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Abstract

Singing or humming to a music search engine is an appealing multimodal
interaction paradigm, particularly for small sized portable devices that are
ubiquitous nowadays. The aim of this work is to overcome the main short-
coming of the existing query-by-humming (QBH) systems: their lack of scal-
ability in terms of the difficulty of automatically extending the database of
melodies from audio recordings. A method is proposed to extract the singing
voice melody from polyphonic music providing the necessary information to
index it as an element in the database. The search of a query pattern in the
database is carried out combining note sequence matching and pitch time
series alignment. A prototype system was developed and experiments are
carried out pursuing a fair comparison between manual and automatic ex-
pansion of the database. In the light of the obtained performance (85% in
the top-10), which is encouraging given the results reported to date, this can
be considered a proof of concept that validates the approach.

Keywords:

voice based multimodal interfaces, music information retrieval, query by
humming, singing voice separation, melody extraction

∗Tel. +59827110974 / Fax. +59827117435
Email addresses: rocamora@fing.edu.uy (Mart́ın Rocamora),

cancela@fing.edu.uy (Pablo Cancela), apardo@ucu.edu.uy (Alvaro Pardo)

Preprint submitted to PATTERN RECOGNITION LETTERS April 11, 2013



1. Introduction

The constant increase in computer storage and processing capabilities
has made possible to collect vast amounts of information, most of which is
available online. Today, people interact with this information using various
devices, such as desktop computers, mobile phones or PDAs, posing new chal-
lenges at the interface between human and machine. Yet, the most common
case of information access still involves typing a query to a search engine.
There is a need for new human-machine interaction modalities that exploit
multiple communication channels to make our systems more usable.

Among the information available there are huge music collections, con-
taining not only audio recordings, but also video clips and other music-related
data such as text (e.g. tags, scores, lyrics) and images (e.g. album covers, pho-
tos, scanned sheet music). A query for music search is usually formulated
in textual form, by including information on composer, performer, music
genre, song title or lyrics. However, other modalities to access music collec-
tions can also be considered that allow more intuitive queries. For instance,
to provide a musical excerpt as an example and obtain all the pieces that
are similar in some sense, namely query-by-example,1 or to retrieve a musi-
cal piece by singing or humming a few notes of its melody, which is called
query-by-humming (QBH). This offers an interesting interaction possibility,
in particular for small size devices such as portable audio players, and re-
quires no music theoretical knowledge from the user. Additionally, it can be
combined with traditional metadata-based search and visual user interfaces
to offer multimodal input and output, in the form of visual and auditory
information.

Dealing with multimodal music information requires the development of
methods for automatically establishing semantic relationships between dif-
ferent music representations and formats, for example, sheet music to audio
synchronization or lyrics to audio alignment [1]. Much research in audio
signal processing over the last years has been devoted to music information
retrieval [2, 3], i.e. the extraction of musically meaningful content informa-
tion from the automatic analysis of an audio recording. This involves diverse
music related problems and applications, from computer aided musicology
[4], to automatic music transcription [5] and recommendation [6]. Many re-

1Audio fingerprinting techniques are used in this case, being Shazam (http://www.
shazam.com/) probably one of the best known commercial services of this kind.

2



search efforts have been devoted to dealing with the singing voice, tackling
problems such as singing voice separation [7] and melody transcription [8].
The incorporation of these techniques into multimodal interaction systems
can lead to novel and more engaging music learning, searching and gaming
applications.

Even though the problem of building a QBH system has received a lot
of attention from the research community for more than a decade [9], the
automatic generation of the melody database against which the queries are
matched remains an open issue. In all the proposed systems - with very
few exceptions - the database consists of music in symbolic notation, e.g.
MIDI files. This is due to the lack of sufficiently robust automatic methods
to extract the melody directly from a music recording. Although there is a
great amount of MIDI files online, music is mainly recorded and distributed
as audio files. Hence, the scope of this approach is limited because of the
need of manually transcribing (i.e. audio to MIDI) every new song of the
database. A way to circumvent this problem is to build a database of queries
provided by the users themselves and to match new queries against the pre-
viously recorded ones [10]. This approach drastically simplifies the problem
and is applied in music search services such as SoundHound.2 However, the
process is not automatic but relies on user contributions. Besides, a new song
can not be found until some user records it for the first time. In order to
extend QBH systems to large scale it is necessary to develop a full automatic
process to build the database. There are only a few proposals of a system of
this kind [11, 12, 13, 14] and results indicate there is still a lot of room for
improvement to reach the performance of the traditional systems based on
symbolic databases.

