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Abstract

A new method to detect salient pieces of boundaries in an image is presented.
After detecting perceptually meaningful level lines, periodic binary sequences
are built by labeling each point in close curves as salient or non-salient. We
propose a general and automatic method to detect meaningful subsequences
within these binary sequences. Experimental results show its good performance,
when tested with different saliency criteria, such as contrast, regularity, and the
combination of both.

Keywords: topographic maps, level lines, periodic binary sequences, edge
detection, Helmholtz principle

1. Introduction

Shape plays a key role in our cognitive system: in the perception of shape
lies the beginning of concept formation. Formally, shapes in an image can be
defined by extracting contours from solid objects. Shapes can be represented
and analyzed as the locus of an infinite number of points, which leads to level-
sets methods [1].

We define an image as a lower (or upper) semi-continuous function u : R2 →
R. Level sets [1], or level lines, provide a complete and contrast-invariant image
description. We define the boundaries of the connected components of a level
set as a level line. These level lines have the following properties: (1) level lines
are closed Jordan curves; (2) level lines at different levels are disjoint; (3) by
topological inclusion, level lines form a partially ordered set.

∗Corresponding author
Email addresses: mariano.tepper@duke.edu (Mariano Tepper), pmuse@fing.edu.uy
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We call the collection of level lines (along with their level) a topographic
map. The inclusion relation allows to embed the topographic map in a tree-
like representation. For extracting the level lines of a digital image we use the
Fast Level Set Transform (FLST) [2] which computes level lines by bilinear
interpolation. In general, the topographic map is an infinite set and so only
quantized grey levels are considered, ensuring that the set is finite.

Edge detectors, from which the most renowned is Canny’s [3], rely on the fact
that information is concentrated along contours (regions where contrast changes
abruptly). From one side, only a subset of the topographic map is necessary to
obtain a perceptually complete description. Going to a deeper level, perceptually
important level lines, in general, are so because they contain contrasted pieces.
In summary, we have to prune the topographic map and then prune inside the
level lines themselves.

The search for perceptually important contours will focus on unexpected
configurations, rising from the perceptual laws of Gestalt Theory [4]. From
an algorithmic point of view, the main problem with the Gestalt rules is their
qualitative nature. Desolneux et al. [5] developed the Computational Gestalt
detection theory which seeks to provide a quantitative assessment of gestalts.
It is primarily based on the Helmholtz principle which states that conspicuous
structures may be viewed as exceptions to randomness. In this approach, there
is no need to characterize the elements one wishes to detect but contrarily,
the elements one wishes to avoid detecting, i.e., the background model. When
an element sufficiently deviates from the background model, it is considered
meaningful and thus, detected.

Within this framework, Desolneux et al. [5] proposed an algorithm to detect
contrasted level lines in grey level images, called meaningful boundaries. Further
improvements to this algorithm were proposed by Cao et al. [6] and by Tepper
et al. [7], which include for example, the use of regularity as the saliency measure
instead of the contrast.

In this work we address the dissection of meaningful boundaries, developing
an algorithm to select salient pieces contained in them. Each level line is con-
sidered as a periodic binary sequence where, following a partial saliency model,
each point is labeled as salient or non-salient. Then, the goal is to extract mean-
ingful subsequences of salient points. To do so, in this work we extend to the
periodic case an algorithm for detecting binary subsequences.

Grompone et al. [8] proposed a method for accurately detecting straight line
segments in a digital image. It is based on the Helmholtz principle and hence
it is parameterless. In the authors’ words, “at the core of the work lies a new
way to interpret binary sequences in terms of unions of segments.” In the same
spirit, pieces of level lines correspond to object contours and can be recovered
extending this approach to the periodic case (level lines are closed curves).

The remainder of this paper is organized as follows. We begin, in Section 2,
by explaining the proposed algorithm for detecting periodic subsequences in
binary sequences. Then, in Section 3 we recall several variants of the meaningful
boundaries algorithm [7]. In Section 4 we show how to apply the proposed
algorithm to the problem of selecting salient pieces of level lines. In Section 5
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we discuss the pertinence of the approach and provide some final remarks.

