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Abstract

Integrating genetic perturbations with gene expression data not only improves accuracy of regulatory network topology
inference, but also enables learning of causal regulatory relations between genes. Although a number of methods have
been developed to integrate both types of data, the desiderata of efficient and powerful algorithms still remains. In this
paper, sparse structural equation models (SEMs) are employed to integrate both gene expression data and cis-expression
quantitative trait loci (cis-eQTL), for modeling gene regulatory networks in accordance with biological evidence about genes
regulating or being regulated by a small number of genes. A systematic inference method named sparsity-aware maximum
likelihood (SML) is developed for SEM estimation. Using simulated directed acyclic or cyclic networks, the SML performance
is compared with that of two state-of-the-art algorithms: the adaptive Lasso (AL) based scheme, and the QTL-directed
dependency graph (QDG) method. Computer simulations demonstrate that the novel SML algorithm offers significantly
better performance than the AL-based and QDG algorithms across all sample sizes from 100 to 1,000, in terms of detection
power and false discovery rate, in all the cases tested that include acyclic or cyclic networks of 10, 30 and 300 genes. The
SML method is further applied to infer a network of 39 human genes that are related to the immune function and are
chosen to have a reliable eQTL per gene. The resulting network consists of 9 genes and 13 edges. Most of the edges
represent interactions reasonably expected from experimental evidence, while the remaining may just indicate the
emergence of new interactions. The sparse SEM and efficient SML algorithm provide an effective means of exploiting both
gene expression and perturbation data to infer gene regulatory networks. An open-source computer program
implementing the SML algorithm is freely available upon request.
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Introduction

Genes in living organisms do not function in isolation, but may

interact with each other and act together forming intricate

networks [1]. Deciphering the structure of gene regulatory

networks is crucial for understanding gene functions and cellular

dynamics, as well as for system-level modeling of individual genes

and cellular functions. Although physical interactions among

individual genes can be experimentally deduced (e.g., by

identifying transcription factors and their regulatory target genes

or discovering protein-protein interactions), such experimental

approach is time-consuming and labor intensive. Given the

explosive number of combinations of genes involved in any

possible gene interaction, such an approach may not be practically

feasible to reconstruct or ‘‘reverse engineer’’ gene networks. On

the other hand, technological advances allow for high-throughput

measurement of gene expression levels to be carried out efficiently

and in a cost-effective manner. These genome-wide expression

data reflect the state of the underlying network in a specific

condition and provide valuable information that can be fruitfully

exploited to infer the network structure.

Indeed, a number of computational methods have been

developed to infer gene networks from gene expression data.

One class leverages a similarity measure, such as the correlation or

mutual information present in pairs of genes, to construct a so-

termed co-expression or relevance network [2,3]. Another

approach relies on Gaussian graphical models with edges being

present (absent) if the corresponding gene pairs are conditionally

dependent (respectively independent), given expression levels of all

other genes [4,5]. While the approach based on Gaussian

graphical models entails undirected graphs, directed acyclic graphs

(DAGs) or Bayesian networks have also been employed to infer the

dependency structure among genes [6,7]. The fourth approach

employs linear regression models and associated inference

methods to find the dependency among genes and to infer gene

networks [8–11]. Finally, while these approaches use gene

expression data in the steady-state, several methods exploiting

time-series expression data have also been reported; see e.g.,

[12,13] and references therein.

Recently, gene expression data from gene-knockout experi-

ments have been combined with time series comprising gene

expression data with perturbations to considerably improve the
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accuracy of network inference [14]. When a gene is knocked out or

silenced, expression levels of other genes are perturbed. Different

from using gene expression levels of the original network alone,

comparing gene expression levels in the perturbed network with

those in the original network reveals extra information about the

underlying network structure. Gene perturbations can be

performed with other experimental approaches such as controlled

gene over-expression and treatment of cells with certain chemical

compounds [8,9]. However, these gene perturbation experiments

may not be feasible for all genes or organisms. To overcome this

hurdle, one can exploit naturally occurring genetic variations that

can be viewed as perturbations to gene networks [15]. More

importantly, such genetic variations enable inference of the causal

relationship between different genes or between genes and certain

phenotypes.

Several approaches are available to capitalize on both genetic

variations and gene expression data for inference of gene networks.

The first approach models a gene network as a Bayesian network,

and then infers the network by incorporating prior information

about the network obtained from expression quantitative trait loci

(eQTLs) [16–18]. In the second approach, a likelihood test is

employed to search for a casual model that ‘‘best’’ explains the

observed gene expression and eQTL data [19–23]. The third

approach relies on the structural equation model (SEM) to infer

gene [24–27] or phenotype networks [28–34]. While these

approaches focus on inference of gene networks incorporating

information from eQTL, another approach employs both

phenotype and QTL genotype data to jointly decipher the

phenotype network and identify eQTLs that are causal for each

phenotype [35]. Logsdon and Mezey [26] proposed an adaptive

Lasso (AL) [36] based algorithm to infer gene networks modeled

with an SEM. They compared the performance of a number of

methods using simulated directed acyclic or cyclic networks. Their

simulations showed that the AL-based algorithm outperformed all

other methods tested. Despite its superiority over other methods,

the AL-based algorithm does not fully exploit the structure of the

SEM. Therefore, it is expected that a more systematic inference

algorithm may significantly improve the performance of the SEM-

based approach.

Motivated by the fact that gene networks or more general

biochemical networks are sparse [8,37–39], a sparse SEM is

advocated in this paper to infer gene networks from both gene

expression and eQTL data. Incorporating network sparsity

constraints, a sparsity-aware maximum likelihood (SML) algo-

rithm is developed for network topology inference. The core

technique used is to maximize the likelihood function regularized

by the ‘1-norm of the parameter vector determining the network

structure. The ‘1-norm controls complexity of the SEM, and thus

yields a sparse network. The key innovative element of the SML

algorithm is a block coordinate ascent method derived to

maximize the ‘1-regularized likelihood function, which makes

the SML algorithm computationally efficient. The simulations

provided demonstrate that the novel SML algorithm offers

significantly better performance than the two state-of-the-art

algorithms: the AL [26], and the QDG algorithm [21]. The SML

algorithm is further applied to infer a human network of 39 human

genes related to the immune function.

