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Abstract—The paper studies forward markets of electric en-
ergy, where generators and consumers bid for quantities of
energy ahead of time, but face uncertainty on their real-time
supply or demand, expressed through a probability distribution.
The optimal forward decision is derived in both cases, providing
extensions to the recent literature on this topic. In particular,
the case where demand is elastic in addition to uncertain is
addressed in detail. Finally, we analyze the integrated forward
market where buyers and sellers of random energy interact with
dispatchable sellers to determine a clearing price.

I. INTRODUCTION

Electric power markets of today include economic dispatch
decisions made in advance (e.g. a day ahead), with participants
that often face uncertainty on the quantities they will produce
or consume in real time. In particular, electricity demand is
subject to unforeseen fluctuations, and supply is also uncertain
for most renewable sources (wind, solar, etc.). Since electricity
is not a stored commodity, any mismatch between supply
and demand must be settled with balancing actions taken
in real time, appropriately priced. Imbalance prices in many
such markets (see [1], [9], [10]) are such that participants are
charged differently depending on whether they are short or
long with respect to their previous commitments. This makes
the problem of bidding for the forward market non-trivial.

Many researchers have approached such decision problems
through numerical optimization, both on the supply side
related to wind energy [1], [9], [12], [10], [3], and on the
demand side [5], [15]. We are interested here in analytical
solutions, which fall in the class of the newsvendor problem in
operations research (e.g. [13]): Here, a retailer must acquire a
certain quantity of a perishable good to face a random demand,
knowing that shortages and excesses of stock are priced
differently. The optimal risk-neutral solution is to acquire the
quantile of the demand distribution that equals a certain price
ratio computed from the short and long ex post prices.

These techniques have been recently applied [4], [2] to the
supply-side problem of bidding quantities of wind energy.
On the demand side, [11] has analyzed optimal day-ahead
bids, but with a single price in the regulating market; the
two-price, quantile solution for demand is invoked in [14] to
analyze a supply duopoly. However, a study of demand bids
that incorporate consumption elasticity as well as uncertainty
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has not, to our knowledge been carried out. This becomes
important in emerging networks that will likely incorporate
demand response [7], [6], but still retain uncertainty.

In this paper we study supply and demand bidding in a
common framework, and combine them in a unified analysis of
the forward market. After introducing in Section II the relevant
prices, in Section III we review the optimal solution from [4]
for selling of a random, inelastic quantity of energy, with some
additional analysis for the case of correlated supply and real-
time prices. In Section IV we consider the demand side, first
for the parallel case where demand is random and inelastic,
but later incorporate both elasticity and uncertainty through
a random utility function. General conditions are derived for
the optimal bids. In Section V we integrate both aspects in
a forward market where buyers and sellers of random energy
interact with dispatchable sellers to determine a clearing price.
Conclusions are given in Section VI.

II. FORWARD AND IMBALANCE PRICES

We consider a forward (e.g. day-ahead) market for elec-
tricity, in which contracts are established for delivery of
energy quantities between suppliers and consumers. Real-time
deviations from these quantities (due to demand variability, or
supply variations in renewable sources) are compensated in an
imbalance market. We define three relevant prices:

• pF , unit price of energy traded in the forward market.
• pS (short imbalance price), unit price at which a shortfall

of energy (due to shortage in generation, or excess in
demand) can be bought in the imbalance market.

• pL (long imbalance price), unit price at which excess en-
ergy (excess generation, or demand below expectations)
can be sold in the imbalance market.

We assume market participants are price-takers, they take these
signals as exogenous. Provided that

pL ≤ pF ≤ pS , (1)

bidders will have incentives to align their forward offers with
their true forecasts of generation or consumption. This is
precisely the way things are arranged in several markets, like
Great Britain [1], [4], Scandinavia [9], the Netherlands [12]
or the Iberian peninsula [10]. Imbalance prices are defined ex-
post, depending on whether the overall market is long or short.
In case of shortage, pS is typically higher than pF , reflecting
the costs of acquiring the balancing energy, whereas pL = pF
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(long suppliers are actually contributing to balance). If the
market is long, pL < pF reflects balancing actions for down-
generation or increased load, whereas pF = pS . At the time of
the forward bids, the outcome is unknown, yet the inequalities
of (1) will hold whichever the case. [4] contains historical data
from the British market supporting this fact, which will be
assumed henceforth.