2. Detecting Periodic Subsequences

A sequence S = (si)1≤i≤L of length L is binary if ∀i, si ∈ {0, 1}. A subse-
quence a ⊆ S is defined by a pair of indices

(
a(1), a(2)

)
with 1 ≤ a(1) < a(2) ≤ L,

such that
(
∀si, a(1) ≤ i ≤ a(2)

)
si ∈ a. Given a binary sequence S of length L,

an n-subsequence is an n-tuple (a1, . . . , an) of n disjoints subsequences ai ⊆ S.
The set of all n-subsequences in S will be denoted by M(n, S). We define
k(a) = #{si | i ∈ [a(1), a(2)] ∧ si = 1} and l(a) = a(2) − a(1) + 1 (i.e. the length
of a). Notice that #M(n, S) =

(
L
2n

)
[8].

Definition 1. (Grompone et al. [8]) Given a binary sequence S of length L, an
n-subsequence (a1, . . . , an) in M(n, S) is said ε-meaningful if

NFA(a1, . . . , an) =

(
L

2n

) n∏
i=1

(l(ai) + 1)B(l(ai), k(ai), p) < ε (1)

where p = Pr(si = 1), 1 ≤ i ≤ L. This number is called number of false alarms
(NFA) of (a1, . . . , an).

Proposition 1. The expected number of ε-meaningful n-subsequences in a ran-
dom binary sequence is smaller than ε.

We refer to the work by Grompone et al. [8] for a complete proof.
A run in S is a maximal subsequence only containing ones, i.e.(
∀i ∈ [a(1), a(2)], si = 1

)
∧
(
a(1) = 1 ∨ sa(1)−1 = 0

)
∧
(
a(2) = L ∨ sa(2)+1 = 0

)
.

One can restrict the search for n-subsequences to the ones where each of the n
subsequences starts at a run start and ends at a run end [8]. We denote by R
the number of runs in S.

Definition 2. Given a binary sequence S, its maximal ε-meaningful subse-
quence (a1, . . . , an)∗ is defined as

(a1, . . . , an)∗ = arg min
1≤n≤R

(a1,...,an)∈M(n,S)

NFA(a1, . . . , an).

We propose now to extend the above definitions to support periodic binary
sequences. A binary sequence S = (si)1≤i≤L is made periodic by considering
L its period. Periodic sequences are different in nature from their non-periodic
counterparts, see Fig. 1. A definition suitable for the periodic case is needed.

In the periodic case, a subsequence must be defined more carefully. Now a
subsequence a ⊆ S, defined by a pair of indices

(
a(1), a(2)

)
, can belong to one

of two different types:
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Figure 1: A periodic sequence where runs are represented in green. If treated as a non-periodic
sequence, any subsequence detector would detect four subsequences at best, when in fact the
desired result is to detect three subsequences.

intra-subsequences: if a(1) < a(2) then the non-periodic definition holds, i.e.,
1 ≤ a(1) < a(2) ≤ L, and

(
∀si, a(1) ≤ si ≤ a(2)

)
si ∈ a.

inter-subsequences: if a(1) > a(2)
(
∀si, 1 ≤ si ≤ a(2) ∨ a(1) ≤ si ≤ L

)
si ∈ a.

Runs are modified accordingly to also cover inter-subsequences. Given a pe-
riodic binary sequence S of period L, a periodic n-subsequence is an n-tuple
(a1, . . . , an) of n disjoints subsequences ai ⊆ S. The set of all n-subsequences
in S will be denoted by M(n, S).

We define k(a) = #{si | i ∈ [a(1), a(2)] ∧ si = 1} and the length of a as

l(a) =

{
a(2) − a(1) + 1, if a is an intra-subsequence;

a(2) + L− a(1) + 1, if a is an inter-subsequence.

Notice that #M(n, S) = 2
(
L
2n

)
since from each pair of points in S two subse-

quences can be constructed.

Definition 3. Given a periodic binary sequence S of period L, an n-subsequence
(a1, . . . , an) in M(n, S) is said ε-meaningful if

NFA(a1, . . . , an) = 2

(
L

2n

) n∏
i=1

(l(ai) + 1) B(l(ai), k(ai), p) < ε

where p = Pr(si = 1), 1 ≤ i ≤ L. This number is called number of false alarms
(NFA) of (a1, . . . , an).

Proposition 2. The expected number of ε-meaningful n-subsequences in a ran-
dom periodic binary sequence is smaller than ε.