Results

Sparse SEM model for gene regulatory networks
Consider expression levels of Ng genes from N individuals

measured using e.g., microarray or RNA-seq. Let

yi : ~½yi1, . . . ,yiNg
�T denote the Ng|1 vector collecting the

expression levels of these Ng genes of individual i. Suppose that

a set of perturbations to these genes has been also observed. These

perturbations can be due to naturally occurring genetic variations

near or within the genes, gene copy number changes, gene

knockdown by RNAi or controlled gene over-expression. In this

paper, focus is placed on genetic variations observed at eQTLs,

although the network model and the inference method described

in the next section are also applicable to cases where other

perturbations are available. As in [26], it is assumed that each gene

has at least one cis-eQTL so that the structure of the underlying

gene network is uniquely identifiable. Let xi : ~½xi1, . . . ,xiNq
�T

denote the genotype of Nq§Ng eQTLs of individual i. The goal is

to infer the network structure of the Ng genes from the available

gene expression measurements yi, i~1, . . . ,N , and eQTL

observations xi, i~1, . . . ,N.

As in [25,26], the gene network is postulated to obey the SEM

yi~ByizFxizmzEi, i~1, . . . ,N ð1Þ

where Ng|Ng matrix B contains unknown parameters defining

the network structure; Ng|Nq matrix F captures the effect of

each eQTL; Ng|1 vector m accounts for possible model bias; and

Ng|1 vector Ei captures the residual error, which is modeled as a

zero-mean Gaussian vector with covariance s2I, where I denotes

the Ng|Ng identity matrix. It is assumed that no self-loops are

present per gene, which implies that the diagonal entries of B are

zero. As mentioned in [26], lack of self-loops and a diagonal

covariance matrix of Ei are commonly assumed in almost all

graph-based network inference methods. It is further assumed that

the loci of Nq eQTLs have been determined using an existing

eQTL method, but the effective size of each eQTL is unknown.

Therefore, F has Nq unknown entries whose locations are known

and NgNq{Nq remaining zero entries (for instance F is a diagonal

matrix when Nq~Ng).

The network inference task is to estimate Ng(Ng{1) unknown

entries of B, and as a byproduct, the Nq unknown entries of F.

Without any knowledge about the network, no restriction is

imposed on the structure specified by B. Therefore, the network is

considered as a general directed graph that can possibly be a

directed cyclic graph (DCG) or a DAG. Network inference is

Author Summary

Deciphering the structure of gene regulatory networks is
crucial for understanding gene functions and cellular
dynamics, as well as system-level modeling of individual
genes and cellular functions. Computational methods
exploiting gene expression and other types of data
generated from high-throughput experiments provide an
efficient and low-cost means of inferring gene networks.
Sparse structural equation models are employed to: i)
integrate both gene expression and genetic perturbation
data for inference of gene networks; and, ii) develop an
efficient sparsity-aware inference algorithm. Computer
simulations corroborate that the novel algorithm markedly
outperforms state-of-the-art alternatives. The algorithm is
further applied to infer a real human gene network
unveiling possible interactions between several genes.
Since gene networks can be perturbed not only by genetic
variations but also by other means such as gene copy
number changes, gene knockdown or controlled gene
over-expression, this paper’s method can be applied to a
number of practical scenarios.

Sparse Structural Equation Model for Gene Networks
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challenging since the number of unknowns to be estimated is very

large for a moderately large Ng. Note that under the assumption

that each gene has at least one cis-eQTL, the ‘‘Recovery’’

Theorem in [26] guarantees that the network is identifiable for

both DCGs and DAGs.

As discussed in [8,37–39], gene regulatory networks or more

general biochemical networks are sparse meaning that a gene

directly regulates or is regulated by a small number of genes

relative to the total number of genes in the network. Taking into

account sparsity, only a relatively small number of the entries of B
are nonzero. These nonzero entries determine the network

structure and the regulatory effect of one gene on other genes.

The SEM in (1) under the aforementioned sparsity assumption will

be henceforth referred to as the sparse SEM. Exploiting the

sparsity inherent to the network, an efficient and powerful

algorithm for network inference will be developed in the ensuing

section.

Sparsity-aware inference method
Upon defining Y : ~½y1, . . . ,yN �, X : ~½x1, . . . ,xN �, and

E : ~½E1, . . . , EN �, the SEM in (1) can be compactly written as

Y~BYzFXzm1TzE, where 1 is the N|1 vector of all-ones.

Given X and Y, the log-likelihood function can be written as

log p(YDX; B,F, m)~
N

2
logDdet(I{B)D2{

NNg

2
log(2ps2)

{
1

2s2
EY{BY{FX{m1TE2

F

ð2Þ

where det(:) denotes matrix determinant, and E:EF denotes the

Frobenius norm.

As mentioned earlier, B is a sparse matrix having most entries

equal to zero. In order to obtain a sparse estimate of B, the natural

approach is to maximize the log likelihood regularized by the

weighed ‘1{norm term EBE1,W : ~
PNg

i~1

PNg

j~1 wij DBij D, where

Bij denotes the (i,j)th entry of B. In a linear regression model, it is

well known that the ‘1-regularized least-squares estimation also

known as Lasso [40] can yield a sparse estimate of the regression

coefficient vector. Similarly, the ‘1-regularized maximum likeli-

hood (ML) approach used here is expected to shrink most of the

entries of B toward zero, thereby yielding a sparse matrix. It is easy

to show that maximizing log p(YDX; B,F, m) with respect to (w.r.t.)

m yields m̂m~(I{B)�yy{F�xx, where �yy~
PN

n~1 yn=N and

�xx~
PN

n~1 xn=N . Upon defining ~yyn : ~yn{�yy, ~xxn : ~yn{�xx,
~YY : ~½~yy1, . . . ,~yyN �, ~XX : ~½~xx1, . . . ,~xxN �, and substituting m̂m for m in

(2), the proposed ‘1-penalized ML estimation approach yields

(B̂,F̂)~arg max
B,F

Ns2

logjdet(I{B)j{ 1

2
E~
Y{B

~
Y{F

~
XE2

F {lEBE1,W

subject to Bii~0,Vi~1, . . . ,Ng, Fjk~0,V(j,k)[Sq

ð3Þ

where Sq denotes the set of row and column indices of the entries

of F known to be zero. As assumed earlier, each phenotype has at

least one cis-eQTL that has been identified, which implies that the

locations of nonzero entries of F or equivalently the set Sq is

known. However, our sparse SEM and inference method are also

applicable to more general cases where some or all phenotypes

have cis-eQTLs that have not been identified. In these cases, the

locations of nonzero entries of F corresponding to the unidentified

cis-eQTLs are unknown. We can form a weighted ‘1-norm of the

entries of F excluding those corresponding to the identified

cis-eQTL and then add a penalty term involving this ‘1-norm to

the objective function in (3). This new optimization problem can

be solved efficiently using a method modified from the one solving

(3), as it is described in the supporting text S1.