III. THE SUPPLY SIDE – UNCERTAIN GENERATION

Energy suppliers are typically of two opposite kinds:
• Dispatchable generation which has no uncertainty as to

power availability in the short term, but is elastic to
prices due to variable cost (e.g., a fossil-fuel plant) or
opportunity cost (e.g. hydro power). These suppliers have
no difficulty keeping their forward commitments.

• Non-dispatchable generation such as wind or solar energy
sources with no storage or variable cost, therefore no
sensitivity to prices in their decision to generate, but un-
certainty about the generated quantity. For these suppliers
which are the focus of this section, the impact of prices
is on the day-ahead planning decision.

While it is possible to conceive a situation that combines
price elasticity with uncertainty1, we will postpone this com-
bination that appears more naturally on the demand side.

A. Optimal offer for inelastic supplier with given prices

The uncertain energy generation in a future time interval is
modeled as a random variable of bounded support [0,M ], with
known cumulative distribution function F (w) = P (W ≤ w),
assumed continuous. Suppose first that pF , pL, pS satisfying
(1) are given; the decision problem faced by the generator is
how much energy y to commit on the forward market.

For a given commitment y, and eventual generation level
w, the revenue obtained by the seller is

R(y, w) = pF y − pS [y − w]+ + pL[w − y]+, (2)

where [·]+ := max{·, 0}. It amounts to the revenue from the
day ahead sale, minus the imbalance cost of any shortfall en-
ergy, plus the imbalance revenue from any excess generation.
It can also be written as R(y, w) = pF y−CpS

pL
(y−w), where

the imbalance cost is defined to be

CpS
pL

(ξ) := pS [ξ]
+ − pL[−ξ]+ =

{
pSξ if ξ > 0;

pLξ if ξ < 0.
(3)

Taking expectation over the distribution of W we define
R̄(y) := E [R(y,W )]. Note that this expected revenue is
always less than what one would obtain from selling a certain
supply equal to the mean E [W ] at day ahead prices. Indeed,

E [R(y,W )] ≤ R(y,E [W ]) ≤ pFE [W ] .

Both inequalities follow from (1): the first from the fact that
R(y, w) is (2) is concave in w for fixed y, the second from
maxy R(y, w) = R(w,w) = pFw.

1For instance, a factory with co-generation may sell excess power depend-
ing on uncertain production schedules and current prices.

The (risk-neutral) forward decision problem is to maximize
R̄(y) in the committed quantity y. This is an instance of the
newsvendor problem [13], we briefly review its solution as
documented in [4], [2]. Write

R̄(y) = pF y − pS

∫ y

0

[y − w]dF + pL

∫ M

y

[w − y]dF

= pF y − pS

∫ y

0

F (w)dw + pL

∫ M

y

[1− F (w)]dw,

which uses integration by parts. The derivative is

R̄′(y) = pF − pSF (y)− pL[1− F (y)],

from where we arrive at the optimality condition

F (y∗) =
pF − pL
pS − pL

. (4)

This says it is optimal to bid a quantile of the distribution
of the generation W corresponding to the price-ratio on the
right-hand side, which is always in [0, 1] under (1).

B. Optimal offer for inelastic supplier with random prices

We consider now the fact that imbalance prices pS , pL are
uncertain at the time of the forward decision. Modeling them
as random variables, the expected revenue is

R̄(y) = pF y − E
[
pS [y −W ]+

]
+ E

[
pL[W − y]+

]
. (5)

If the random price variables are assumed to be independent
of the generation variable W , the problem simplifies to the
previous case, leading to a solution (4) with prices replaced
by their means p̄S = E [pS ], p̄L = E [pL].