Proof. This proof follows closely the one by Grompone et al. [8] but adapted
to periodic sequences. The expected number of ε-meaningful n-subsequences is
given by

E

 ∑
(a1,...,an)∈M(n,S)

1NFA(a1,...,an)<ε

 =
∑

(a1,...,an)∈M(n,S)

P (NFA(a1, . . . , an) < ε) .
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NFA(a1, . . . , an) < ε implies that

n∏
i=1

B(l(ai), k(ai), p) <
ε

2
(
L
2n

)∏n
i=1(l(ai) + 1)

.

Let Ui = B(l(ai), k(ai), p) be a random variable, let α ∈ R+, and let PαU =
P (
∏n
i=1 Ui < α). Then,

PαU =
∑

u2,...,un

P

(
n∏
i=1

Ui < α
∣∣∣U2 = u2, . . . , Un = un

)
P (U2 = u2, . . . , Un = un) .

Since the ai are disjoint, the Ui are independent. Then

PαU =
∑

u2,...,un

P

(
n∏
i=1

Ui <
α

u2 . . . un

)
· P (U2 = u2, . . . , Un = un) .

Using the classical lemma P(Ui < α) < α, that P (U2 = u2, . . . , Un = un) ≤
P (U2 ≤ u2, . . . , Un ≤ un), and that there are l(ai) + 1 possible values for Ui,

P

(
n∏
i=1

Ui < α

)
<

n∏
i=2

(l(ai) + 1) α <

n∏
i=1

(l(ai) + 1) α.

Let us recall that #M(n, S) = 2
(
L
2n

)
, then setting α = ε

2 ( L
2n)

∏n
i=1(l(ai)+1)

gives

the wanted result.

The maximality rule from Def. 2 holds unchanged in the periodic case.
On the implementation side, Grompone et al. [8] describe a dynamic pro-

gramming scheme for the non-periodic case that eases the heavy computational
burden. We show now that implementing the algorithm for detecting periodic
subsequences is indeed straightforward.

We begin by shifting the periodic sequence S (with R runs), to transform
inter-subsequences into intra-subsequences. A circular shift to the left is used.
We then form a non-periodic sequence S(2) of length 2L from two periods of the
periodic sequence S of period L. Let R(2) be the number of runs in S(2). Two
key tricks allow us to solve the problem:

1. restrict the number of tested subsequences. In the non-periodic case, we
test for n-subsequences for S(2) where 1 ≤ n ≤ R(2). In the periodic case,
we only test for n-subsequences where 1 ≤ n ≤ R;

2. subsequences longer than L are not tested.

With these two restrictions, one can simply detect non-periodic subsequences
in non-periodic sequence S(2) and the result will be optimal.
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3. Meaningful Boundaries

We briefly reproduce the formal definitions that lead to the meaningful
boundaries algorithm, as defined by Tepper et al. [7]. Several criteria are used to
determine the saliency of a boundary: contrast, regularity and the combination
of both. All these variants will be used to test the proposed algorithm.

3.1. Contrasted Meaningful Boundaries

Let C be a level line of the image u and let us denote by {xi}i=0...n−1

the n regularly sampled points of C, with arc-length two pixels, which in the a
contrario noise model are assumed to be independent. In particular the gradients
at these points are independent random variables (the image gradient norm |Du|
can be computed by standard finite differences on a 2 × 2 neighborhood). We
note by µk (0 ≤ k < n) the k-th value of the values |Du|(xi) sorted in ascending
order.

The detection algorithm consists in rejecting the null hypothesis H0: the line
C with contrasts {µk}k=0...n−1 is observed only by chance. For this we assume
that the values of |Du| are i.i.d., extracted from a noise image with the same
gradient histogram as the image u itself.

Desolneux et al. [5] present a thorough study of the binomial tail B(n, k; p)
and its use in the detection of geometric structures. The regularized incomplete
beta function, defined by I(x; a, b) is an interpolation B̃ of the binomial tail

to the continuous domain B̃(n, k; p) = I(p; k, n − k + 1) where n, k ∈ R [5].
Additionally the regularized incomplete beta function can be computed very
efficiently.

Let Hc(µ) = P(|Du| > µ). For a given line of length l, the probability under
H0 that, some parts with total length greater or equal than l(s,n)(n − k) have

a contrast greater than µ can be modeled by B̃(n · l(s,n), k · l(s,n);Hc(µ)), where

l(s,n) = l
s·n acts as a normalization factor [7].

