6.12. Summary of experimental results. We evaluated our algorithm in a very exhaustive
way, using many different sets of metrics and various databases. From all the results we can
conclude that our algorithm presents good results, which are comparable with the state of the
art. However, the results of Arbeldez et al. [4] are better than ours. This is explained by various
factors, but mainly by the fact that we focused on the model of partition selection developed



1310 J. CARDELINO, V. CASELLES, M. BERTALMIO, AND G. RANDALL

0.7

Precision
o
o
T

o0

Og

Figure 17. Results of the boundary-based multiscale evaluation from Berkeley [4].

The red curve depicts

the behavior of the F-measure of the MP algorithm as the scale parameter o varies in the range [0.01, 5000].
The curves in green are isocontours of the F-measure.

Table 12
Quantitative evaluation of the proposed algorithms over the BSDS500 using boundary-based measures. The
results of the related works were extracted from Table 1 of [4].

Results over the 200 test images of the BSDS500

Alg F-meas AP

oDS | OIS
Human 0.79 | 0.79 X

gPb-owt-ucm || 0.73 | 0.76 0.73

MP 0.65 | 0.69 0.51

CM 0.64 | 0.68 0.56

NC 0.64 | 0.68 0.56

Table 13

Quantitative evaluation of the MP algorithm over the BSDS500 using Berkeley region-based measures.

Results over the 200 test images of the BSDS500

oDS 018
GT | PRI | VOI GT | PRI | VOI
Metric value || 0.52 | 0.79 | 1.87 || 0.58 | 0.83 | 1.65
« values 80 20 300

and we did not tune the ingredients. Choosing a better initial segmentation, a different set of
features (we use only color information), a better region model (we use a piecewise constant
one), and a better boundary detector, we could improve our results considerably. In Arbeldez’s
work, all these factors were carefully chosen. In addition, these choices and the values of the
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Table 14
Quantitative evaluation of the MP algorithm over the BSDS500 using Berkeley region-based measures. The
results of the related works were extracted from Table 2 of [4].

Results over the 200 test images of the BSDS500

Alg. Covering PRI VI
oDS 018 Best oDSs o1s oDS o1s
Human 0.72 | 0.72 0.88 | 0.88 1.17 | 1.17
MP 0.52 | 0.58 | 0.68 0.79 | 0.83 1.87 | 1.65
gPb-owt-ucm 0.59 | 0.65 | 0.74 || 0.83 | 0.86 || 1.69 | 1.48
CM 0.54 | 0.58 | 0.66 0.79 | 0.81 1.85 | 1.64
FH 0.52 | 0.57 | 0.69 0.80 | 0.82 2.21 | 1.87
Canny-owt-ucm || 0.49 | 0.55 | 0.66 0.79 | 0.83 2.19 | 1.89
NCuts 0.45 | 0.53 | 0.67 | 0.78 | 0.80 2.23 | 1.89
Quad-Tree 0.32 | 0.37 | 0.46 0.73 | 0.74 2.46 | 2.32

Figure 18. Results of three of the proposed algorithms over skin lesion images. From left to right: original
image, nitial partition, result of the MP algorithm, result of the MP-S algorithm, result of the algorithm
imposing a 2-region constraint. These images were provided courtesy of Dr. Pablo Musé.

parameters were made by training over the train subsets of the BSDS, whereas we did not use
any training process.

7. Implementation. Our algorithms are implemented in C and C++4, with automatic code
optimization turned on. The execution times of the algorithms depend on image content; they
have a strong dependency on the size of the initial partition and a weak dependency on the
size of the image. In Figure 19 we show the distribution of the execution times over the
BSDS300 database. The average times and their standard deviations are shown in Table 15.
These times were computed on an Intel(R) Core(TM)2 Duo CPU E7300 @ 2.66GHz, with
3Gb RAM, which was a standard desktop computer in 2008. The first conclusion is that the
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family of developed algorithms has reasonable execution times, approximately 5 seconds in
average. However, with a careful implementation these times could be considerably lowered.
Second, the different variants of the MP algorithms (obtained by varying the scale parameter)
do not change the execution time, which is coherent because the main computational effort is
invested in the construction of the tree and the computation of the NFA. This is the opposite
behavior of many merging algorithms where the execution time depends on the amount of
merging performed, which in turn depends on the value of the scale parameter. Third, the
execution time of all the algorithms depends only on the size (N;) of the initial partition, as
predicted by our formulation in sections 3.7 and 5.4.

60 T T T T 18 T T T T
501 1
40

301

20

Figure 19. Distribution of the execution times (in seconds) over the BSDS300 database for the different
algorithms presented. From left to right, and from top to bottom: GREEDY, MP, MP-S, MP-M.

Table 15
Ezecution times for the different versions of the algorithms on the complete BSDS300 database. In each
case N; is the average number of regions of the initial partition used. p and o are the corresponding mean and
standard deviation of the execution times (in seconds).

Alg. N; (regions) | p (secs.) | o (secs.)
GREEDY 605 14.14 3.74
MP-D 222 5.50 1.71
MP-S 222 5.37 1.74
MP-M 222 5.27 1.66




A CONTRARIO SELECTION OF PARTITIONS 1313

8. Conclusions. In this work we presented a method for image segmentation based on a
hierarchy of partitions of an image. We introduced an a contrario statistical model based on
the combination of region- and boundary-based descriptors, which allows us to validate the
partitions present in the hierarchy. In this way, we reduce the number of free parameters and
alleviate the problem of local minima shown by greedy algorithms. The results obtained by
our algorithm are comparable to those presented in the literature. We have conducted an
extensive quantitative evaluation using many different performance metrics and two publicly
available datasets.