In this paper a method for automatically building the database of a QBH
system is described, in which the singing voice melody is extracted from
a polyphonic music recording. In our previous work [15] a technique for
singing voice detection and separation was presented. The contribution of
the present work is the application of this technique to a music retrieval
problem involving a voice-based multimodal interface. A prototype is built
as a proof of concept of the proposed method and a study is conducted
that compares the performance of a previously developed QBH system [16]
when using a database of MIDI files and when using melodies extracted

2http://www.soundhound.com/
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automatically from the original recorded songs. The rest of this document
is organized as follows. Next section briefly describes the QBH system used
in the experiments. The method for extracting the singing voice melody
from polyphonic music recordings is presented in section 3. In section 4 the
experiments carried out for assessing the performance of the QBH on the
automatically obtained database are described and results are reported. The
paper ends with some critical discussion on the present work and conclusions.

2. Query-by-humming system

The existing QBH systems can be divided, from its representation and
matching technique, basically into two approaches. The most typical solution
is based on a note by note comparison [17, 18]. The query voice signal is tran-
scribed into a sequence of notes and the best occurrences of this pattern are
identified in a database of tunes (typically MIDI files). The melody matching
problem poses some challenges to be considered. A melody can be identified
in spite of being performed at different pitch and at different tempo. Ad-
ditionally, sporadic pitch and duration errors or expressive features modify
the melodic line but still allow the melody to be recognized. In the match-
ing step, pitch and tempo invariance are typically taken into account by
coding the melodies into pitch and duration contours. By means of flexible
similarity rules it is possibly to achieve some tolerance to singing mistakes
and automatic transcription errors. Automatic transcription of the query
inevitably introduce errors that tend to deteriorate matching performance.
For this reason, another usual approach avoids the automatic transcription,
comparing melodies as fundamental frequency (F0) time series [19, 20]. Un-
fortunately, this involves working with long sequences, very long compared to
note sequences, and therefore it implies high computational burden. More-
over, in many proposals the user is required to sing a previously defined
melody fragment [19, 20] in order that the query exactly matches an element
of the database. This is because of the difficulty of searching subsequences
into sequences providing pitch and tempo invariance.

In our previous work [16], a way of combining both approaches was in-
troduced that exploits the advantages of each of them. Firstly, the system
selects a reduced group of candidates from the database using note by note
matching. Then, the selection is refined using fundamental frequency time
series comparison. Finally, a list of musical pieces is retrieved in a similarity
order. The system architecture is divided in two main stages, as depicted
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Figure 1: Block diagram of the QBH system. The input is a monophonic singing voice.
The two main stages are the transcription of the query and the match of the melody
pattern against the elements of the database. The output is a ranked list of songs.

in Figure 1. The first one is the transcription of the query into a sequence
of notes. To do that, the F0 contour is computed using a very well know
technique based on the difference function [21]. Then, the audio signal is seg-
mented into notes by computing energy envelopes from different frequency
bands and detecting salient events [22]. Besides, evident pitch changes that
do not exhibit an energy increment are identified (e.g. legato notes) and
considered in the segmentation. Each note is described by a pitch value, an
onset time and a duration. To assign a pitch value to each note the me-
dian of its fundamental frequency contour is taken. Then the tuning of the
whole sequence is adjusted by computing the most frequent deviation from
the equal tempered scale, subtracting this value for every note and rounding
to the nearest MIDI number [23].

