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Abstract—This paper describes the design and integration of
an instrumentation and sensor fusion that is used to allow the
autonomous flight of a quadrotor. A comercial frame is used,
a mathematical model for the quadrotor is developed and its
parameters determined from the characterization of the unit. A
9 degrees of freedom Inertial Measurement Unit (IMU) equipped
with a barometer is calibrated and added to the platform. Sensor
fusion is done by two modified Extended Kalman Filters (EKF):
one combining data provided by IMU and the other also including
the information provided by GPS. A reliable estimation of the
state variables is obtained. Three states representing systematic
bias in the accelerometer measurements are also added to the
EKF, which improves the inertial estimation of the position. A
stable autonomous platform is achieved.

I. INTRODUCTION

There is an important growth in the interest about unmanned
aerial vehicles (UAV) in relation to its capabilities to perform
a wide spectrum of tasks as monitoring, surveillance, aerial
photography, exploration, delivery, rescue, remote sensing, etc.
The continuous advances in low power MEMS sensor de-
vices, low power embedded processors, energy storage through
efficient electric batteries and electrical motors technologies
have been driving forces in the process of implementation of
new and more sophisticated devices of this kind, particularly
miniature flying robots. Quadrotors UAV is one of the most
popular architectures. They emerged also as a typical platform
for research. There is much research work about path planning
and vision towards navigation in unstructured scenarios (e.g.:
[1]–[3]), fault tolerant navigation (e.g.: [4]), path tracking (e.g.:
[5]), control techniques for UAV such as neural networks [6],
gain-schedulling [4], feedback linearization (e.g.: [3], [7]),
PI control [5], Adaptive Control [8], LQR (e.g.: [2], [9]),
backstepping control (e.g.: [1], [3]), etc. If state estimation,
path planning or control techniques are to be experimented in
a physical setup, an important issue is to have the possibility to
gain access to the different blocks of the navigational system.
This work is part of the development of the instrumentation
and control of an autonomous quadrotor in which is possi-
ble to modify and test different state estimation techniques,
path planning algorithms and control laws. The solution was
reached using a commercial mechanical platform, and design
and build an ad-hoc instrumentation and control navigation
system. This paper focuses on the filtering techniques applied

Fig. 1: Commercial motorized-frame used.

Fig. 2: General diagram.

for sensor data fusion which gives the state estimation needed
by the control system, that allows the quadrotor to fly.

II. SYSTEM ARCHITECTURE

The platform is based on the commercial radio controlled
quadrotor shown in Figure (1). The length between opposite
propellers is 61.5cm, the weight is 990g (including battery),
and it has 1300g of payload. The frame, motors and the
Electronic Speed Controllers (ESCs) used for the motors were
preserved, whereas the IMU and intelligence were replaced
by the flight controller that was developed. A BeagleBoard1

running Linux2 performs the computations required to convert
raw data received from the IMU3 over a UART and combine

1BeagleBoard development board - http://beagleboard.org/
2Angstrom distribution: http://www.angstrom-distribution.org/
3Mongoose IMU - http://store.ckdevices.com/



Fig. 3: Model of the quadrotor - The blue arrows represent
the inertial reference frame SI , and the red arrows represent
the non-inertial reference frame Sq . The cyan “looped” arrows
indicate the direction of rotation of each motor, which rotate
at ωi and generate a torque Mi opposite to their direction of
rotation. The arrows labeled T[1,2,3,4] represent the thrust of
the motors. The semicircle and the two yellow spheres indicate
the xq axis of the unit.

it using an EKF. The EKF overcomes the problems inherent
to each sensor and filters out noise, providing a reliable esti-
mation of the state vector. Once the current state is known, the
LQR algorithm is used to derive the control actions required to
bring the system to the desired set-point. A complete diagram
of the implemented system is shown in Figure (2). The two
main goals are to integrate additional sensors and intelligence
to the available platform to obtain a state estimation, and
design and integrate a control system that, using the state
estimation, achieves the autonomous flight.

