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Abstract

We present a novel method for automatic vanishing point
detection based on primal and dual point alignment detec-
tion. The very same point alignment detection algorithm is
used twice: First in the image domain to group line segment
endpoints into more precise lines. Second, it is used in the
dual domain where converging lines become aligned points.
The use of the recently introduced PClines dual spaces and
a robust point alignment detector leads to a very accu-
rate algorithm. Experimental results on two public stan-
dard datasets show that our method significantly advances
the state-of-the-art in the Manhattan world scenario, while
producing state-of-the-art performances in non-Manhattan
scenes.

1. Introduction

Under the pinhole camera model, 3D lines are trans-
formed into 2D lines. Moreover, parallel lines in 3D are
projected into lines that converge on a point (perhaps at in-
finity) known as a vanishing point (VP). In the presence
of parallel lines, as is common in human-made environ-
ments, VPs provide crucial information about the 3D struc-
ture of the scene and have applications in camera calibra-
tion, single-view 3D scene reconstruction, autonomous nav-
igation, and semantic scene parsing, to mention a few.

There is a vast literature on the problem of VP detection,
starting with the seminal work by Barnard [5] and lead-
ing to high-precision algorithms in recent works [20, 21].
Typically, a method starts by the identification of oriented
elements, which are then clustered into groups of concur-
rent directions, and finally refined to get the corresponding
VP. Most proposed methods use image line segments as ori-
ented elements [5, 7, 1, 21], but oriented edge points are also
used [8, 9, 4], or even the alignment of similar structures
[19]. The clustering is often performed in the image plane,
by identifying points or zones of concurrence of the ele-
ments [16, 1]; other methods, however, rely on the Gaussian
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Figure 1. Main steps of our method. Top-Left: Input image. Top-
Right: Line segments (black) and alignments of line segments
endpoints (blue). 2nd Row: Lines as points in straight (left) and
twisted (right) PClines spaces. 3rd Row: Aligned points detections
(parallel black lines) and the ground truth (dashed lines). Some
alignments are more visible in one of the spaces than in the other.
Bottom-Left: Final VP associations by enforcing orthogonality.
Bottom-Right: Horizon line estimation (yellow-orange: ground
truth, cyan-magenta: ours).
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sphere of world directions [5, 7], which requires camera
calibration information. Less common is the use of a dual
space in which points become lines and converging lines
become aligned points [3, 22]. Various validation methods
are used, from simple thresholds to statistical methods [7, 1]
or Bayesian inference [8, 9]. Early methods used the Hough
transform in the Gaussian sphere [5, 15]. More recent meth-
ods rely on variations of RANSAC [14, 20] or EM [9],
which was successfully used to solve the uncalibrated case
in [12]. Some algorithms start with a clustering step that is
obtained non-iteratively, and perform iterations to improve
the result [18, 21]. To simplify the often ill-posed problem,
some methods make assumptions about the scene contents.
The most common one is the so-called “Manhattan world”,
implying the existence of only three orthogonal VPs [8],
which is sometimes inherently enforced during clustering
[14, 6, 20]. When valid, this assumption helps improving
the results. Barinova et al. [4], however, claim that a bet-
ter balance between generality and robustness is provided
by a relaxed assumption where one vertical VP and mul-
tiple horizontal ones (not necessarily orthogonal) are con-
sidered [17, 4]. Some methods make no assumption at all
[1]. Recent works made progress by defining various con-
sistency measures between vanishing points and line seg-
ments [20, 2, 21], while [4] performs a joint optimization of
line, VP and camera parameters.

In this paper we build on the advances of various pre-
vious works to obtain a novel and more accurate VP de-
tection algorithm. The oriented elements are the line seg-
ments detected with the LSD algorithm [11]. The cluster-
ing step is done in the dual space [22], but takes advantage
of the PClines point-to-line mappings described recently by
Dubská et al. [10]. An unsupervised point alignment detec-
tor [13] is used to compute sets of collinear points, which
correspond to converging lines and thus to VPs. The very
same point alignment detector is used to group aligned line
segments into longer and more precise ones. After the clus-
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Figure 2. Representation of the candidate rectangle from [13]. In
this case, the candidate rectangle r is divided into c = 6 boxes, 5
of which are occupied. The local density estimation window is R.

tering is done and the candidate vanishing points are ob-
tained, the measure of statistical significance [13] of the
alignments is used to find the final triplet of VPs, when
the Manhattan world assumption is applicable, or the hori-
zon line when it is not. The method is deterministic and
non-iterative and has an accuracy comparable or better than
state-of-the-art algorithms.