In the second stage, the notes of the query are matched to the melodies
of the database. The pitches sequence A = (a1, a2, . . . , an) is encoded as
a sequence of intervals A = (a2 − a1, a3 − a2, . . . , an − an−1), so that a
melody Â transposition of A has the same interval representation. In a
similar way, given the duration sequence, B = (b1, b2, . . . , bn), a tempo in-
variant representation is computed as the relative duration sequence B =
(b2/b1, b3/b2, . . . , bn/bn−1) [24]. When singing carelessly gross approxima-
tions in duration take place, so the inter-onset interval is used as a more
consistent representation of duration and relative durations are smoothed
and quantized through qi = round(10 log10(bi+1/bi)), obtaining the sequence
Bq = (q1, q2, . . . , qn−1) [23].

Finding good occurrences of the codified query in the database is ba-
sically an approximate string matching problem. For this task, Dynamic
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Programming is used to compute an edit distance that combines duration
and pitch information [25]. In this combination, pitch values are considered
more important because duration information is less discriminative and not
so reliable. The edit distance, di,j, is computed recursively as the minimum
of the set of values shown in Equation 1.

di,j = min































di−1,j + 1, (insertion)
di,j−1 + 1, (deletion)
di−1,j−1 + 1, (note substitution)
di−1,j−1 − 1, |ai − a′j| < 2 and (coincidence)

|qi − q′j| < 2
di−1,j−1 |ai − a′j| < 2 (duration substitution)

(1)

The last two values of the set are only considered if the corresponding condi-
tions are met, where a and a′ refer to the pitch interval of the query and the
database element respectively, whereas q and q′ correspond to their quan-
tized relative duration. Finally, a similarity score is computed normalizing
the edit distance to take values between 0 and 100,

score = 100
(m− 1)− dm,m

2(m− 1)
(2)

where m denotes the number of notes in the query, and dm,m is the final value
of the edit distance between the two sequences.

As a result of the notes sequence matching, fragments similar to the query
pattern are identified in the melodies of the database. Then F0 time series
of this fragments are built from the matching MIDI notes, and are compared
to the F0 contour of the query by means of Local Dynamic Time Warping
(LDTW). The sequences are time wrapped to the same duration and pitch
transposed to the same tunning. Given two m-length sequences x and y, to
compute the k-th LDTW distance a matrix D(m,m) is built recursively by,

dij =























|xi − yj|
2 +min







di−1,j−1

di,j−1

di−1,j

|i− j| ≤ k

∞ |i− j| > k

(3)

for which the matrix must be initialized with d1j = |x1− yj|
2 where j ∈ [1, k]

and di1 = |xi − y1|
2 where i ∈ [1, k]. The distance value is obtained as,
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dmin =
√

min{dmj, dim} with i, j ∈ [m − k + 1,m]. The maximum allowed
local time warping of a sequence relative to the other is k samples. It is
easy to see that the Euclidean distance is the LDTW distance with k = 0.
The computation of the k-th LDTW distance is implemented by also using
the algorithm of Dynamic Programming but restricted to a diagonal band of
width 2k + 1 of the matrix D(m,m).

In this way, LDTW is applied to a small group of candidates (10 for the
reported results), which is computationally efficient, and without imposing
constrains to the query, since coincident fragments are identified automati-
cally in the notes matching stage. Figure 2 shows an example of the compar-
ison of note sequences and F0 time series between the query and an element
of the database.
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Figure 2: The piano-roll representations to the left show the transcription of the query at
the top, and of an occurrence in the database at the bottom. The plot to the right depicts
the corresponding F0 time series normalized and aligned by the system.

The QBH system was originally developed in Scilab and implemented as a
C++ standalone application with a GUI. In this work, efforts were devoted to
have a fully functional Matlab/Octave implementation and make it available
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for the research community.3 Even though the search is efficient, given the
two-stage matching approach, the notes matching performs an exhaustive
scan of the database that can become prohibitive in a large scale scenario.
This may be tackled with hashing techniques as in [26].

3. Singing voice melody extraction from polyphonic music

For building the database we focus on extracting the singing voice melody
from the original polyphonic music recordings, based on the hypothesis that
the melody of the leading voice is the most memorable and distinctive tune
of the song and would most probably be used as a query.4 To do that,
an harmonic sound sources extraction front-end developed in previous work
is applied [28, 29], which involves a time-frequency analysis, followed by
polyphonic pitch tracking and sound sources separation. After that, audio
features are computed for each of the extracted sounds and they are classified
as being singing voice or not, as we proposed in [15]. The sounds classified
as vocal are mixed in a mono channel and the transcription method used in
the QBH system for transcribing the query is applied to obtain a sequence
of notes and a F0 contour. This information is indexed as an element of the
database. The process is depicted in Figure 3 and described in the following
sections.