III. MODEL OF A QUADROTOR

A. Definitions

A diagram of the quadrotor is shown in Figure (3). Two of
the motors rotate clockwise (2 and 4) and the other two (1
and 3) rotate counterclockwise. This configuration allows the
quadrotor to rotate, tilt and gain/lose altitud by setting different
speeds on each motor. Two frames of reference (Figure (3))
are constantly used through out this paper: an intertial frame
SI − {̂i, ĵ, k̂} ({~x, ~y, ~z}), relative to the Earth, mapped to
North, West and Up respectively, and a non-inertial frame
Sq − {̂iq, ĵq, k̂q} ({~xq, ~yq, ~zq}) relative to the quadrotor. The
mapping of one frame to the other can be achieved by applying
the three rotations shown in Figure (4). The angles {θ, ϕ, ψ}
are known as Euler angles.

B. Dynamics-kinematics of the system

From a detailed analysis of the dynamics and kinematics
of the quadrotor, the equations (1) are obtained, and the state
vector shown in (2) is built to describe the system at any
given time. The variables with subscript q are referenced to

the quadrotor frame Sq , the rest are relative to SI :

ẋ=vqx cosϕ cos θ+vqy (cos θ sinϕ sinψ−cosϕ sin θ)

+vqz (sinψ sin θ+cosψ cos θ sinϕ)

ẏ=vqx cosϕ sin θ+vqy (cosψ cos θ+sin θ sinϕ sinψ)

+vqz (cosψ sin θ sinϕ−cos θ sinψ)

ż=−vqx sinϕ+vqy cosϕ sinψ+vqz cosϕ cosψ

ψ̇=ωqx+ωqz tanϕ cosψ+ωqy tanϕ sinψ

ϕ̇=ωqy cosψ−ωqz sinψ

θ̇=ωqz

cosψ

cosϕ
+ωqy

sinψ

cosϕ

˙vqx =vqyωqz−vqzωqy+g sinϕ

˙vqy =vqzωqx−vqxωqz−g cosϕ sinψ

˙vqz =vqxωqy−vqyωqx−g cosϕ cosψ+
1

M

4∑
i=1

Ti

˙ωqx =
1

Ixx
ωqyωqz (Iyy−Izz)

+
1

Ixx
ωqyIzzm(ω1−ω2+ω3−ω4)

− 1

Ixx
dMg cosϕ sinψ+

1

Ixx
L(T2−T4)

˙ωqy =
1

Iyy
ωqxωqz (−Ixx+Izz)

+
1

Iyy
ωqxIzzm(ω1−ω2+ω3−ω4)

− 1

Iyy
dMg sinϕ+

1

Iyy
L(T3−T1)

˙ωqz =
1

Izz
(−Q1+Q2−Q3+Q4)

(1)

x =
{
x, y, z, θ, ϕ, ψ, vqz , vqy , vqz , ωqx , ωqy , ωqz

}
(2)

where:
• {x, y, z} represent the position of the center of mass of

the system in SI .
• {θ, ϕ, ψ} are the Euler angles shown in Figure (4).
• {vqx , vqy , vqz} are the linear velocities relative to Sq .
• {wqx , wqy , wqz} are the angular velocities relative to Sq

(right hand rule applied on {̂iq, ĵq, k̂q}).
• T1(ω1), T2(ω2), T3(ω3), T4(ω4) are the thrust of the

motors.
The dynamical model considered, derived from equations 1,
is

ẋ = F(x,u) (3)

where u = {ω1, ω2, ω3, ω4} is the controllable input of the
system.

The mathematical model developed is similar to the ones
presented in [10], [11], but also takes into account that the
center of gravity of the quadrotor is not at the same height
as the propellers. Thus a momentum produced by the gravity
force has to be added. While in [11] the linear velocities are
expressed in an inertial frame, in this work are referenced
to the quadrotor frame. This choice simplifies the theoretical
development and the interpretation of the data provided by the
IMU, which is mounted on the quadrotor and hence provides
accelerations and angular velocities that are relative to Sq .



(a) Rotation 1: Axis k̂ (b) Rotation 2: Axis ĵ (c) Rotation 3: Axis î

Fig. 4: Mapping - Rotations applied on SI to obtain Sq .

IV. SENSORS

In order to determine what actions should be taken, the state
of the system must be known. The system uses a 9 degrees
of freedom IMU and a GPS. This equipment enables direct
measurement of most of the state variables. There is no direct
measurement of the linear speed of the system {vqz , vqy , vqz},
so the model developed in (III) is used to estimate them.

A. IMU

The IMU is equiped with the following sensors:
• Barometer: Measures the absolute pressure of the en-

vironment. Variations of pressure are used to estimate
variations in the altitude of the system.