However, there is good reason to question the independence
assumption: if W is renewable generation, high levels of W
will likely correlate with abundance of power in the region
surrounding it, and thus lower prices in the imbalance market.
Following [4], this correlation can be modeled through the
conditional expectations

ϕS(w) = E [pS |W = w] , ϕL(w) = E [pL|W = w] .

Through prior experience in the market, the seller could have
good estimates of these regression functions. The expectation
terms in (5) become then

E
[
pS [y −W ]+

]
=

∫ y

0

(y − w)ϕS(w)dF (w). (6a)

E
[
pL[W − y]+

]
=

∫ M

y

(w − y)ϕL(w)dF (w). (6b)

In [4] some further conclusions were drawn by assuming
specific expressions for the above regressors.

Here we will carry out some additional analysis from the
assumption that ϕL(w) ≤ ϕS(w) are both decreasing in
w ∈ [0,M ], which expresses the aforementioned negative
correlation. For this purpose, introduce the notation

ψS(y) :=

∫ y

0

ϕS(w)dF (w); ψL(y) :=

∫ y

0

ϕL(w)dF (w).



3

Note that ψL(y) ≤ ψS(y), and ψS(M) = p̄S , ψL(M) = p̄L.
Integration by parts in (6) gives the expression

R̄(y) = pF y −
∫ y

0

ψS(w)dw +

∫ M

y

[p̄L − ψL(w)]dw. (7)

Differentiation gives R̄′(y) = pF −ψS(y)− p̄L +ψL(y), and
R̄′′(y) = ϕL(y)−ϕS(y) ≤ 0. Invoking (1) for the mean prices,
R̄′(y) decreases from R̄′(0) = pF − p̄L ≥ 0 to R̄′(M) =
pF − p̄S ≤ 0, therefore there exists y∗ satisfying the optimal
revenue condition R̄′(y∗) = 0.

There is no general relationship between this optimal bid
and the one obtained for independent prices2, but we can com-
pare the optimal revenue in both cases: negative correlation of
prices and generation hurts the revenue of the seller.

Proposition 1: R̄(y) ≤ R̄i(y) for every y, where

R̄i(y) := pF y − p̄SE[y −W ]+ + p̄LE[W − y]+,

revenue under independence of prices and W .
Proof: We first claim that, with non-increasing condi-

tional prices ϕS(w) we have

ψS(y) ≥ p̄SF (y) ∀y. (8)

to see this write the inequalities

p̄S = ψS(y) +

∫ M

y

ϕS(w)dF ≤ ψS(y) + ϕS(y)[1− F (y)];

ϕS(y)F (y) ≤
∫ y

0

ϕS(w)dF = ψS(y).

Combining them with respective factors F (y), [1−F (y)] leads
after simplification to (8). Integration now gives∫ y

0

ψS(w)dw ≥ p̄S

∫ y

0

F (w)dw = p̄SE[y −W ]+.

Similarly we establish that ψL(y) ≥ p̄LF (y), and therefore∫ M

y

[p̄L−ψL(w)]dw ≤ p̄L

∫ M

y

[1−F (w)]dw = p̄LE[W−y]+.

Combining these inequalities with (7) gives

R̄(y) ≤ pF y − p̄SE[y −W ]+ + p̄LE[W − y]+.

IV. THE DEMAND SIDE – UNCERTAIN CONSUMPTION

In this section we turn our attention to uncertainty in system
demand, for a consumer who participates in a forward market.
This could be a large consumer, or a retailer who bids on
behalf of a certain group of final customers. Uncertainty
in the future consumption is always present; for instance,
weather may affect the usage of air-conditioning devices. So
when deciding on the amount of energy to reserve in the
forward market, the decision must incorporate in addition to
the forward price pF , the imbalance prices pS , pL. We assume
they satisfy pL ≤ pF ≤ pS as in (1).

2Under the specific model in [4] it is shown to be lower.

A. Optimal bid, inelastic random demand with given prices
We consider first the traditional situation, where real-time

consumption is determined in an inelastic way: consumers are
shielded from the spot market and therefore define their energy
usage independently of prices. The focus of our analysis is
how prices (assumed at first to be given) impact the decision
of how much energy to reserve in the forward market.