3.1. Harmonic sounds separation

The time-frequency analysis is based on [28], in which the application
of the Fan Chirp Transform (FChT) [30] to polyphonic music is introduced.
The FChT offers optimal resolution for the components of a harmonic linear
chirp, i.e. harmonically related sinusoids with linear frequency modulation.
This is well suited for singing voice analysis since most of its sounds have a
harmonic structure and their frequency modulation can be approximated as
linear within short time intervals. The FChT can be formulated as,

X(f, α) =

∫

∞

−∞

x(t) φ′

α(t) e
−j2πfφα(t)dt, (4)

3Available from http://iie.fing.edu.uy/investigacion/grupos/gpa/QBH/.
4According to [27], there is experimental evidence that indicates that the memory

representation for lyrics seems to be tied into the memory representation for melody,
providing multiple redundant constraints to assist the recall of a passage.
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Figure 3: Block diagram of the process for automatically building the database. The sys-
tem involves three main steps: Separation, Classification and Transcription. The subtasks
of each step are also indicated. Note that the same monophonic transcription block used
for processing queries in the QBH system is applied.

where φα(t) = (1 + 1
2
α t) t, is a time warping function. The parameter α is

the variation rate of the instantaneous frequency of the analysis chirp (see
[28] for details).

In addition, based on the FChT analysis, a pitch salience representation
called F0gram is proposed in [28], which reveals the evolution of pitch con-
tours in the signal, as depicted in Figures 4 and 6. Given the FChT of a
frame X(f, α), salience (or prominence) of fundamental frequency f0 is ob-
tained by summing the log-spectrum at the positions of the corresponding
harmonics,

ρ(f0, α) =
1

nH

nH
∑

i=1

log |X(if0, α)|, (5)

where nH is the number of harmonics considered. Polyphonic pitch tracking
is carried out by means of the technique described in [29], which is based
on unsupervised clustering of F0gram peaks. Finally, each of the identified
pitch contours are separated from the sound mixture. To do this, the FChT
spectrum is band-pass filtered at the location of the harmonics of the f0 value,
and the inverse FChT is performed to obtain the waveform of the separated
sound.

3.2. Singing voice classification

The extracted sounds are then classified as proposed in [15], based on
classical spectral timbre features (MFCC, see below) and some features pro-
posed to capture characteristics of typical singing voice pitch contours. In
a musical piece, pitch variations are used by a singer to convey different ex-
pressive intentions and to stand out from the accompaniment. Most typical
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expressive features are vibrato, a periodic pitch modulation, and glissando, a
slide between two pitches [31]. Thus, low frequency modulations of a pitch
contour are considered as an indication of singing voice. Nevertheless, since
other musical instruments can produce such modulations, this feature is com-
bined with other sources of information.

Mel-frequency Cepstral Coefficients (MFCC) are one of the most common
features used in speech and music modeling for describing the spectral timbre
of audio signals, and are reported to be among the best performing features
for singing voice detection in polyphonic music [32]. The implementation of
MFCC is based on [33]. Temporal integration is done by computing median
and standard deviation of the frame-based coefficients within the whole pitch
contour. First order derivatives of the coefficients are also included to capture
temporal information, obtaining a total of 50 audio features.

F0gram and pitch contours
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Figure 4: Vocal notes with vibrato and low frequency modulation (left) and saxophone
notes without pitch fluctuations (right) for two audio files from the MIREX [34] melody
extraction test set. Summary spectrum c̃[k] is depicted at the bottom for each contour.