Weights wij in the penalty term are introduced to improve

estimation accuracy in line with the AL [36]. They are selected as

1=~BBij , where ~BBij is found using a preliminary estimate of B

obtained via ridge regression as

(~BB,~FF)~arg min
B,F

1

2
E~YY{B~YY{F~XXE2

F zrEBE2
F

subject to Bii~0,Vi~1, . . . ,Ng, Fjk~0,V(j,k)[Sq:

ð4Þ

The sparsity-controlling parameters l in (3) and r in (4) are

selected via cross validation (CV), while s2 is estimated as the

sample variance of the error using ~BB and ~FF. In adaptive Lasso

based linear regression [36], Zou suggested using the ordinary

least squares (OLS) estimate to determine the weights; if the OLS

estimate does not exist due to, e.g., collinearity, Zou suggested the

estimate obtained from ridge regression, although it remains to

show if the ridge regression estimate is consistent in this case and if

the resulting adaptive Lasso yields the desired oracle properties. If

OLS is used for estimating B and F in the SEM, the solution

usually does not exist since the number of unknowns is typically

larger than the number of samples. However, even in this case the

solution can always be obtained from ridge regression as in (4).

Moreover, every entry of the solution is typically nonzero, which

yields a finite weight for every variable, and thus every variable

will be included in the following ‘1-penalized ML procedure. An

alternative approach is to replace the weighed ‘1-norm in (3) with

an unweighted ‘1-norm to obtain a preliminary estimate of B and

then calculate the weights from this preliminary estimate, as in

[26]. However, the unweighted ‘1-penalized ML procedure may

shrink many variables to zero and exclude them from the weighted

‘1-penalized ML estimator, possibly yielding a biased estimate. For

this reason, the inference method in this paper uses ridge

regression to determine fwijg, with the additional advantage of

(4) admitting a closed-form solution.

A block diagram of the novel inference algorithm, abbreviated as the

sparsity-aware maximum likelihood (SML) algorithm, is depicted in

Figure 1. The first and third blocks in Figure 1 perform cross-validation

to select optimal parameters r and l to be used in (3) and (4),

respectively (see the description of the cross-validation procedure in the

supporting text S1.) The third block produces weights fwijg and error-

variance estimate ŝs2 after solving (4). Finally, the fourth block takes

data X and Y together with l, fwijg and ŝs2 and solves (3) to yield B̂B,

representing the SML estimator for B in (1) and revealing the genetic-

interaction network. As it will be described in the Methods section, (4) is

separable across rows of B and F, and each row of ~BB and ~FF becomes

available in closed form [cf. (8)–(9)]. The ‘1-regularized ML problem

(3) is solved efficiently using a novel block coordinate ascent iterative

scheme given by (11)–(16) in the Methods section. Precise description of

the overall SML algorithm is also presented in the Methods section as

Algorithm 1, which was used to yield an executable computer

program.

Simulation studies and performance comparison of
inference algorithms

In their simulation studies, Logsdon and Mezey [26] compared

the performance of their AL-based algorithm with that of several

Sparse Structural Equation Model for Gene Networks
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other algorithms including the PC-algorithm [41,42], the QDG

algorithm [21], the QTLnet algorithm [35], and the NEO

algorithm [22]. In two out of four simulation setups, the AL

outperformed all other algorithms; and in the other two simulation

setups, the AL and QDG algorithms exhibited comparable

performance, but consistently outperformed the other two

algorithms. Logsdon and Mezey [26] also considered other

existing algorithms [25,43], but these were deemed either

computationally too demanding [43] or prohibitively complex

[25]. For these reasons, the AL and QDG algorithms are regarded

as state-of-the-art in the field. Their performance was compared

against this paper’s SML algorithm.

Following the setup of Logsdon and Mezey [26], two types of

acyclic gene networks were simulated first: one with 10 genes and

another with 30 genes. Specifically, a random DAG of 10 or 30

nodes with an expected Ne~3 edges per node was generated by

creating directed edges between two randomly picked nodes. Care

was taken to avoid any cycle in the simulated graph. If an edge

from node j to node i was emerging, Bij was generated from a

random variable uniformly distributed over the interval (0:5,1) or

({1,{0:5); otherwise, Bij~0. The genotype per eQTL was

simulated from an F2 cross. Values 1 and 3 were assigned to two

homozygous genotypes, respectively, and 2 to the heterozygous

genotype. Hence, Xij was generated as a ternary random variable

taking values f1, 3, 2g with corresponding probabilities

f0:25, 0:25, 0:5g. Matrix F was the Ng|Ng identity matrix, Eij

was sampled from a Gaussian distribution with zero mean and

variance 10{2, and m was set to zero. Finally, Y was calculated

from Y~(I{B){1(FXzE):
For each type of gene network, 100 realizations or replicates of

the network were generated, and then the SML, the AL and the

QDG algorithms were run to infer the network topology. When

running the SML algorithm, 10-fold CV was employed to

determine the optimal values of parameters l and r and then use

these values to infer the network. An edge from gene j to i was

deemed present if B̂Bij=0. The AL algorithm also automatically

ran using CV to determine the values of its parameters. For 100

replicates of the network, Nt counted the total number of edges,

N̂Nt denoted the total number of edges detected by the inference

algorithm. Among N̂Nt detected edges, Ntrue stands for the number

of true edges presented in the simulated networks, and Nfalse for

the number of false edges. The power of detection (PD) was then

found as Ntrue=Nt, and the false discovery rate (FDR) as

Nfalse=N̂Nt. The PD and the FDR of the SML, AL, and QDG

algorithms for different sample sizes are depicted in Figure 2. It is

seen from Figures 2 (a) and (c) that the PD of the SML algorithm

exceeds 0.9 for both networks across all sample sizes, whereas the

PD of the AL algorithm is about 0.65 for Ng~10 and 0.35 for

Ng~30. The PD of the QDG algorithm is even lower ranging

from 0.22 to 0.33. As shown in Figures 2 (b) and (d), the FDR of

the SML algorithm is on the order of 10{3 for most sample sizes,

and is much lower than that of the AL and QDG algorithms,

which is about 0.3 for Ng~10 and over the range from 0.31 to

0.6 for Ng~30.