Given a reservation quantity x, and the actual consumption
q, the net user cost is given by

C(x, q) = pFx+ pS [q − x]+ − pL[x− q]+ (9)
= pFx+ CpS

pL
(q − x).

with CpS
pL

from (3). We now model an uncertain demand as
a random variable Q with continuous cumulative distribution
G(q), and bounded support in [0,M ]. The expected cost is

C̄(x) = pFx+ pS

∫ M

x

(q − x)dG− pL

∫ x

0

(x− q)dG.

= pFx+ pS

∫ M

x

[1−G(q)]dq − pL

∫ x

0

G(q)dq,

where the last step follows from integration by parts. Setting
C̄ ′(x) = 0 we find the condition

pF = pLG(x) + pS(1−G(x)), (10)

which can be solved to give the optimal quantile

G(x∗) =
pS − pF
pS − pL

. (11)

Note the similarity and difference with the supply case. Indeed,
this is the complementary quantile to the one obtained in (4).

B. Optimal bid, inelastic random demand with random prices
Analogously to Section III-B, we now address the fact

that imbalance prices are also uncertain, modeling pS and
pL as random variables. Once again, it is natural to consider
the correlation between these quantities and the consumer’s
random demand Q: if consumption goes up for a consumer,
it will likely also happen with neighbors, leading to growing
prices in the region. This positive correlation can be captured
by monotonically increasing conditional expectation functions

ϕL(q) = E [pL|Q = q] , ϕS(q) = E [pS |Q = q] ,

with ϕL(q) ≤ ϕS(q). The expected cost becomes

C̄(x) = pFx+ E
[
pS [Q− x]+

]
− E

[
pL[x−Q]+

]
= pFx+

∫ M

x

(q − x)ϕS(q)dG−
∫ x

0

(x− q)ϕL(q)dG.

The ensuing analysis to find x∗ that minimizes C̄(x) can
be carried out in a dual way to Section III-B. We state the
following result:

Proposition 2: Let C̄i(xi) be the mean cost function when
prices are independent of Q, and x∗i the corresponding optimal
decision. Then

pFE [Q] ≤ C̄i(x
∗
i ) ≤ C̄(x∗).

This says that the optimal cost is higher (worse) than in the
case of independent prices, and the latter is itself higher than
the cost of buying the mean demand at day ahead prices. The
proof is analogous to Proposition 1.
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C. Optimization for elastic random demand, given prices

In emerging power networks with demand response, con-
sumers are expected to be sensitive to the price of energy,
reducing their consumption accordingly. In some envisaged
schemes [7], [6], a load-serving entity (LSE) which buys
wholesale power communicates with consumers a day ahead
to define their demand as a function of prevailing prices. These
references do not, however, include any uncertainty as to the
planned consumption in the day-ahead purchase decision.

We would like to consider a demand model in which agents
adjust both their reservations and their consumption, based on
prevailing prices in forward and imbalance markets. One way
to combine this elasticity with demand uncertainty is through a
utility function U(q, θ), that depends on the consumption level
q and on a parameter θ, itself drawn from a random variable
Θ. The consumer agent has two decision variables, x and q,
chosen at different times. We analyze these choices backwards
in time. Initially we assume all prices are given.

• The real-time decision for q, given x: upon realization of
θ, the consumer chooses the surplus maximizing point

q∗(x, θ) := argmaxq {U(q, θ)− C(x, q)} . (12)

Out of the cost given in (9), only the imbalance portion
CpS

pL
(q − x) participates in this decision. Assuming the

maximum in (12) occurs in an interior q the optimality
condition is

U ′(q∗(x, θ), θ) = CpS
pL

′(q∗(x, θ)− x). (13)

• Looking now at the forward decision, the consumer agent
must maximize the expected surplus

S̄(x) := EΘ [U(q∗(x,Θ),Θ)− C(x, q∗(x,Θ))] (14)

over the reservation variable x. Computing the derivative
S̄′(x) inside the expectation sign, using the structure
of the cost and imposing (13) yields the optimality
condition:

pF = EΘ

[
CpS

pL

′(q∗(x∗,Θ)− x∗)
]
. (15)

Thus the optimal x∗ equalizes the forward price with the
expected marginal imbalance cost of the deviation of demand
from the reservation.