In order to describe the pitch variations, the contour is regarded as a
time dependent signal f0[n] and a spectral analysis is applied using the DCT.
Examples of the behaviour of the spectral coefficients, c̃[k], are given in Figure
4. The two following features are derived from this spectrum,

LFP =

kL
∑

k=1

c̃[k], PR =
LFP

∑N

kL+1 c̃[k]
. (6)

The low frequency power (LFP) is computed as the sum of absolute values
up to 20 Hz (k = kL) and reveals low frequency pitch modulations. The
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low to high frequency power ratio (PR) additionally exploits the fact that
well-behaved pitch contours do not exhibit prominent components in the high
frequency range. Besides, two additional pitch related features are computed.
One of them is simply the extent of pitch variation,

∆f0=max
n

{f0[n]} −min
n

{f0[n]}. (7)

The other is the mean value of pitch salience in the contour,

Γf0 = mean
n

{ρ(f0[n])}. (8)

This gives an indication of the prominence of the sound source, but it also
includes some additional information. As noted in [28], pitch salience com-
putation favours harmonic sounds with high number of harmonics, such as
the singing voice. Additionally, as done in [28], a pitch preference weight-
ing function is introduced that highlights most probable values for a singing
voice in the f0 selected range.

The training database is based on more than 2000 audio files, comprising
singing voice on one hand and typical musical instruments found in popular
music on the other. For building the database the sounds separation front-
end is applied (i.e. the FChT analysis followed by pitch tracking and sound
source extraction) and the audio features are computed for each extracted
sound. In this way, a database of 13598 sound elements is obtained, where
vocal and non-vocal classes are exactly balanced. Histograms and box-plots
are presented in Figure 5 for the pitch related features on the training pat-
terns. Although these features should be combined with other sources of
information, they are informative about the class of the sound. An SVM
classifier with a Gaussian RBF Kernel was selected for the classification ex-
periments, using the Weka software [35]. Optimal values for the γ kernel
parameter and the penalty factor C were selected by grid-search [36].

3.3. Singing voice melody transcription

Finally, the sounds classified as singing voice are mixed in a single mono
audio channel and the same transcription procedure used for processing the
queries is applied. This yields the singing voice melody out from the poly-
phonic music recording, as a sequence of notes and as a pitch contour. Figure
6 shows the whole process for a short audio excerpt of the song For no one

by The Beatles, which belongs to the automatically built database of the
QBH system.

11



0 5 10 15 20
0

500

1000

1500

2000

2500

3000

Distribution of LFP values

 

 

vocal
non vocal

0

10

20

30

vocal non_vocal

0 50 100 150 200
0

500

1000

1500

2000

Distribution of ∆ f0 values

 

 

vocal
non vocal

0

100

200

300

vocal non_vocal

0 5 10 15 20
0

500

1000

1500

2000

Distribution of PR values

 

 

vocal
non vocal

0

10

20

30

vocal non_vocal

0 5 10 15 20
0

100

200

300

400

500

600

700

800

Distribution of Γ f0 values

 

 

vocal
non vocal

5

10

15

vocal non_vocal

Figure 5: Histograms and box-plots of the pitch related feature values on the training
database for the vocal and non-vocal classes.

4. Experiments and results

4.1. Experimental setup

The experiment is designed to evaluate the validity of extending an ex-
isting MIDI files database by using the proposed automatic method. To do
that, two different datasets are used. The first one is a collection of 208 MIDI
files corresponding to almost all the songs recorded by The Beatles (exclud-
ing duplicates and instrumentals) gathered from the Internet.5 This music
was selected because it is widely known making it easy to get volunteers for
queries, it has generally a clear and distinctive singing voice melody, and is
readily available both in audio and MIDI.

The melody of a song is assumed to be the one performed by the leading
singing voice, which is usually a single MIDI channel labeled as leading voice

5From websites such as The Beatles MIDI and video heaven, http://beatles.zde.cz/.
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F0gram and pitch contours: vocal (gray) − non vocal (black)
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Figure 6: Example of the automatic process for building the database using a fragment
of the song For no one by The Beatles. A singing voice in the beginning is followed by
a French horn solo. There is a soft accompaniment of bass and tambourine. On the left,
from top to bottom: the waveform of the recording (with manual and automatic vocal
labeling), the F0gram showing both vocal and other sources pitch contours (automatically
labeled), the extracted singing voice waveform, and the transcription to notes and F0
contour of the extracted singing voice. On the right, the corresponding spectrograms of
the original audio mix, the extracted singing voice and the residual (the extracted singing
voice subtracted from the mix).
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or melody. This channel is manually extracted and indexed as an element
of the database. To build the second database, 12 songs are selected out of
this collection (which are listed in the table of Figure 7), and their melody is
automatically extracted from a mono mix of the audio recording. The selec-
tion comprises different music styles and instrumentations (e.g. rock & roll,
ballads, drums, bowed strings), but does not include too dense polyphonies
in order that the singing main melody could be identified with no difficulty
by a listener. In this case the database is modified by replacing the manually
created MIDI files by the automatically extracted melodies (notes sequence
and pitch contour) for the aforementioned songs.