2. Algorithm
Our algorithm works in six steps:

1. Detect line segments in the image.

2. Find and join aligned line segments.

3. Compute the correspondence of line segments in the
PClines straight and twisted dual spaces.

4. Detect point alignments in both dual spaces.

5. Refine the obtained VPs.

6. Estimate horizon line based on one of two hypothesis:
Manhattan or non-Manhattan world.

These steps are detailed in the rest of this section. Sect. 3
analyses the experimental results.

2.1. Point alignment detector

The proposed method uses the point alignment detector
introduced in [13]. Given a set of 2D points, this detector
defines point alignments as rectangular clusters. Candidate
rectangles are obtained by considering each possible pair of
points and a set of possible widths. Then, each candidate
rectangle is divided into boxes and the boxes occupied by
at least one point are counted. Based on the a contrario
methodology, the idea behind the algorithm is to measure
the expected number of occurrences of such an event un-
der a null hypothesis H0 of independent and uniformly dis-
tributed random points. When this expectation is small, the
event is termed non accidental and detected.

Let x be a set of N points. Let r be a candidate rectan-
gle divided into c equal boxes, and R a rectangle surround-
ing r, used for local point density estimation, see Fig. 2.
If b(r, c,x) is the observed number of occupied boxes, the
expectation of occurrences of such an event under H0 is
approximated by the associated Number of False Alarms
(NFA) value [13],

NFA(r,R, c,x) =

=
N(N − 1)

2
WLC · B

(
c, b(r, c,x), p(R, c)

)
, (1)

where W , L and C are the number of different rectangle
widths, local windows widths and number of boxes tested



for each rectangle r, B is the tail of the binomial distribu-
tion, and p(R, c) is the probability for a box of being oc-
cupied taking into account the point density in the local
window R. When the NFA of an observed configuration
is large, this means that such an event was to be expected
under the a contrario model and therefore it is irrelevant.
On the other hand, when the NFA is small, the event is rare
and probably meaningful. A threshold ε is fixed for the
NFA. Rectangles with NFA(r,R, c,x) ≤ ε are considered
ε-meaningful and constitute the detection result of the algo-
rithm (previous to a redundancy reduction step). In [13] it
is proved that this threshold effectively bounds the expected
number of times that such an event would occur under the a
contrario hypothesis H0.

Once all the ε-meaningful alignments are obtained, the
algorithm applies a masking principle to resolve the redun-
dancy of detections. One detectionB is said to be “masked”
by another detection A if, when the elements (points) of A
are taken out from B, B is no longer ε-meaningful. In this
step, the method keeps the most meaningful detections in
terms of the NFA, and discards those that are “masked” by
them. Fig. 1(e) & (f), 3 (center) and 5 (4th row) show align-
ments detected by this algorithm (parallel black lines).

2.2. Segment endpoint alignments

Similarly to [19], our method exploits the alignment of
features that a line segment detector alone does not capture.
To achieve this, the point alignment detector of Sect. 2.1
is used to find alignments among the endpoints of the seg-
ments detected by LSD [11]. This step increases the ac-
curacy of short segments by grouping them and brings an
improvement to the algorithm performance1.

First, line segments are grouped by length and orienta-
tion. A single threshold τ is used on the length, and angular
steps of 30 degrees are used to group by orientation. The
objective is to connect segments that share the same ori-
entation – e.g. the borders of the windows of a building –
or endpoints of parallel segments – e.g. an array of vertical
structures. In each subset, the point alignment detector is
run over the segment endpoints. This produces a new set
of line segments. At the end of this stage, short (and there-
fore inaccurate) line segments are discarded. The final list
of segments is composed of the long segments and the seg-
ments from the alignment of endpoints found among both
the short and long ones. Fig. 3 shows some example detec-
tions.

2.3. PClines parameterization

The problem of finding converging lines can be cast in
a point alignment detection problem by parameterizing the
lines as points in a suitable dual space. Our method uses
the PClines parameterization [10], see Fig. 4. The straight

1On average 2% with the metric used in Sect. 3
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Figure 3. Examples of detected alignments of line segment end-
points. Left: original line segments, highlighting in blue one
group of length and orientation. Center: line segment endpoints
and the detected alignments for that group (parallel black lines).
Right: additional oriented features (blue lines). In the top two
rows, parallel line segment endpoints are connected to recover
structural directions that were not captured by the line segment
detector alone. In the bottom rows, short, inaccurate segments are
joined into larger, more accurate ones.

version uses a parallel coordinate system, where the hori-
zontal x axis in the image is represented as the vertical v
axis in the dual space, and the vertical y axis in the image
is represented as a vertical line passing through u = d in
the dual space. Thus, a point A = (Ax, Ay) in the image
is represented in the dual space by a line passing by (0, Ax)
and (d,Ay). A line joining multiple points in the image is
represented in the dual space as a point that lies at the in-
tersection of the lines representing those points. Note that
points in dual space can be arbitrarily far away from the
origin [10]. To overcome this unboundedness problem, the
twisted version of the PClines transform is also used, where
the x axis stays in the ordinates axis but the−y axis is trans-
formed into a vertical line at u = −d. Fig. 1 (c) & (d) show
example results of the transformation for real data.