We look at two special cases of the above formulation:
1) Inelastic demand: The analysis of Section IV-A is recast

in this setting as follows. Let Θ be the random inelastic
demand, and choose U(q, θ) that assigns very high marginal
utility U ′(q, θ) = pi > pS for q < θ, and U ′(q, θ) = 0 for
q > θ. In this case q∗(x, θ) = θ regardless of the prices.

Using the imbalance cost CpS
pL

(q − x) in (3), (15) gives

pF = EΘ

[
pL1(Θ<x∗) + pS1(Θ>x∗)

]
= pLG(x

∗) + pS(1−G(x∗)),

which coincides with (10), and thus leads to the quantile
reservation in (11).

θ

pi

x

pe
pS

pL

qq0

Fig. 1. Marginal utility U ′(q, θ) (solid); marginal cost C
pS
pL

′
(q − x) for

different cases of x and prices (dash, dash-dot and dash-dot-dot).

2) Elasticity in a portion of the demand: Let

U ′(q, θ) =


pi if q < q0;

pe if q0 < q < θ;

0 if q > θ.

(16)

Assume that pi > pS always so the portion q0 of the demand
is firm; the amount of additional consumption will result from
comparing pe with prevailing prices. The satiation point θ is
drawn from a random variable Θ with support in [q0, qM ], and
cumulative distribution function G(·).

For the forward decision, it is clear that if pF ≥ pe the
optimal x∗ = q0: the forward price is not attractive to make
any reservation beyond the firm demand.

We focus then on the case pF < pe. Note that here pL < pe,
but pS could fall on either side. We study first the real-time
decision for a given (x, θ), depicted in Figure 1.

In particular:
(a) If x > θ, then the decision is q∗ = θ and the optimal

marginal cost is CpS
pL

′(q∗ − x) = pL.
(b) If x < θ, then the optimal marginal cost is min{pe, pS};

the minimum price determines whether q∗ is x or θ.
The right-hand side of (15) therefore gives

E
[
CpS

pL

′(q∗ − x)
]
= E

[
pL1{Θ<x} +min{pe, pS}1{Θ>x}

]
(17)

= pLG(x) + min{pe, pS}(1−G(x));

the optimal quantile decision follows. The following expres-
sion summarizes the result for all cases:

G(x∗) = 1{pe>pF } ·
min{pe, pS} − pF
min{pe, pS} − pL

. (18)

D. Optimization for elastic random demand, random prices

We now consider the general situation where, in addition
to the random parameter Θ in the consumer utility function,
there is uncertainty on the imbalance prices pL, pS , modeling
them as random variables. Note that this uncertainty is not
removed at the time of the consumption decision, when θ is
revealed, since balancing actions matching supply and demand
are taken ex post, with the quantities already defined.
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Nevertheless, Θ can exhibit correlation to the ex post prices,
in a similar manner as the inelastic case; we therefore again
introduce the conditional expectations

ϕL(θ) = E [pL|Θ = θ] , ϕS(θ) = E [pS |Θ = θ] .

We assume they satisfy ϕL(θ) ≤ pF ≤ ϕS(θ) for all θ 3.
The risk-neutral optimization of surplus from (14) now

involves expectations over Θ, pL, pS . When we analyze the
real-time decision conditioned on Θ = θ, we have

q∗(x, θ) := argmaxq
{
U(q, θ)− C

ϕS(θ)
ϕL(θ)(q − x)

}
,

where C
ϕS(θ)
ϕL(θ)(ξ) = ϕS(θ)[ξ]

+ − ϕL(θ)[−ξ]+. With this
modification, the rest of the analysis carries through and the
optimal reservation x∗ satisfies

pF = EΘ

[
C

ϕS(θ)
ϕL(θ)

′(
q∗(x∗, θ)− x∗

)]
. (19)

Note that if prices are assumed independent of Θ, then
ϕS(θ) = p̄S , ϕL(θ) = p̄L, and the problem reduces to the one
in the previous section with prices replaced by their means.