Definition 4. Let C be a finite set of Nll level lines of u. A level line C ∈ C is
a ε-meaningful boundary if

NFAK(C) = Nll ·K · min
k<K
B̃(n · l(2,n), k · l(2,n);Hc(µk)) < ε, (2)

where K is a parameter of the algorithm. We also note

kmin = arg min
k<K

B̃(n · l(2,n), k · l(2,n);Hc(µk)). (3)

The parameter K controls the number of points that we allow to be likely
generated by noise, that is a line must have no more than K points with a
“high” probability of belonging to the background model. It is simply chosen
as a percentile of the total number of points in the line.

Def. 4 is motivated by the following proposition (we refer to the work by
Tepper [7] for a complete proof).

Proposition 3. The expected number of ε-meaningful boundaries, in a finite
set of random level lines is smaller than ε.
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x = C(0)

C(−s)

C(s)

s×Rs(x)

Figure 2: Reproduced from the work by Cao et al. [10]. The regularity at x is obtained by
comparing the radius of the circle with s. The radius is equal to s if and only if the curve is
a straight line. If the curve has a large curvature, the radius will be small compared to s.

3.2. Combining contrast and smoothness

As already stated, in natural images contrasted boundaries often locally
coincide with object edges. Thus, they are also incidentally smooth. Active
contours [9] rely on this combination of good contrast and smoothness to provide
well localized contours. In this section, we reproduce results that use smoothness
as the saliency measure in the a contrario detection process [7].

Let C be a rectifiable planar curve, parameterized by its length. Let l be
the length of C and x = C(τ) ∈ C. Without loss of generality, we assume that
τ = 0.

Definition 5. (Cao et al. [10]) Let s > 0 be a fixed positive value such that
2s < l. We call regularity of C at x (at scale s) the quantity

Rs(x) =
max(|x− C(−s)|, |x− C(s)|)

s
, (4)

where |xi − xj | represents the Euclidean distance between xi and xj.

Figure 2 visually explains the pertinence of this definition. Only when one
of the subcurves C((−s, 0)) or C((0, s)) is a line segment, Rs(x) = 1; in all other
cases Rs(x) < 1. When s is small enough, regularity is inversely proportional
to the curve’s curvature around x [10].

The question about the choice of s arises naturally and was studied in detail
by Cao et al. [10] and Musé [11]. We will limit ourselves to state that a larger
value of s (thus at less local scale of analysis) is more robust to noise. On
the other side, s should not be too large either. In practice, and following Cao
et al. [10] one may safely set s = 5, which is the value we use in our experiments.

Let us denote by Hs(r) the distribution of the regularity in white noise level
lines, i.e.,

Hs(r) = P
(
Rs(x) > r, x ∈ C, C is a white noise level line

)
, (5)
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which depends only on s and can be empirically estimated.
Again, the curve detection algorithm consists in adequately rejecting the null

hypothesis H0: the values of |Rs| are i.i.d., extracted from a noise image. We
assume that, in the background model, contrast and regularity are independent.

Definition 6. Let C be a finite set of Nll level lines of u. A level line C ∈ C is
a ε-meaningful regular boundary (MRB) if

NFAR
K(C) = Nll Ks min

k<Ks

B̃(n · l(2s,n), k · l(2s,n);Hs(ρk)) < ε, (6)

and Ks is a parameter of the algorithm. We also note

kmin = arg min
k<Ks

B̃(n · l(2s,n), k · l(2s,n);Hs(ρk)). (7)

Proposition 4. The expected number of ε-meaningful contrasted regular bound-
aries in a finite set E of random curves is smaller than ε.

A proof is given in [7]. We can also combine the two criteria, as done by
Tepper et al. [7], obtaining the following formulation.

Definition 7. Let C be a finite set of Nll level lines of u. A level line C ∈ C is
a ε-meaningful contrasted regular boundary (MCRB) if

NFACR
K (C) = Nll Kc Ks max

 min
k<Kc

Ic(C, k)2

min
k<Ks

Is(C, k)2

 < ε, (8)

where

Ic(C, k) = B̃(n · l(2,n), k · l(2,n);Hc(µk)),

Is(C, k) = B̃(n · l(2s,n), k · l(2s,n);Hs(ρk)),

and Kc and Ks are parameters of the algorithm. In this case, kmin is defined as
in Eq. 3 or as in Eq. 7, depending on whether contrast or regularity attain the
maximum.