• Thermometer: The barometer includes a thermometer.
The temperature data is used to apply a temperature com-
pensation to the calibrations performed on the gyroscope
and the accelerometer. The reader can find the details in
this procedure in [12].

• Gyroscope: A 3-axis gyroscope is used to measure
angular velocity of Sq . A calibration based on [13] was
designed and applied to this device. Furthermore, a tem-
perature compensation was designed and implemented.

• Accelerometer: A 3-axis accelerometer is used to mea-
sure gravity. Under the hypothesis that no other accel-
erations are present, this allows the determination of
two of the three Euler angles: {ψ, φ}. This hypothesis
is acceptable, since the accelerations involved are not
significant compared to gravity. A calibration, based on
[13], was designed and applied to this device, as well as
a temperature-compensation.

• Magnetometer: In an area free of magnetic interference
this 3-axis sensor will measure B, the Earth’s magnetic
field, allowing to determine what direction is North. If
the system is horizontal (or the inclination is estimated
using other sensors) this sensor can be used to determine
the last of the three Euler angles: θ. A calibration based
on [14], [15] was performed on this sensor.

B. GPS

In theory, given some initial position {x0, y0} the ac-
celerometer could be used to determine variations {x0 +
∆x, y0 + ∆y}. In practice this estimation drifts rapidly (ten
meters in about ten seconds), so a GPS is used to determine
the absolute position {x, y} of the system, correcting the drift.
The accuracy, with good sky visibility, is of 2-3 meters. The
GPS’s performance improves when the system is moving.

C. Sensor Specifications

Table (I) shows an outline of the specifications of the sensors
used.

Rate Resolution
Accelerometer XY 10ms (x2) 4mg
Accelerometer Z 10ms (x2) 4mg

Gyro XY 10ms (x2) 0.07 o/s
Gyro Z 10ms (x2) 0.07 o/s

Barometer 10ms (x1) 1Pa
Magnetometer XY 10ms (x2) 5 mGa
Magnetometer Z 10ms (x2) 5 mGa

GPS 1s -

TABLE I: Sensor specifications: A rate of “10ms (x2)” means
that every 10ms the result of averaging 2 samples is received
from the IMU.

V. KALMAN FILTER

In order to perform adequate control actions, a reliable
estimation of the state variables must be available in real
time. The Kalman Filter uses the mathematical model for
the system to predict what should happen next given the
current state. It corrects the prediction with the information
read from the sensors, taking into consideration how much
confidence is placed on the prediction and how much on the
measurements. This weighted prediction-correction technique
allows a smooth state estimation without the typical delay
introduced by filtering, even small delays can severely affect
the performance of the system.

Every sensor has its issues, the accelerometer drifts over
time; the gyroscope is very sensible to the vibrations generated
by the motors; the magnetometer measure is distorted by
ferromagnetic materials; the GPS has a very poor accuracy
and a slow update rate. Each sensor by itself is very limited,
but they can be combined to compensate for their limitations.
The filter takes care of this by integrating all sensors in order
to obtain a more accurate state estimation.

The theory behind a standard Kalman Filter does not hold
for a nonlinear system. The model for the quadrotor given by
(1) is highly nonlinear, so an Extended Kalman Filter (EKF)
is implemented. Several authors (e.g. [16], [17]) used EKF
to overcome this difficulty. In this work a modified EKF was
developed, similar to [16], [17], but with 3 states added repre-
senting the accelerometer bias, which improved substantially
the linear velocities and position estimation. While the Kalman
Filter ensures a statistical optimal performance, the EKF is
not optimal, and it is not possible to determine the error a
priori, due to high dependency of the performance with the
linearization [18]. Although, EKF is the most used and popular
filtering technique in navigation problems.

A. Mathematical model

Let us define an extended state vector xe, similar to the
described in equation (2), but with 3 added states

{
abx, a

b
y, a

b
z

}
representing an estimation of the systematic error introduced



by the accelerometer. Let xe
k be the extended state vector

estimation at time k

xe
k =

{
x, y, z, θ, ϕ, ψ, vqz , vqy , vqz , ωqx , ωqy , ωqz , a

b
x, a

b
y, a

b
z

}
ηw
k and ηv

k are the process and observation noises, which are
both assumed to be zero mean multivariate Gaussian noises
with covariance Qk and Rk respectively.