We now look at the general, dependent price situation for
the utility function considered in (16). Again, it suffices to
consider the case where pF < pe; the analysis of the real-
time decision still has two cases (a) and (b) treated before,
replacing pL, pS by the conditional means ϕL(θ), ϕS(θ). We
therefore have the following generalization of (17):

E
[
C

ϕS(θ)
ϕL(θ)

′
(q∗ − x)

]
=

∫ x

q0

ϕL(θ)dG

+

∫ qM

x

min{pe, ϕS(θ)}dG.

Noting that ϕL(θ) ≤ pF ≤ min{pe, ϕS(θ)}, the above
expression is decreasing in x, from E [min{pe, pS}] ≥ pF
at x = q0, to p̄L ≤ pF at x = qM . Therefore there is a well
defined optimal solution satisfying (19).

V. INTEGRATED FORWARD MARKET AND CLEARING PRICE

In this section we consider the global forward market that
results from the interaction of the following agents:

1) Consumers that demand energy under uncertainty, as
analyzed in Section IV. As a function of the forward
price pF , these agents will demand a forward quantity
x∗(pF ) that results from the surplus optimization

x∗ = argmaxE
[
max

q
{U(q,Θ)− pFx− CpS

pL
(q − x)}

]
.

(20)

Here the expectation is over the utility type Θ, and
possibly the imbalance prices pS , pL.

2) Renewable energy suppliers, as analyzed in Section III.
These agents will commit a forward quantity y∗(pF )
that provides the optimal revenue

y∗ = argmaxE
[
pF y − CpS

pL
(y −W )}

]
. (21)

Here the expectation is over the generation W and
possibly the imbalance prices pS , pL.

3θ being a general parameter, there is no monotonicity in ϕL(·), ϕS(·).

3) Dispatchable generators (we assume renewables alone
do not cover the demand), jointly characterized by an
increasing marginal cost curve C′(z), constructed from
price-quantity bids ordered in increasing price. Imposing
C′(z∗) = pF results in an increasing offer curve z∗(pF ).

There could be multiple uncertain consumers and suppliers,
with respective bid curves x∗i (pF ) and y∗j (pF ). The market
clearing condition is

z∗(pF ) +
∑
j

y∗j (pF ) =
∑
i

x∗i (pF ). (22)

In a classical market equilibrium problem x∗i (pF ) and y∗j (pF )
would be monotonic (respectively decreasing and increasing),
leading to a well-defined solution to (22). This would indeed
happen if the prices pS , pL were exogenous, independent of
the forward price. In that case we could have to deal, however,
with the possibility of the constraint (1) being violated.

But the imbalance and forward markets are not in general
independent. If the operator of the forward market sees the
reserve bids, before pF can surpass the cheapest reserve
generators, these can be included in the forward dispatch.
The remaining reserve bids that are available for short market
balancing will therefore be larger than pF ; symmetrical con-
siderations apply to the long situation. Under this rationale
(1) must always hold, but the short and long imbalance prices
become dependent on the forward price.

Introduce δS , δL > 0, the short and long mean penalties
relative to forward price, and their ratio η, by the relations

p̄S = pF (1 + δS), p̄L = pF (1− δL); η =
δS
δL
. (23)

These quantities, which in general could vary with pF , are
now used to analyze the supply and demand bid curves.

A. Properties of bid curves

Consider first the supply bid curves studied in [4], under
independence between prices and generation. The optimal
offer satisfies the quantile condition (4) with mean prices:

F (y∗) =
pF − p̄L
p̄S − p̄L

.

In terms of the variables of (23) we obtain

y∗(pF ) = F−1

(
1

1 + η

)
.