Two types of cyclic networks were subsequently simulated: one

with 10 genes and the other with 30 genes. The average number of

edges per gene is again equal to 3. The same procedures used in

simulating acyclic networks described earlier were employed,

except that DCGs instead of DAGs were simulated. Again, 100

replicates for each type of the networks were randomly generated.

The PD and the FDR of three algorithms are depicted in Figure 3.

As shown in Figure 3 (a) and (c), the PD of the SML algorithm is

between 0.83 and 0.9, whereas the PD of the AL algorithm is

about 0.52 for Ng~10 and 0.29 for Ng~30, and the PD of the

QDG algorithm is between 0.16 and 0.28. As shown in Figures 3

(b) and (d), the FDR of the SML algorithm is v0:01, which is much

smaller than that of the AL and QDG algorithms over the range

from 0.33 to 0.68. For the convenience of comparison, the results

in Figures 2 and 3 at sample size 500 are summarized in Table 1.

As confirmed by Figures 2 and 3, the SML algorithm offers

much better performance in terms of PD and FDR than the AL

and QDG algorithms. However, these results were obtained for

gene networks of small size. To test performance of the SML

algorithm for networks of relatively large size, an acyclic

network of 300 genes was simulated with an expected Ne~1
edge per node, and 10 replicates of the network were randomly

generated. PD and FDR of the SML and AL algorithms

obtained from these replicates are depicted in Figure 4. The PD

of SML exceeds 0:99 across all sample sizes from 100 to 1,000,

whereas that of the AL algorithm is about 0.04 for sample sizes

from 100 to 500, and gradually increases to 0.42 at the sample

size of 1,000. The FDR of SML stays below 10{4 for sample

sizes from 400 to 1,000, whereas the FDR of the AL algorithm is

on the order of 10{2 for the same sample size. When the sample

size is relatively small (in the range from 100 to 300), the FDR of

SML is higher than that of the AL algorithm, but it is still

relatively small (v0:2). Note that the AL algorithm essentially

does not work for sample sizes Nƒ500, since its power is too

small. All simulation results show that the novel SML algorithm

significantly outperforms the AL and QDG algorithms in terms

of PD and FDR.

Figure 1. Block diagram of the sparsity-aware maximum likelihood (SML) algorithm. The first and third blocks perform cross-validation to
select optimal parameters r and l to be used in (3) and (4), respectively. The second block produces weights fwijg and error-variance estimate ŝs2

after solving (4). Finally, the fourth block takes data X and Y together with l, fwijg and ŝs2 and solves (3) to yield B̂B, which represents the SML
estimator for B in (1) revealing the genetic-interaction network. A more detailed description of the SML algorithm is given in Algorithm 1 in the
Methods section.
doi:10.1371/journal.pcbi.1003068.g001
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An extra set of simulations assessing the stability of SML is

described in the section of ‘‘Stability of model selection under

CV with different folds’’ in supporting text S1, and in Figures S1

and S2. As an alternative to CV, stability selection (STS) [44]

provides a means of selecting an appropriate sparsity level to

guarantee that the FDR is less than a theoretical upper bound.

The STS procedure was applied to the SML algorithm as

described in the supporting text S1, and was used with the

selection probability cutoff d~0:8 and an upper bound or target

FDR = 0.1 in simulations for the networks in Figures 2[(c) and

(d)] and 3 [(c) and (d)]. As shown in Figure S3, the FDR of the

STS is indeed much smaller than the target FDR and almost

uniform across different sample sizes, but the PD of the STS is

smaller than that of CV. In fact, the FDR of the STS is on the

same order as that of the CV except at the sample size of 100 for

the DAG. As seen from these simulation results, although the

STS guarantees a FDR upper bound, this upper bound is loose

for the simulation setups tested, which may sacrifice detection

power. Nevertheless, the STS procedure can select a set of stable

variables as described in [44] and verified by our simulations.

So far, all the simulated data were generated with noise variance

s2~0:01. Next, the performance of SML was analyzed for

simulated networks of 30 genes, when s2 was increased to 0.05

and Ne was changed from 3 to 1 or 5. Reducing Ne from 3 to 1

improved the performance of SML for most of the sample sizes, as

it is depicted in Figure 5, withstanding the increase in the noise

variance. Increasing Ne at constant s2, or increasing s2 at constant

Ne degraded the performance, most notably in the later case.

Comparing Figure 5 with Figures 2 and 3 [(c) and (d)]

demonstrates that in both cases the SML estimates still achieve

higher detection power and lower FDR than those estimates

obtained with the AL algorithm for Ne~3 and s2~0:01.

Inference of a network of immune-related human genes
Pickrell et al. [45] used RNA-Seq technology to sequence RNA

from 69 lymphoblastoid cell lines derived from unrelated Nigerian

individuals extensively genotyped by the International HapMap

Project [46]. For each gene, they evaluated possible associations

between its gene expression level calculated from RNA-Seq reads

Figure 2. Performance of SML, AL and QDG algorithms for directed acyclic networks of Ng~10 [(a) and (b)] or 30 [(c) and (d)] genes.
Expected number of nodes per node is Ne~3. PD and FDR were obtained from 100 replicates of the network with different sample sizes (N~100 to
1,000).
doi:10.1371/journal.pcbi.1003068.g002
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and all 3.8 million single nucleotide polymorphisms (SNPs) using

the genotypes from phases II and III of the HapMap Project. At

FDR = 0.1, they identified 929 genes or putative new exons that

have eQTLs within 200 kb of the gene or the exon. From these

929 genes, 39 genes that are related to immune functions were

selected manually by an expert as mentioned in the Acknowl-

edgements section; expression levels and the genotypes of the

eQTLs of these 39 genes in 69 individuals were used to infer the

underlying regulatory network.