By using the straight and twisted transforms, it is guar-
anteed that all directions in the image are represented as



Figure 4. Schematic of the straight PClines transform. Left: three
points and a line in the image (x, y) space. Right: their represen-
tation in the PClines (u, v) straight dual space. This figure was
taken from [10].

a bounded set of points in at least one of the two spaces.
The value of d is set to 1 and the limits of the dual do-
mains where the point alignment detector will be executed
are set to [−1, 2] × [−1, 2] for the straight transform and
[−2, 1] × [−2, 1] for the twisted transform. Points that
fall outside each domain are discarded. Once the alignment
detector is run in each dual space, each alignment found de-
termines a candidate vanishing point vi in the image, with
an associated meaningfulness value NFAi (Sect. 2.1). VPs
that were detected in both spaces are identified with a sim-
ple distance threshold δ and only the one with the best NFA
value is kept.

2.4. Refinement

Each rectangle candidate of the point alignment detec-
tor (Sect. 2.1) is defined by a pair of points. Thus, the di-
rection it defines represents in the image the intersection of
two lines, which as a candidate VP, needs to be refined. This
is done by using a consistency measure existing in the lit-
erature [16, 9] – the more elegant version of [21] can also
be used. Given a line segment l and a VP candidate vi,
the consistency measure is the angle between the direction
of l and the ideal line passing through vi and the centroid
of l. The line segments consistent with vi are obtained by
setting a threshold θ on this angle. Finally, we use the func-
tion for updating the VP estimate of [2], which minimizes
the weighted sum of the square of perpendicular distances
from the VPs to the lines defined by the line segments. The
weights are given by the segments lengths. For clusters of
parallel line segments, this problem is undetermined, and
the refinement is not performed. Due to the quality of the
obtained clusters, a single refinement iteration is enough.

2.5. Solving redundancy

Once the refined candidate VPs are obtained, relevant
detections must be discriminated from spurious ones. Two

possible hypothesis can be introduced: a) Manhattan world
images with a calibrated camera. b) Non-Manhattan world
images (multiple horizontal VPs) without a calibrated cam-
era. We shall treat each scenario differently. Note however
that the previous stages of the algorithm are the same in
both cases, and there is no need for parameter tuning in the
alignment detection stage.

2.5.1 Manhattan world, calibrated camera

When the camera parameters are known, the candidate VPs
can be represented in the Gaussian sphere. The statistical
meaningfulness given by the NFA is exploited by selecting
the orthogonal triplet (up to a tolerance γ) with the lowest
combined NFA value as the final VP triplet. If no orthog-
onal triplet is found, the best orthogonal pair is selected –
again, in terms of its combined NFA – and the third VP is
estimated by the cross product.

2.5.2 Non-Manhattan world, uncalibrated camera

In this case, similarly to [21], the algorithm starts by identi-
fying the vertical VP: The vertical distance from a VP to the
center of the image is used to form a subset of possible ver-
tical VPs, and the most meaningful one (with lowest NFA)
is kept as the zenith2 z. Here it is assumed that the princi-
pal point lies at the center of the image, and by enforcing
orthogonality, the direction of the horizon line is obtained,
which is perpendicular to the line connecting the principal
point and z. Therefore, the problem of estimating the hori-
zon line is one-dimensional. The candidate VPs are filtered
out based on two criteria: First, and similar to [21], the fo-
cal length f is estimated, f ∈ [0.28W, 3.8W ] and the VPs
that are far from being orthogonal to z are discarded based
on the orthogonality threshold γ of Sect. 2.5.1 and a dis-
tance threshold η. Note that the focal length f is used only
to discard non-horizontal VPs, so an approximate value is
generally enough. The results suggest that an appropriate
estimation is obtained. Second, the horizontal VPs that are
obtained from clusters of parallel lines – for which the prob-
lem of setting the horizon line height is undetermined – are
also discarded, based on a threshold λ. Finally, the horizon
line is obtained by a voting scheme [21, 4, 19]. Whilst [21]
considers the inverse of the trace of each VP’s covariance
matrix, and [4, 19] consider the number of lines correspond-
ing to each VP, we use weights based on the NFA (Sect. 2.1)
of each VP detection. The weight wi for the VP vi is:

wi =

(
(− log10 NFAi)∑
j(− log10 NFAj)

)2

. (2)

2Technically it should be referred to as nadir when it is below the hori-
zon line, but we shall call it zenith without loss of generality.