The dynamic system follows the model:

xe
k = f(xe

k−1,uk−1) + ηw
k−1 (4)

zk = h(xk) + ηv
k (5)

where zk is the observation at time k. The function f , based on
the dynamics of the system is deduced form equation (3) and is
used to compute the predicted state from the previous one. The
function h is used to compute the predicted measurement from
the predicted state. In other words, f keeps the information
about state evolution, and h represents the transformation
between the state vector and the ideal (noiseless) observation.
The state transition and observation models do not need to be
linear functions, but must be differentiable. f and h cannot be
directly applied to the covariance. Instead a partial differential
matrix (the Jacobian) is computed, which is evaluated in the
current state at each time step. Due to dynamical lineariza-
tion, the EKF cannot ensure statistic optimality, because the
precision highly depends on the linearization precision [18].

B. Implementation

The implementation of the modified EKF uses the inertial
measurements obtained from the IMU and integrates the
position information provided by the GPS. Due to the very
slow sampling rate of GPS (approximately 1Hz), and the need
of taking a new control action much faster, two different EKFs
are implemented; the first one using only the inertial measure-
ments (EKFIMU ) while there is no GPS information, and the
other one to be used when a new GPS sample is available
(EKFIMU+GPS). The prediction and update equations are
presented below.

1) Prediction and update equations for EKFIMU :
• Prediction:

– x̂e
k|k−1 = f(x̂e

k−1|k−1,uk−1)

– Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1

• Update
– ỹk = zk − h(x̂e

k|k−1)

– Sk = HkPk|k−1H
>
k + Rk

– Kk = Pk|k−1H
>
k S
−1
k

– x̂e
k|k = x̂e

k|k−1 + Kkỹk

– Pk|k = (I −KkHk)Pk|k−1

where zk is the observation at time k.
The state and observation transition matrices are

Fk−1 =
∂f

∂xe

∣∣∣∣
x̂e
k−1|k−1

,uk−1

, Hk =
∂h

∂xe

∣∣∣∣
x̂e
k|k−1

2) Prediction and update equations for EKFIMU+GPS:

• Prediction:

– x̂e
k|k−1 = fG(x̂e

k−1|k−1,uk−1)

– Pk|k−1 = FGk−1Pk−1|k−1FG
T
k−1 + Qk−1

• Update

– ỹGk = zGk − hG(x̂e
k|k−1)

– SGk = HGkPGk|k−1HG
>
k + RGk

– KGk = PGk|k−1HG
>
k SG

−1
k

– x̂e
k|k = x̂e

k|k−1 + KGkỹk

– Pk|k = (I −KGkHGk)Pk|k−1

The two sets of prediction and update equations, for EKFIMU

and EKFIMU+GPS are very similar, and the subindex G

is used to explicitly show that the variables are different in
each filter. This difference is caused because zk and zGk are
different since zGk includes GPS data. Note that x̂e

k|k−1 is
always the same.

This two filters are in fact very similar, but while in the
EKFIMU the position is estimated by the prediction based on
the dynamics-kinematics of the system, in the EKFIMU+GPS

the samples from GPS are used as feedback for the position
estimation.

The position estimation without using GPS is very poor,
because of the accumulated error produced by the double
integration of the accelerometer measurement. The EKFIMU

is meant to keep a reasonable estimation of position while
the system is waiting for a new GPS sample. EKFIMU+GPS

gives a high weight to the GPS measurement so it can be
used as a correction measurement, avoiding the drift that the
integration may cause.

Figure (5) shows a diagram of how data from the sensors
is combined within the filter (EKF), assisted by the model of
the system.

Euler angles are primary estimated from the combination
of Magnetometer and Accelerometer measurements as follows
[16]:

φ = − arcsin

(
ax
||a||

)
, ψ = − arctan

(
ay
az

)

M =

 cos(φ) sin(φ) sin(ψ) cos(ψ) sin(φ)
0 cos(ψ) − sin(ψ)

− sin(φ) cos(φ) sin(ψ) cos(φ) cos(ψ)



θ = − arctan

(
m[1]

m[0]

)
, where m = M B

From that estimation of Euler angles and the Accelerometer
measurements, the quadrotor velocities {vqx, vqy vqz} can be
deduced by subtracting gravity and an integration, which are
introduced to the filter. Angular velocities referenced to the
quadrotor and height can be easily deduced from Gyroscope
and Barometer measurements respectively, which are also
introduced to the filter.