Here Kc and Ks have the same meaning as K in Definition 4 and they are
also set as a percentile of the total number of points in the curve.

Proposition 5. The expected number of ε-meaningful contrasted regular bound-
aries in a finite set E of random curves is smaller than ε.

A proof is given in [7]. Definition 7 exhibits some interesting properties:

• A contrasted but irregular curve will not be detected;

• A regular but non-contrasted curve will not be detected;

• An irregular and non-contrasted curve will not be detected;
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• A regular and contrasted curve will be detected.

Both gestalts, i.e., contrast and good continuation, interact in a novel way: they
compete for the “control” of the curve.

Meaningful boundaries are further pruned to eliminate the packet effect (i.e.,
a bundle of level lines passing through a very salient edge) using the maximality
procedure detailed in [7].

4. Boundary clean-up

Prop. 3 asserts that if a level line is a meaningful boundary, then it cannot
be entirely generated in white noise (up to ε false detections on the average)
but it can have parts that are likely to be contained in noise.

Cao et al. [6] propose to give an upper bound to the size of those parts.
Assume that C is a piece of level line with L independent points, contained in
a non-edge part, described by the noise model. The probability that L is larger
than l > 0 needs to be estimated, knowing that |Du| ≥ µ. This is exactly the a
posteriori length distribution p(µ; l) = P (L ≥ l | |Du| ≥ µ). The estimation of
this distribution was studied by Cao et al. [6].

Let us now consider an image u with Nll (quantized) level lines. Let us also
denote by Nl the number of all possible sampled subcurves of these level lines.
(Nl =

∑Nll

i=1 ni(ni − 1)/2, where ni is the number of independent points in line
i). As in Prop. 3, it can be proved that Nl · p(µ; l) is an upper bound of the
expected number of pieces of lines of length larger than l with gradient larger
than µ. For a fixed µ, let be l such that Nl ·p(µ; l) < ε. Then, we know that on a
white noise image, on the average, we cannot observe more than ε pieces of level
line with a length larger than l and a gradient everywhere larger than µ. Then
one can define L(µ) = inf{l, Nl · p(µ; l) < ε} and keep every subcurve of any
meaningful boundary with length equal or greater than L(µ), where |Du| ≥ µ.

The value of µ can be seen as a new parameter of the method. Its value
can be fixed arbitrarily using a conservative approach [6]: letting |Du| be less
than 1, means that edges with an accuracy less than one pixel may be detected.
Thus, taking µ = 1 is the least restrictive choice. For µ about 1, values of L(µ)
less than a few hundreds are obtained.

Since L(µ) is a decreasing function of µ, fixing it at a small value produces
large lengths. We are imposing that the contrasted pieces have to be very large
and this is not always the case, as argued before. Furthermore the probability
distribution p(µ; l) has to be estimated. We propose to take a different path to
remove non-contrasted boundary parts.

In Def. 4, pieces of a meaningful boundary are explicitly allowed to be gen-
erated in white noise. We are certainly not interested in these pieces and this
relaxation responds to the fact that we want to retrieve the remaining pieces of
that boundary (i.e. edge region). The desired detection of contrasted parts in
a boundary is very close in spirit to periodic subsequence detection.
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Algorithm 1: Computation of ε-meaningful boundaries in image u and
application of the proposed clean-up procedure.

input : An image u and a scalar ε.
output: A set of closed curves Sres.
S ← FLST(u); // Compute the set of level lines

Sres ← ∅;
for C ∈ S do

nfaC ← compute NFAK(C), NFAR
K(C), or NFACR

K (C);
if nfaC < ε then
Sres ← Sres ∪ {C};

Discard non-maximal boundaries from Sres [7];
Sfinal ← ∅;
for C ∈ Sres do

C̃ ← threshold C as detailed in Section 4.1;

Add the maximal 1-meaningful subsequence (a1, . . . , an)
∗ of C̃ to Sfinal;

return Sfinal;

4.1. Boundary clean-up by detecting meaningful periodic subsequences

We now explain how to adapt the detector of meaningful periodic subse-
quences (MPS) for cleaning-up boundaries.