A set of 106 sung queries corresponding to the selected songs was recorded
by 10 not trained singers (6 male and 4 female), using standard desktop
computer hardware. The participants were asked to sing the melody as
they remembered it, with no restrictions on singing only a vocal part. They
were free to sing with lyrics, hum (with syllables such as ‘ta’ or ‘la’), or
a combination of both. The mean number of notes in a query is 28, and
the distribution of queries among the songs and singers is shown in Figure
7. The whole set of queries is available online, along with the mono mix
and the automatic transcription of the selected songs.6 Although including
queries that do not correspond to the set of replaced songs may potentially
give more insight of the QBH system, it makes the analysis of the database
extension more troublesome and therefore will not be reported.

4.2. Singing voice detection evaluation

As a way of assessing the method at an intermediate step, an experiment
was conducted to evaluate the degree of success on identifying the singing
voice within the whole song. To do that, the 12 selected songs were manually
labeled into segments containing vocals and portions with accompaniment
alone. Automatic labels are obtained by applying the singing voice extrac-
tion method, as proposed in [15]. Performance is measured as the percentage
of time in which the manual and automatic labeling match. The performance
of a standard approach for singing voice detection in polyphonic music, i.e.
MFCC of the audio mixture and an SVM classifier [32], was also computed
for comparison. Results of this evaluation indicate that the proposed method
for singing voice detection achieves 85.7% of correct detection. This repre-

6Available from http://iie.fing.edu.uy/investigacion/grupos/gpa/QBH/.
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Song title
Blackbird
Do you want to know a secret
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Figure 7: Experimental setup. List of the 12 selected songs whose melody is automatically
obtained. The left-side chart shows the distribution of queries among the selected songs.
The distribution of queries among the 10 singers si is depicted in the right-side chart. Note
that the database is well balanced in both aspects.

sents a noticeable performance increase compared to the standard approach
that yields 77.2%. Apart from the overall results, the improvement is also
observable for most files of the database, as shown in Figure 8. These results
are consistent with the ones reported in [15] for a different dataset, and also
suggest the usefulness of the proposed pitch related features.

blackbird secret fornoone girl heyjude callname seenface michelle rocky foolhill sixtyfour yesterday
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Figure 8: Singing voice detection performance as percentage of time in which the manual
and automatic vocal labels match, for the proposed [15] and the standard [32] methods.

4.3. Query by humming evaluation

In order to evaluate the performance of the QBH system two standard
measures are adopted: mean reciprocal rank (MRR) and top-X hit rates.
Let ri be the rank of the correct song in the retrieved list for the i-th query.
Top-X hit rates are the proportion of queries for which ri ≤ X. Considering
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a set of N queries, the MRR is computed as,

MRR =
1

N

N
∑

i=1

1

ri
. (9)

Two different alternatives are considered for the audio based database.
Recall that the system performs a final refinement by the direct comparison
of F0 time series devised to improve matching performance. This refinement
avoids errors introduced in the automatic transcription of the query. When a
database of MIDI files is used, F0 time series of the matching candidates are
built from the pitch of MIDI notes. In the case of the audio based database,
errors are also introduced in the transcription of the singing voice melody
extracted from the recording (see section 3.3). Therefore, it is preferable to
perform the refinement using F0 time series computed from the extracted
singing voice, rather than building it from the transcribed notes. This is
confirmed by the results shown in Table 1, where the two different LDTW
refinements are considered. Since the refinement is done over the 10 best
matching candidates, top-10 hit rates remain unchanged.