(a) General diagram

(b) Double EKF - Detail.

Fig. 5: EKF - Outline of how sensor data is combined to
estimate the state variables.

Fig. 6: Kalman - The three Euler angles estimation with all
the motors turned on and the quadrotor in equilibrium.

VI. RESULTS

A. Sensor fusion

The implementation of the double EKF gave very good
results, and proved to play a critical part in the system. As an
example, the data provided by the accelerometer is “unusable”
without filtering, and experiments with a simple low pass
filter (LPF) showed that a 60ms delay introduced by the LPF
severely deteriorates the performance of the system. When the
EKF was assigned the task of reducing noise, the performance
was significantly improved.

In each graphic of Figure (6) is shown the primary estima-
tion obtained from sensors and the kalman estimation of that
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Fig. 7: Comparison - Position estimation.
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Fig. 8: Position estimation - Using GPS.

state variable for the three Euler angles. As can be seen, the
noise is greatly reduced and no delay is introduced.

Although the accelerometer is calibrated considering
axis non-orthogonality and temperature dependency, there
are some other effects that may affect the measurement,
such as humidity, nonlinearities or some not considered
interference. For estimating the position, the acceleration
is integrated twice, so every error is propagated and may
become considerable. In the calibration procedure [12], there
can be some error while ensuring horizontality that causes a
systematic error in the measurements. The three added states{
abx, a

b
y, a

b
z

}
keeps an estimation of the systematic error

induced by the accelerometer and improves significantly the
estimation of the linear velocities and position. In Figure (7)
is shown the position estimation in a real flight using only
EKFIMU with the bias estimation (Figure (7b)), and without
using it (Figure (7a)). Although not having a ground truth for
the position, it is clear that the position drift is considerably
reduced. Taking into account that the flight was performed
in a 10m square room, the real movement is bounded by the
room size.

As said, two different types of data will be available,
depending on the availability of GPS information. When
GPS data is available, EKFIMU+GPS shows up and gives
feedback to position estimation. Figure (8) shows the results
of estimating the position using the combination of the two
EKFs described. The same real flight data is used for this
estimation, but simulated GPS data is added. As can be seen,
GPS data is available at 1Hz, and the position is improved.

B. Closed loop stability: Attitude control

The described state estimation was used by the control
system, as shown in figure (2). The control algorithm uses
the state estimation as input and produces the instantaneous
speed of each motor, thus establish the thrust and momentum.



The quadrotor was able to maintain horizontality by control-
ling {ψ, φ, ωqx , ωqy}. Figure (9) shows the response of the
quadrotor to a perturbation in the Roll (ψ) angle. While in
Figure (9a) is shown the mechanical perturbation imposed, the
reaction (controller commands) can be observed in Figure (9b).
From t0 = 80.9s to t1 = 81.3s the perturbation is present.
After this, the controller is working freely. The system step
response for a step of more than 20o shows a overshoot of 3o

or 4o and a rise time of about 0.4 s, which means an excellent
performance, as can be seen in Figure (9a).
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Fig. 9: Stablization experiment - The Roll angle is deviated
from equilibrium and the quadrotor manage to stabilize itself.

C. Closed loop stability: Limited Flying

At this point the three Euler angles are controlled, so a basic
level of stability is expected, and the quadrotor is allowed to
fly. After this test, the control system was able to take-off and
to hold altitud and vertical speed: {z, vqz}.

Figure (10) shows altitude during takeoff from altitude 0m
until a target altitude of 1m is achieved. As can be seen,
the system presents an overshoot of about a meter, which is
considered as acceptable for many applications.
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Fig. 10: Altitude: Performance during takeoff (from 0m to
1m).

VII. CONCLUSION

The main goal was successfuly achieved. The design and
implementation of the sensor fusion for a quadrotor was
accomplished by the integration of all the measurements in a

double modified Extended Kalman Filter which is used for
denoising purposes without introducing delay. A simplified
dynamic model was derived as a first step for the Kalman
Filter.

Through the implementation of the double Kalman filter,
two important problems were solved: the difference between
the IMU and GPS sampling rates and the effect of the bias
drift in the accelerometer measurements.

The developed sensor fusion technique was implemented
as part of a closed loop control system. It was successfully
tested for attitude and height.

This system is an experimental platform for future research.
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