Before applying the detector to any boundary, we need to binarize it since its
contrast (or its regularity) takes on real values. This former problem is solved by
thresholding on the contrast (or on the regularity). In this direction, we claim
that µkmin

and ρkmin
are natural choices (see Defs. 4, 6, and 7). A maximal

ε-meaningful boundary is thus converted into a periodic binary sequence. We
want to apply the periodic subsequence detection algorithm from Defs. 3 and 2
to that sequence. The only parameter left is p = Pr(si = 1), 1 ≤ i ≤ L and it is
straightforward defined, for each boundary, as p = Hc(µkmin

) or p = Hs(ρkmin
),

depending on the case.
We finally define the following clean-up rule: For any meaningful boundary,

keep every subcurve belonging to its maximal 1-meaningful subsequence.
Algorithm 1 shows a possible procedure to obtain all ε-meaningful bound-

aries and then apply the proposed clean-up method to them.

5. Discussion

The proposed clean-up mechanism does not impose a minimal length to
contrasted parts. The length is adjusted automatically, by choosing the most
meaningful subsequence in the level line. As an additional advantage, there
is no need to estimate any probability distribution. Fig. 3 shows an example
of the benefits of the proposed clean-up method over the one by Cao et al. [6].
Their version clearly produces underdetection: visually important structures are
missed (notice the face in the third image). The proposed algorithm produces

10



image mb mb+cu mb+mps

Figure 3: Comparison of the results obtained with both clean-up algorithms. The one by Cao
et al. (CU) [6] produces underdetection; this is corrected by using MPS.

a very mild overdetection: some small noisy parts are not eliminated but no
important structure is lost.

Figs. 4, 6 and 7 show examples on images from the BSD database [12]. In
all cases MPS eliminates the vast majority of spurious pieces of level lines.

Notice that, on the last row of Fig. 4, MPS does not remove a few pieces of
lines that should be removed (e.g., the lower wall and the roof). This does not
occur because of a failure in MPS, but because of a faulty binarization, that
is, the µkmin was not optimal in those cases. Fig. 5 depicts the same example,
with a more aggressive binarization threshold. These spurious structures are
now discarded. In any case, there is no universal threshold for all cases and it
should be tuned for the application at hand.

image mcb mcb+mps

Figure 4: Results of the presented clean-up algorithm on MCB. MPS eliminates the vast
majority of the unwanted pieces of level line.

Figure 8 presents a comparison of the results obtained with the different
meaningful boundaries algorithms.
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image mcb+mps
mcb+mps

(with modified threshold)

Figure 5: Altering the binarization threshold might help, in some cases, to eliminate spurious
structures. We modified it in a simple way that allows to visualize its effect, setting for the
result on the right the threshold p2 = min(6 ∗ p1, 1), where p1 is the threshold for the result
on the center. Notice that the window is better recovered with the original threshold.

Before concluding, we need to address an important objection. Instead of
applying MPS to the meaningful boundaries, one could directly apply MPS
to the raw collection of level lines. For each level lines, we could test several
thresholds, as we do in MB, and select the periodic subsequence for which the
NFA is minimized. This procedure would avoid using MB as an intermediary
step. There are two main reasons for not following this more straightforward
approach. First, we have a computational reason: applying MPS with different
thresholds would be prohibitive; MB is much faster than MPS, allowing to ren-
der a practical algorithm. Second, since the maximality constraint [7] can be
applied thanks to the inclusion properties between level lines. If we dissecting
the level lines before applying the maximality rule, we cannot apply it after-
wards. A different, and much more complex, mechanism would have to be used
to solve the packet effect.

In summary, we presented a general and fully automatic algorithm to detect
meaningful subsequences within periodic binary sequences. As a useful applica-
tion, we used it to select salient pieces of level lines in an image. We have also
shown that different saliency criteria can be used, such as contrast, regularity
or a combination of both. In all cases the proposed algorithm exhibits good
results on natural images.
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Figure 7: Results of the presented clean-up algorithm on MCRB. MPS eliminates the vast
majority of the unwanted pieces of level line.

13



[6] F. Cao, J. L. Lisani, J. M. Morel, P. Musé, F. Sur, A Theory of Shape Iden-
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Figure 8: Comparison of the results obtained with the presented clean-up algorithm on the
different versions of MB. MPS eliminates the vast majority of the unwanted pieces of level line.
We recommend to zoom-in the results in the electronic version (they are vectorial graphics)
for better visualization.
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