The main drawback of our approach is the underestimation of the NFA, which leads our
algorithm to oversegment images. We have addressed this problem using an example-based
training process to adjust the optimal scale for a given database. However, part of the problem
is still there, and we need to address this in a future work. Another point that needs further
work is the way we include boundary information in the process, because we are currently
using a simple version of the boundary detector of Desolneux, Moisan, and Morel [15]. Thus,
we could improve this by modifying the boundary detector to introduce all the improvements
presented in [9], which would help to remove the apparent boundaries found by our algorithm.

The main focus of this work was to present a generic partition validation approach, which
has proven to be useful for the segmentation tasks. However, our results are conditioned
by the quality of the algorithm used for the initial segmentation (MS in this case) and the
features used to describe regions (color information). In addition, our boundary detection
term is somehow weak, as mentioned before. In this sense, there is still room for improvement
in many ways. In the first place, we could use the gPb contour detector presented in [4] to
improve the initial segmentation, and we could also add texture information to the region
descriptors.

We also want to test our framework with three-dimensional and general multivalued images
(to deal with textured images). While our model is in fact independent of the dimension of
the image domain and of the pixel dimension, and we have some preliminary results, we still
need extensive experimentation in these cases.

It would also be interesting to add a summarizing quantity to the PD metrics analogous
to the F-measure, which could allow us to compute a single score for a segmentation in our
benchmark. Finally, the computational cost of the partition selection mechanism needs to be
improved, which will make the algorithm useful in more cases.

Appendix A. Complexity analysis. In this appendix we will analyze the complexity of
the dynamic programming scheme used to update the NFA tables. We will analyze what
we believe are the most extreme cases with respect to complexity, which are dependent on
the structure of our binary tree. Those cases are a completely degenerated or a completely
balanced tree. This is not a formal proof but merely a conjecture. The hypothesis behind
this reasoning is that the balanced tree is the worst case with respect to computational cost
and the degenerated tree is the best case. We will discuss this assumption at the end of this
section.

Given a node A, of a tree T, let us define T’y as the subtree which has A as root. Suppose
that we want to fill the NFA table of a node A, which will be denoted as table4, which
has children B and C (see Figure 20). Suppose that we have already computed both tables
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20

A
3] 16
5 4 15 B 14 C
0 3 1 2 10 13 11 12

i |NTA; j | NFaA.

k | NFA,

Figure 20. Ezxzample computation of the NFA.

corresponding to the subtrees Tz and Tr. Given a node A, the number of possible partitions
that span is bounded by [1, N4|, where N4 is the number of leaves T4. We will compute this
number later.

A.1. Computation of the NFA table for a node. We need to fill a table of the NFA of
N4 entries. To compute the NFA at level n, we will explore all the NFA values at levels i, j
such that ¢ + j = n, taking i from tablep and j from tablec. In the following we will compute
the number of possible ways to do that, denoted as f4(n).

Remember that N4 = Np+ N¢o. Without losing generality, we can assume that Ng < N¢
and we will split the range of N4 into three ranges:

e n < min(Ny, Np). In this case the number of combinations is fa(n) =n — 1.
e n > min(Ny, Ng) and n < max(Ny4, Np). In this case, after we use all the values of
Np we do not have more options, so fa(n) = Np.
e n > max(Na, Np). This case is the same as the previous. fa(n) = Np.
Thus, the total number of computations needed to fill the table is

Na—1 Np—1 Na—1
(18) Fa= Y falm)= > (n—1)+ Y Np
n=1 n=1 n=Np
zw—l—(NA—l—NB)NB
_ Ve~ )N _21)NB + (N¢ — 1)Np.

The numbers N4, Ng, N¢o depend on the structure of the tree, but there are two extreme
cases: the degenerate tree and the balanced tree. In the degenerate case, Ng = 1 and
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N¢o = N4 — 1; on the other hand, in the balanced case, Ng = N¢g = %. Substituting this
into (18) we obtain the two boundary values for the number of cases:

(19) Fy= {NC —1= N, if T4 is degenerated,

SN — 1Ny if T4 is balanced.

A.2. Computation for every node in the tree. In order to carry on the computation, we
need to add up the cost of computing the table for every node; that is,

(20) > Fa.

AeT

This of course depends on the structure of the tree, so it can be counted in this form. However,
if we take into account that the complexity depends on N4 and on the structure of the tree,
we can rewrite this equation in a more compact way if we arrange the nodes by the type of
their subtrees:

(21) D Fa(t).N (1),

where ¢ is a type of subtree and N (¢) is the number of those subtrees. Of course this notion is
vague, and cannot be counted, but in certain cases we could do it. For instance, if the tree is
balanced, every possible subtree is also balanced; the same is true if the tree is degenerated.
The important thing to be noted is that the complexity depends on the number of that type,
the size of that type, and the F4 of that type. Thinking in that way, the balanced tree is the
worst case for two (out of three) of those quantities. For example, this tree has the minimum
number of different sizes of subtrees, the biggest number of nodes per level, and the highest
F4 per node.

One possible way to count this number is classifying nodes by their height h. We have a
total of log(n) height values, and for each subtree of height A there are N'(h) = 27" nodes,
and each A node has N4 = 2" leaves. Summarizing, in the balanced case, the number of
operations is

log(N/2

)
(22) > Fa, N(Aw),

h=1

where NV is the total number of nodes of the tree. The key observation is that F4 and N4 in
these cases depend only on h, because all the subtrees have the same structure:

(23) 1og§v:/2) <§ N2_ln ) N (h)

o \gTh gt ‘
Taking into account that Nj, = 2" and NV(h) = N/2"*+1 the total number of operations yields
(24) C(N) = O(N?).

The main reason for the high complexity of this part is due to the fact that we maintain a
table of all possible partitions for each node, which is far more complex than keeping only the
best partition for each node.
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