Table 1: QBH evaluation results for MIDI and audio based databases. For the latter, the
query is aligned to two different F0 time series of the matching candidate: the pitch of
the transcribed notes (audio 1) and the extracted F0 contour (audio 2). Recall that the
number of queries is 106 and the total number of songs (different classes) is 208.

MRR Top-X hit rate (%)
1 5 10

MIDI 0.89 88.68 89.62 91.51
audio 1 0.75 69.81 79.25 84.91
audio 2 0.76 71.70 81.13 84.91

As a way of further comparing both types of databases, an analysis is
conducted considering the notes matching score assigned to the retrieved
items (see equation 2). For each query, the score of the correct song is
plotted against the highest score of the wrongly retrieved elements, as shown
in Figure 9. This is intended to study the ability of the score to discriminate
between correct and wrong retrieves. A top-1 hit result implies a correct
song score higher than all the others. Thus, ideally all the query points
would be located in the right-bottom triangle of the graph. For the MIDI
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database the vast majority of elements lie in that region, particularly for
higher correct song scores. While not so markedly, the behaviour is similar
for the audio based database. In the light of the above, a threshold on the
score value can be useful as way of assuring confidence on the results. The
thresholding determines the typical binary class scenario, resulting in True
Positive (TP), False Positive (FP), False Negative (FN) and True Negative
(TN) regions, as depicted in Figure 9. This allows the comparison of the
methods using a ROC curve, also shown in the figure. Although the MIDI
database gives better results, the performance of the audio based databased
is promising. As for illustrative purposes only, operating points are depicted
as filled markers in the ROC (the farthest point to the diagonal), and their
corresponding thresholds are plotted as vertical lines.
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Figure 9: Analysis of the information given by the score assigned to the retrieved items
for the MIDI and the audio databases. The plots to the left and center show the score of
the correct song against the highest score of the wrongly retrieved elements for each query.
The plot on the right shows a ROC curve for each database obtained by using different
thresholds on the score value.

5. Discussion and conclusions

In this work a multimodal interface for music retrieval was considered, in
which the user sings or hums a few notes of a melody as a query. The main
drawback of these QBH systems is their difficult scalability, since manual
annotation is required to build the database. A method was proposed to
tackle this problem making it possible to extend an existing database au-
tomatically from audio recordings. A prototype of a complete system was
developed in order to test the validity of the proposal. The experiments con-
ducted show that the matching performance achieved is considerably high,
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obtaining 85% of the correct item in the top-10. Besides, the information
provided by the scores assigned to the matching items can be exploited to
determine the confidence in the retrieval.

As expected, the automatic singing melody extraction from audio record-
ings is not as accurate as the manual transcription, and this in turn decreases
the performance of the QBH system. Nevertheless, even though the top-1
hit rate is significantly affected, the difference becomes less important for the
top-10 and it is still above the reported rate for humans attempting to iden-
tify queries by ear (66%) [37]. Moreover, the evaluation of the audio based
system yields an MRR of 0.76 for a database of 208 songs and 106 queries.
Although a fair comparison between different experiments is not possible, the
performance is encouraging given the best results for similar setups reported
in other works (e.g. an MRR of 0.58 for a database of 427 songs and 159
queries [13], and an MRR of 0.56 for a database of 481 songs and 118 queries
[14]). In addition, to the best of our knowledge, a direct comparison of the
same QBH system based on MIDI files versus an audio based database has
not been reported, which gives fairer insight on the performance gap between
both approaches.

In future work further experiments should be conducted in order to assess
the influence of the quality of the queries (e.g. tuning [14], length). Also,
efforts must be devoted to develop a publicly available testbed for comparison
of different methods, taking advantage of the existing resources, such as the
ones provided by [14] and this work. In addition, there is still room for
improvement in each stage of the proposed method, as shown by the singing
voice detection evaluation. In particular, the analysis of the histograms and
box-plots of Figure 5 suggest the use of a Gaussian modeling, such as the one
proposed in [38]. In spite of the above, the current system constitutes a proof
of concept that the approach of using automatic melody extraction methods
seems promising, for example to increase the size of an existing MIDI based
QBH system.
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