Pickrell et al. normalized expression values using quantile

normalization before performing eQTL mapping. They also

provided a data set that contains the number of reads mapped to

each of 929 genes. This data set was obtained and the number of

reads for each of 39 genes was normalized with the length of the

gene to yield expression value. Such kind of values may better

reflect the real expression values than the values normalized with

quantile normalization, and thus they were used to infer the

network. To ensure the quality of the data, the SAS ROBUS-

TREG procedure was applied to 69 expression values of each of

39 genes to detect outliers. The default M estimation method of

the ROBUSTREG procedure was employed and the outliers were

detected at a significance level of 0.05. Several gene expression

values were identified as outliers since they are much larger than

the remaining values that were classified as non-outliers. The

outliers were replaced with the largest non-outlier. More

sophisticated means of revealing and imputing outliers are possible

using robust statistical schemes; see e.g., [47]. The genotypes of the

eQTLs of the 39 genes were downloaded from HapMap database

using the SNP IDs for the eQTL provided by Pickrell et al.. About

12% genotypes are missing. These missing genotypes were

imputed using the program IMPUTE2 [48]. The name and a

brief description of each gene were obtained from DAVID [49]

using the Ensembl gene IDs provided by Pickrell et al. Information

of these 39 genes including their Ensembl gene IDs and names, a

brief description of each gene, and HapMap SNP IDs of the

associated eQTLs can be found in Table S1 in the supporting

information.

The SML algorithm was run with the expression levels and

genotypes of eQTLs of these 39 genes. An edge from gene j to i

was detected if B̂Bij=0. To improve the reliability of the detected

Figure 3. Performance of SML, AL and QDG algorithms for directed cyclic networks of Ng~10 [(a) and (b)] or 30 [(c) and (d)] genes.
Expected number of nodes per node is Ne~3. PD and FDR were obtained from 100 replicates of the network with different sample sizes (N~100 to
1,000).
doi:10.1371/journal.pcbi.1003068.g003
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edges, the SML algorithm was run with stability selection at an

FDR ƒ0:1 using 100 random subsamples, yielding 13 directional

edges as shown in Figure 6. The frequency of each edge detected

in 100 runs is given in Table S2. It is interesting to see from

Figure 6 that only 9 genes are involved in the network, and the

remaining 30 genes are not connected with any other genes and

thus not shown in the figure. AL and QDG algorithms were also

run with stability selection at an FDR ƒ0:1 using 100 random

subsamples. The edges detected by AL and QDG algorithms and

their frequencies are included in Table 4. The AL algorithm

detected only one edge that was not detected by the SML

algorithm. The QDG yielded 3 edges, one of which was also

detected by the SML algorithm. The relatively small number of

edges detected by three algorithms was likely due to relatively low

signal-to-noise ratio (SNR) in this data set. The estimated noise

variance was ŝs2~13:03 and the estimated SNR was 10 log10

½(EYE2
F=(NNg){ŝs2)=ŝs2�~12:17 dB, which was much lower than

that (about 25.8 dB) in the case of s2~0:05 in Figure 5. However,

comparing the results of three algorithms shows that our SML

algorithm detected more edges than the other two algorithms at

the same FDR due to its higher detection power as confirmed also

by the simulations. When the FDR was increased to ƒ0:3, the

SML algorithm with stability selection yielded a network of 16

genes that have 42 edges as shown in Figure S4 in the supporting

information. Since only 39 genes were used to construct the

network, an edge between two genes may not necessarily imply a

direct regulatory effect, but may reflect the fact that two genes are

either directly linked or very close to each other in the real network

that consists of all genes. Particularly, if two genes are co-regulated

by another gene which is not included in the 39 genes, these two

genes may have a unidirectional or bidirectional edge.

Most edges in Figure 6 are between major histocompatibility

complex (MHC) genes (HLA-A, HLA-DPA1, HLA-DQA2, HLA-

DQB1, HLA-DRB4 and HLA-DRB5), which is expected since

these genes may interact with each other and/or be co-regulated.

FCRLA is a member of Fc receptor-like family of genes. It is

expressed in B cells and interacts with IgG and IgM [50,51]. IGH,

encoding the heavy chain of immunoglobulin, characterizes the B-

cell origin of the samples. Hence, it is not surprising to see an edge

between FCRLA and IGH. Interleukin-4-induced gene 1 (IL4I1)

was first described in the mouse [52] and subsequently charac-

terized in human B cells [53]. Human IL4I1 is expressed by

antigen-presenting cells [54], which may allude to the edge

between HLA-A and IL4I1, but this may be speculative since

there is no edges between IL4I1 and MHC class II genes in the

network. The edges between IGH and HLA-A and between IGH

and HLA-DRB4 may reflect the coordinated effect of antibody

and MHC as a response to antigens. In fact, IGH is connected to

most of MCH genes in Figure S4, which may imply the wide

coordination between the two classes of molecules.

Discussion

Integrating genetic perturbations with gene expression data for

inference of gene networks not only improves inference accuracy,

but also enables learning of causal regulatory relations among

genes. Although much progress has been made recently on the

development of inference methods that integrate both types of

data, a truly efficient algorithm is missing. The SEM provides a

systematic framework to integrate both types of data, and offers

flexibility to model both directed cyclic as well as acyclic graphs.

However, there is no systematically designed inference method for

SEMs of relatively high dimension, which is particularly true for

gene networks typically including hundreds or thousands of genes.

Traditionally, inference for SEMs has relied on the ML or gener-

alized least-squares methods implemented with a numerical opti-

mization algorithm [55,56]; but recently, Bayesian alternatives [57]

have emerged too, based on Markov chain Monte Carlo simulations

[58,59]. These methods not only are computationally intensive, but

also may be inaccurate for sparse SEMs of relatively high dimension,

since they do not account for sparsity present in the model.

In the context of QTL mapping, Newton’s method is employed

in [27] to implement the ML method, while the genetic algorithm

[60,61] is used in [24,25] to maximize the likelihood function, and

in conjunction with a model selection method using a x2 test or

Occam’s window to search for the best network topology. These

methods are not scalable to SEMs of relatively high dimension.

The AL-based algorithm proposed in [26] is more efficient

because it automatically incorporates variable selection into the

inference process, and also takes into account the sparsity present

in gene networks. However, the AL-based scheme borrows the

adaptive Lasso [36] optimally designed for the linear regression

model instead of the SEM. In contrast, the SML algorithm

proposed in this paper directly maximizes the ‘1-regularized

likelihood function of the SEM, which fully exploits the

information present in the data and therefore improves inference

accuracy. Moreover, the novel block coordinate ascent method

combined with discarding rules can efficiently maximize the ‘1-

regularized likelihood function, rendering the SML algorithm

applicable to SEMs of high dimension. However, unlike the AL-

based algorithm, the SML algorithm maximizes a non-convex

objective function as given in (3). Although the ‘‘Recovery’’

Theorem in [26] guarantees the identifiability of the network, the

algorithm can converge to a local maximum that may not

necessarily be coincident with the global maximum corresponding

to the optimal network. A common technique for alleviating this

problem is to use multiple random initial values. We tested

multiple initial values in our simulations and observed that the

algorithm converged to the same solution. In Algorithm 2, we used

the pathwise coordinate optimization strategy as used in [62],

where the solution of (3) obtained with li was used as the initial

point for the run with liz1vli. The pertinence of this strategy is

corroborated by simulated numerical tests, showing significant

performance gains of the SML algorithm in terms of detection

power and FDR when compared to the AL-based algorithm.