If the ratio η is constant in pF (e,g, when the penalty fractions
δS , δL are themselves constant) renewable supply which is
inelastic in real time, will appear as inelastic in the forward
market. But other behaviors are in principle possible. Note
that the right hand-side is decreasing in η(pF ), therefore if
this function increases we will have a un-intuitive, decreasing
offer curve y∗(pF ). For further discussion see [4]4.

If prices and generation are correlated, the optimal bid
is determined through the analysis of Section III-B; while
analytical expressions for y∗(pF ) may be hard to obtain, this

4In particular, it is mentioned that such un-natural bid curves are forbidden
in certain markets.
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function can be evaluated at specific points as part of an
iterative procedure to find the clearing price.

Turning to the demand side, the analogous situation is when
demand is inelastic and independent of prices; here (11) leads
to bid function

x∗(pF ) = G−1

(
η

1 + η

)
, (24)

with η(pF ) as before. This right-hand side is now increasing
in η, yielding again un-intuitive forward demand curves if the
ratio is increasing in price. Once more, forward demand is
inelastic for constant η. Similar considerations apply to the
extension to correlated prices and demand.

Let us now look at a case where real-time demand is elastic
to price, as considered in Section IV-C. For the utility in (16)
we had arrived at the quantile condition (18), which becomes

G(x∗) = 1{pe>pF } ·
min{pe − pF , δSpF }

min{pe − pF , δSpF }+ δLpF
.

Suppose δS , δL are constant with pF . In this case, the
previous identity has two regions:

(a) For pF < pe

1+δS
, x∗ is constant, with the expression (24).

(b) For pe

1+δS
< pF , the optimal bid satisfies

G(x∗) = 1{pe>pF } ·
pe − pF

pe − (1− δL)pF
.

which is decreasing in pF ; here the elasticity of the real-
time demand appears in the forward bid.

B. Social welfare considerations

Classical economic theory (see [8]) shows that under stan-
dard assumptions on consumer utilities and supplier costs, the
market clearing price achieves social welfare, maximizing the
aggregate utility minus cost across all agents. We now briefly
take a look at our forward market in this light, assuming for
simplicity there is a single demand and renewable supply.

For a social planner with global information, a natural
welfare optimization could be

max
z

{
EΘ,W

[
max

q

(
U(q,Θ)− Cimb(q −W − z)

)]
− C(z)

}
;

(25)

This means choosing z in advance, and q upon revelation of
uncertain variables Θ, W , to maximize expected utility minus
the cost of balancing actions, minus the cost of generation
committed in advance. Can this decision be decoupled between
agents as discussed before, by appropriate choice of prices?

Let q∗(z,Θ,W ) achieve the inner maximum in (25); the
optimality condition

C′(z∗) = EΘ,W [C′
imb(q

∗(z∗,Θ,W )−W − z∗)] , (26)

can be obtained by differentiating the objective with respect
to z under the expectation sign, and applying the envelope
theorem [8]. If a solution z∗ is found, then choosing pF =
C′(z∗) induces the correct quantity of dispatchable demand.

It is not obvious, however, how imbalance prices could
decouple the joint condition (26) in C′

imb(q
∗ −W − z∗), into

functions of q∗−x∗ and y∗−W , as would be required in (15)

and its correlate for supply. In particular there would appear to
be a gap in the situation where supply and demand deviations
cancel out. Perhaps there is an inevitable inefficiency in the
way asymmetric imbalance penalties are assigned, unless one
can somehow factor in the cost of availability of reserves that
need not be dispatched. Analyzing these issues remains open
for further research.

VI. CONCLUSION

We have analyzed power markets with a forward stage
and a correction for imbalance, from the point of view of
agents who face uncertainty in their demand or supply. The
optimal bidding for these agents is characterized in terms
of the probability distributions of their uncertainty and the
forward and imbalance prices, the latter being possibly random
as seen ex ante by the bidding agents. Our results generalize
previous research which had considered each side of the
market separately, mainly on the demand side where we allow
for consumers that are both uncertain and elastic to price.
The resulting bid curves interact with dispatchable sources to
define a clearing price, leaving questions about the efficiency
of the market equilibrium to be studied in future research.
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