Comparisons in the Simulation Studies section, as summarized

in Figures 2–5, demonstrated that the SML algorithm markedly

outperforms two state-of-the-art algorithms: the AL [26] and

QDG [21] algorithms. For three directed acyclic networks with

number of genes Ng~10,30 and 300, respectively, the PD of the

SML algorithm exceeds 0.9 for all sample sizes from 100 to 1,000,

and is greater than 0.99 for most sample sizes. This is much

Table 1. Performance of SML, AL and QDG algorithms.

Network Ng
PD FDR

SML AL QDG SML AL QDG

DAG 10 0.9887 0.6564 0.3014 0.0007 0.2586 0.2991

30 0.9891 0.3544 0.3232 0.0010 0.4548 0.3403

DCG 10 0.8872 0.5330 0.2677 0.0067 0.3268 0.3783

30 0.8931 0.2941 0.2254 0.0020 0.6086 0.5047

Expected number of nodes per node is Ne~3. PD and FDR were obtained from
100 replicates of the network with a sample size of N~500.
doi:10.1371/journal.pcbi.1003068.t001
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greater than the PD of the AL and QDG algorithm that ranges

from 0.004 to 0.67. In fact, The QDG algorithm was too time-

consuming to obtain results for Ng~300. The FDR of SML is on

the order of 10{3 for most sample sizes, which is much smaller

than those of the AL and QDG algorithms, that are between 0.25

and 0.6 for Ng~10 and 30. The FDR of the AL algorithm for

Ng~300 is between 0.02 and 0.1. The only case where the FDR

of SML exceeds that of the AL algorithm is when Ng~300, and

the sample size Nv400. However, the AL algorithm essentially

does not work in this case, since its PD is about 0.04. In the case of

directed cyclic networks, all algorithms offer slightly degraded

performance when compared to that of directed acyclic networks.

However, the SML algorithm still considerably outperforms the

AL and QDG algorithms.

Using a limited amount of available data [45], 39 genes related to

the immune system and having one eQTL per gene were selected to

infer a possible network among these genes. At an FDR ƒ10% for the

detected edges, a network of 9 out of 39 genes containing 13 edges were

obtained. An edge between two genes in the inferred network may be

an indication of the direct regulator effect, or indirect interaction or co-

regulation mediated by some other genes that are not among the 39

genes. The majority of the edges were reasonably expected from the

experimental results in the literature, while the remaining edges may

represent new interactions to be elucidated.

Structural equation modeling has a long history of about a

century, with well-documented contributions to various fields

including biology, psychology, econometrics and other social

sciences [55,56,63,64]. The model considered in this paper

belongs to a class of SEMs with observed variables [55]. The

SML algorithm is the first one that is systematically developed for

inferring sparse SEMs with observed variables. It is expected to

accelerate the application of high-dimensional SEMs not only in

biology, but also in other fields.

Methods

Ridge regression
Closed-form solution. Problem (4) can be solved row by row

independently in closed form. Let bT
i , ~bbT

i , fT
i , ~ffT

i and (yT
i denote the

ith row of B, ~BB, F, ~FF, and ~YY, respectively. Then, problem (4) is

equivalent to the following problem

(~bbi,~ff i)~arg min
bi ,fi

1

2
E (yT

i {bT
i

~YY{fT
i

~XXE2
2zrEbiE2

2

subject to bi(i)~0, fi(k)~0,Vk s:t:(i,k)[Sq

ð5Þ

where bi(j) stands for the jth element of bi and fi(k) denotes the kth

element of f i.

The constraints in (5) can be imposed directly by discarding

elements of bi and f i known to be zero. To this end, define an

(Ng{1)|1 vector

(bi : ~½bi(1), . . . ,bi(i{1),bi(iz1) . . . ,bi(Ng)�T and a vector (f i

collecting the entries of f i whose indexes are not in

Sq(i) : ~fk[N : (i,k)[Sqg. Let �bbi and �ffi denote the solution for

(bi and (f i , respectively. Similarly, let (Yi be a sub-matrix of ~YY

formed by removing the ith row of ~YY, and (Xi
collecting those rows

of ~XX whose indexes are not in Sq(i). Under these definitions, (5) is

equivalent to

(�bbi,�ffi)~arg min
(bi , (f i

1

2
E (yi

{ (YT
i
(bi { (XT

i
(f i

E2
2zrE (bi E

2
2: ð6Þ

Minimizing for (f i
first, one arrives at

(f i
~ (Xi

(XT
i

� �{1
(Xi

(yi { (Yi
(bi

� �
: ð7Þ

Substituting (7) into (6) after defining

Figure 4. Performance of the SML and AL algorithms for directed acyclic networks of Ng~300 genes [(a) power of detection, and (b)
false discover rate]. Expected number of nodes per node is Ne~1. PD and FDR were obtained from 10 replicates of the network with different
sample sizes (N~100 to 1,000).
doi:10.1371/journal.pcbi.1003068.g004
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Pi : ~I{ (XT
i

(Xi
(XT

i

� �{1
(Xi

, yields

�bbi~arg min
(bi

1

2
EPi (yi

{Pi (YT
i
(bi

E2
2zrE (bi

E2
2,

which is a standard ridge regression problem with solution given by

�bbi~ (Yi
Pi (YT

i
zrI

� �{1
(YT

i
Pi (yi : ð8Þ

Finally, substituting (8) into (7) yields

�ffi~ (Xi
(XT

i

� �{1
(Xi

I{ (Yi
(Yi

Pi (YT
i

zrI
� �{1

(YT
i

Pi

� �
(yi : ð9Þ

Vectors ~bbi and ~ffi are obtained by inserting zeros into �bbi and �ffi

at appropriate positions specified by the constraints in (5).

Collecting ~bbi and ~ffi, i~1, . . . ,Ng, yields the solution of (4),

namely ~BB and ~FF.

Parameter r is required to solve (4). A K-fold CV scheme is

adopted for this purpose with typical choices of K~5 or 10, as

suggested in [65]. A detailed description of the CV procedure [65]

is given in supporting text S1.

‘1-regularized ML method
Coordinate-ascent algorithm. Solving (3) is performed by a

cyclic block-coordinate ascent iteration. Consider a specific cycle where

estimates of B and F obtained in the previous cycle are denoted by B̂B

and F̂F, respectively. The first step of the cycle entails maximizing the

objective function in (3) w.r.t. F with B fixed to B̂B, which yields a new

estimate of F denoted as F̂Fnew. This step coincides with the

minimization of the objective function in (4) w.r.t. F, which admits a

closed-form solution per row given by (7). In each of the next

Ng(Ng{1) steps of the cycle, the objective function in (3) is maximized

w.r.t. a single entry of B, namely Bij , i=j, with the remaining entries of

Figure 5. Performance of the SML algorithms for DAGs [(a) and (b)] or DCGs [(c) and (d)] of Ng~30 genes with an expected number
of nodes per node Ne[f1,3,5g and error variance s2[f0:01,0:05g. PD and FDR were obtained from 100 replicates of the network with different
sample sizes (N~100 to 1,000).
doi:10.1371/journal.pcbi.1003068.g005

Sparse Structural Equation Model for Gene Networks

PLOS Computational Biology | www.ploscompbiol.org 9 May 2013 | Volume 9 | Issue 5 | e1003068



B equal to the corresponding entries of B̂B and F~F̂Fnew. An expression

for the new estimate of Bij , B̂Bnew
ij is derived next.

Define matrix B̂B(Bij) : ~B̂Bzeie
T
j (Bij{B̂Bij) having all entries

equal to those of B̂B except for its (i,j)th entry, which is replaced by

the variable Bij , where ei and ej denote the ith and jth canonical

vectors in RNg, respectively. Then, the objective in (3) can be

written as

fij(Bij)~Nŝs2 logjdet(I{B̂(Bij))

j{ 1

2
E~
Y{B̂(Bij)

~
Y{F̂

new ~
XE2

F {lwij jBij j:
ð10Þ

Upon re-arranging and discarding constant terms, (10) simplifies

to

gij(Bij) : ~Nŝs2 log a0{cijBij

�� ��za1Bij{
1

2
a2B2

ij{lwij DBij D ð11Þ

where cij denotes the (i,j)th co-factor of matrix I{B̂B, and falg2
l~0

are defined as

a0 : ~det(I{B̂B)zcijB̂Bij ,

a1 : ~ I{B̂Bzeie
T
j B̂Bij

� �
~YY~YYT{F̂Fnew ~XX~YYT

h i
ij

a2 : ~E~YYT ejE2
2

with ½:�ij representing the (i,j)th entry of the matrix between

brackets. For numerical stability and computational savings, all co-

factors cij , j~1, . . . Ng, per row can be computed simultaneously

by solving (I{B̂B)ci~ei, with ci : ~½ci1, . . . ,ciNg �
T

. After an

iteration step is completed and B̂Bnew
ij is computed, ci can be

updated using the matrix inversion lemma as

ci~ci=(1zB̂Bnew
ij {B̂Bij) before updating B̂Bij~B̂Bnew

ij .

A new estimate of Bij is formed by maximizing gij(Bij) in (11).

To this end, consider two cases with cij~0 and cij=0. If cij~0,

the logarithmic term can be dropped from (11) yielding a standard

Lasso problem with solution

B̂Bnew
ij ~

sign(a1)

a2
maxfDa1D{lwij ,0g: ð12Þ

When cij=0, three hypotheses are tested, namely: i) Bijw0; ii)

Bij~0; and, iii) Bijv0. For hypotheses i) and iii), the solution can

Figure 6. The network of 39 human genes inferred from gene expression and eQTL data with the SML algorithm. The 39 genes related
to the immune function were chosen from [45] to have a reliable eQTL per gene. The SML algorithm was run with stability selection and edges were
detected at an FDRv0:1. See Table 3 for the IDs and description of 39 genes. IGH in this figure corresponds to gene ID ENSG00000211897. A a edge
stands for inhibitory effect and a ? edge stands for activating effect.
doi:10.1371/journal.pcbi.1003068.g006
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be found in closed form after equating to zero the derivative of (11)

w.r.t. Bij . The roots found in both cases have to be tested against

the corresponding hypothesis. Then, the surviving roots are

grouped with Bij~0 as candidate solutions, and the candidate

yielding the maximum gij(Bij) is the new estimate B̂Bij .

Specifically, under hypothesis i) where Bijw0, the derivative of

gij(Bij) in (11) takes the form {Ns2cij=(a0{cijBij)z a1{lwij

� �
{a2Bij , which upon multiplication with (a0{cijBij)=cij turns into

{Ns2za1
a0

cij

{lwij
a0

cij

{ a2
a0

cij

za1{lwij

� �
Bijza2B2

ij

~p0{lwij
a0

cij

{ p1{lwij

� �
Bijza2B2

ij

ð13Þ

under the definitions

p0 : ~{Ns2za1
a0

cij

p1 : ~a1za2
a0

cij

:

Consider the equation obtained by setting (13) equal to zero. If it has

root(s), then they are given by

rz
ij ~

1

2a2
p1{lwij+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1{lwij

� �2
{4a2 p0{lwij

a0

cij

� �s" #
: ð14Þ

Let Bz
ij stand for the set containing the positive root(s) in (14). If the

equation does not have a solution, Bz
ij equals the empty set.

Similarly for hypothesis iii) where Bijv0, setting the derivative

of (11) equal to zero, one obtains an equation. If this equation has

root(s), they are given by

r{
ij ~

1

2a2
p1zlwij+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1zlwij

� �2
{4a2 p0zlwij

a0

cij

� �s" #
: ð15Þ

Let B{
ij denote the set containing the negative root(s) in (15). If the

equation does not have a solution, B{
ij becomes the empty set.

Considering all three hypotheses, one arrives at

B̂Bnew
ij ~arg max

Bij[Bz
ij

|B{
ij

|f0g
gij(Bij): ð16Þ

After a cycle is completed, the algorithm is checked for

convergence by verifying whether the inequality

EB̂B{B̂BnewE2
F=EB̂BE2

F zEF̂F{F̂FnewE2
F=EF̂FE2

F vE is satisfied, where E
is a prespecified small constant. If yes, the algorithm is stopped and

B̂B~B̂Bnew and F̂F~F̂Fnew are output as the final estimates of B and F;

otherwise, B̂B~B̂Bnew and F̂F~F̂Fnew and one proceeds to execute the

next cycle.

In order to increase the speed of the SML algorithm, the

discarding rules proposed for sparse linear regression [66,67] were

adapted to the sparse SEM setup. Given l, the discarding rules

provide a means of computing a matrix Q(l), whose entries

determining entries of B that can be set to zero a priori without be

updated during the coordinate-ascent iterations. A detailed

description of the discarding rules, together with the CV

procedure to select the optimal l, and the expression for the

required lmax, that is, the minimum value of l for which the

solution to (3) is null, are provided in the supporting text S1.

SML algorithm
The overall SML approach described in the Methods section,

including the ridge regression weights, the discarding rules, and

the coordinate descent cycle is depicted step-by-step in Algorithm

1. The for-loop starting from line 8 and ending at the last line is

the ‘1-regularized ML method for computing B̂B and F̂F in (3),

which comprises the block coordinate ascent algorithm and

discarding rules. In our computer program, these lines were

written as a subroutine. Since the CV on line 7 needs to solve (3),

the subroutine is also called on line 3 with l varying from lmax to

lmin~10{4lmax. An additional subroutine implementing ridge

regression was written to solve (4), and subsequently called on lines

1 and 2.

Algorithm 1. SML

1: Select the optimal value of r in (4), ropt , via cross validation

2: Solve (4) with ropt for ~FF and ~BB

3: Estimate ŝs2 as the sample variance of E = ~YY{B~YY{F~XX

4: Compute weights wij~1=½~BB�ij ,i,j~1, . . . ,Ng

5: Compute Q(lmax) via (S2) Vi,j~1, . . . ,Ng

6: Compute lmax via (S9)

7: Select the optimal value of l, lopt , via cross validation

8: for ll~lmax, . . . ,lopt do

9: Compute SB(ll ) via (S4)

10: Initialize B̂B~~BB, F̂F~~FF, E~10{4 and err~10

11: while errwE do

12: for i~1,. . . ,Ng do

13: Obtain F̂Fnew by computing its row via (7) with bi~b̂bi

14: end for

15: for i~1,. . . ,Ng do

16: for j~1,. . . ,Ng do

17: if B̂Bij=[SB(ll ) then

18: Compute cofactor of I{B̂B, cij

19: if cij~0 then

20: Compute B̂Bnew
ij via (12)

21: else

22: Compute B̂Bnew
ij via (16)

23: end if

24: end if

25: end for

26: end for

27: Compute err~EB̂B{B̂BnewE2
F=EB̂BE2

F zEF̂F{F̂FnewE2
F=EF̂FE2

F

28: Set B̂B~B̂Bnew and F̂F~F̂Fnew

29: end while

30: Compute Qij (ll ) via (S1) Vi,j~1, . . . ,Ng

31: end for

32: Output B̂B and F̂F.
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In the supporting text S1, three relevant extensions to the SML

algorithm are described. First, stability selection [44] is applied to

the SML, as an alternative to CV, to select the sparsity level so that

the FDR is controlled. Second, the SML is extended to handle

heteroscedasticity in the SEM error. Third, the SML is modified

to enable inference of unknown eQTLs. In addition, supporting

text S1 gives a description of the state-of-the-art AL-based and

QDG algorithms that were considered for comparison with SML.

Supporting Information

Text S1 Supporting text.

(PDF)

Figure S1 Performance of the SML algorithm for DAGs
[(a) and (b)] or DCGs [(c) and (d)] of Ng = 30 genes

obtained with 5 (solid line) or 10 (dashed line) fold cross
validation. Expected number of nodes per node is Ne~3. PD

and FDR were obtained from 100 replicates of the network with

different sample sizes from 100 to 1,000.

(TIF)

Figure S2 Performance of the SML algorithm for DAGs
[ (a) and (b)] or DCGs [(c) and (d)] of Ng = 30 genes

obtained with the optimal l (solid line) or an l 10% less
than the optimal l (dashed line). Expected number of nodes

per node is Ne~3. PD and FDR were obtained from 100

replicates of the network with different sample sizes from 100 to

1,000.

(TIF)

Figure S3 Performance of the SML algorithm with
stability selection (STS) or cross validation for DAGs [
(a) and (b)] or DCGs [(c) and (d)] of Ng~30 genes.

Expected number of nodes per node is Ne~3. PD and FDR were

obtained from 100 replicates of the network with different sample

sizes from 100 to 1,000.

(TIF)

Figure S4 The network of 39 human genes inferred
from gene expression and eQTL data with the SML
algorithm. The 39 genes related to the immune system were

chosen from [45] to have a reliable eQTL per gene. The SML

algorithm was run with stability selection and edges were detected

at an FDRv0:3. See Table S1 for the IDs and description of 39

genes. IGH in this figure corresponds to gene ID

ENSG00000211897. A a edge stands for inhibitory effect and a

? edge stands for activating effect.

(TIF)

Table S1 Thirty nine immune-related human genes
used to infer a network.
(XLSX)

Table S2 Edges of the gene network in Figure 6 inferred
with the SML algorithm and edges detected with AL and
QDG algorithms.
(XLSX)

Software S1 Software package implementing the SML
algorithm.
(ZIP)

Acknowledgments

A preliminary version of the SML algorithm fully developed in this paper

was presented at 2011 IEEE International Workshop on Genomic Signal

Processing and Statistics, December 4–6, 2011, San Antonio, Texas, USA.

We would like to thank Dr. Zhibin Chen in the Department of

Microbiology and Immunology at the University of Miami for selecting

genes used in the inference of the human gene network and for his help

with interpreting the inferred network. We would also thank Anhui Huang

at the University of Miami for his help with imputing the missing genotypes

for the data used in the inference of the human gene network.

Author Contributions

Conceived and designed the experiments: XC JAB GBG. Performed the

experiments: XC JAB. Analyzed the data: XC JAB. Wrote the paper: XC

JAB GBG.

References

1. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z (2002) Transcriptional

regulatory networks in Saccharomyces cerevisiae. Science 298: 799–804.

2. Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS (2000) Discovering
functional relationships between RNA expression and chemotherapeutic

susceptibility using relevance networks. Proc Natl Acad Sci USA 97: 12182–6.

3. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, et al. (2005)

Reverse engineering of regulatory networks in human B cells. Nat Genet 37: 382–90.

4. Dobra A, Hans C, Jones B, Nevins JR, Yao G, et al. (2004) Sparse graphical
models for exploring gene expression data. J Multivar Anal 90: 196–212.
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