Once we obtain a first candidate for the horizon line, we fil-
ter out VP candidates that are far away from it with a thresh-
old κ and re-estimate. The reason for this re-estimation is
that good candidates should be close to the real horizon line.

2.6. Parameters

The alignment detector is always used as described in
[13], without modification or adjustment. There are eight
parameters in the VP detection method that are estimated
in the training sets of the evaluation databases using grid
search. Table 1 provides the values. The only sensitive pa-
rameter is the focal length f . The other parameters can be
fixed for both datasets (under the non-Manhattan assump-
tion), still producing state-of-the-art results (see Sect. 3.1).

Name Sect. Value
τ 2.2 25 pixels
δ 2.3 ‖v1−v2‖

max(‖v1‖,‖v2‖) < 0.02

θ 2.4 2 degrees
γ 2.5.1 & 2.5.2 ‖v1u · v2u‖ > 0.6
f 2.5.2 3W
η 2.5.2 vy > 2.5H
λ 2.5.2 vx > 4W
κ 2.5.2 dist > 0.2H

Table 1. Parameters of the proposed method. W and H are the
image width and height. The subscripts x and y indicate the hor-
izontal and vertical coordinates in the image and the subscript u
indicates a vector in the Gaussian sphere (unit norm).

3. Experiments
We used the C code of [13] for alignment detection and

the C code of [11] for line segment detection. The rest of
the algorithm was implemented in MATLAB. Processing a
640x480 image takes an average of 30 seconds in a 2 Ghz
Intel Core i7 laptop with 4 GB of RAM. The bottleneck
of the method is the computation of point alignments in
straight and twisted dual domains, which accounts for more
than 90% of the processing time. The current alignment
detector performs an expensive exhaustive search, which
could be improved using heuristics (e.g. RANSAC). Fur-
thermore, the code is near-linear parallel and can be sped-up
by running on a multiprocessor platform.

As in previous works [4, 19, 20, 21], the horizon detec-
tion error metric is used to evaluate the performance of our
algorithm. This measure is defined as the maximum dis-
tance in the image domain between the estimated horizon
line and the ground truth, divided by the image height.

3.1. York Urban Dataset

The York Urban Dataset (YUD) [9] is widely used for
VP detection quantitative evaluation. It includes 102 im-

ages of outdoor and indoor scenes, the camera parameters,
and the ground truth VP triplets. Since all the images sat-
isfy the Manhattan world assumption, we are in the case
described in Sect. 2.5.1. Following the protocol of [4], the
first 25 images were used to adjust our method’s parameters
(except for the alignment detector, always used as described
in [13]) and the evaluation was performed on the remaining
77. The first three columns of Fig. 5 show qualitative results
for images from YUD.

Fig. 6(a) shows a quantitative comparison of our results
to those of [12], [18], [4], [19], [20] and [21]. The over-
all score is measured as the area under the curve (AUC) of
the cumulative histogram of the horizon line detection error.
We used the values published in [21]. In terms of the AUC
score, our algorithm achieves a performance improvement
of nearly 2%. It obtains a maximum horizon error of 0.052
against 0.078 in [21]. It should be noted that [21], [4] and
[19] do not impose the Manhattan world hypothesis, whilst
[18] and [20] do. For a fairer comparison, our method for
the non-Manhattan scenario, as described in Sect. 2.5.2, was
also evaluated on this dataset. The same parameters as for
the Eurasian Cities Dataset were used (see Sect. 3.2), except
for the provided focal length f . Our method still obtains a
1% AUC performance gain.

3.2. Eurasian Cities Dataset

The Eurasian Cities Dataset (ECD) [4] presents a much
more challenging dataset of 103 urban scenes that do not
satisfy the Manhattan world assumption in general. They
depict different architectural and urban styles and are taken
by different cameras. Under these conditions, the method
described in Sect. 2.5.2 is used. Again, the first 25 images
are used to train the parameters of the algorithm [4]. The
three rightmost columns of Fig. 5 show results for images
from ECD. Note that line segments that correspond to hori-
zontal, non-orthogonal VPs are correctly grouped.

Fig. 6(b) shows the cumulative histogram of horizon line
errors for various methods [12], [18], [4], [19], [20] and
[21]. These values are the same published in [21] and, as
before, represent the horizon line error metric. To the best
of our knowledge, the state-of-the-art performance on this
dataset is obtained by Xu et al. [21]. Our method performs
slightly better than theirs in terms of the AUC score, but has
a worse maximum horizon error of 0.117 against 0.081. It
should be noted here that there is always an intrinsic error
in this kind of ground truth. This error may be estimated
by observing that images 43 and 51 are the same, but their
ground truth horizons differ by 2 pixels. Assuming the same
error is present in the rest of the dataset, it accounts for 1 %
of the AUC score. With this consideration, one may say that
our performance and Xu et al.’s are at the same level.
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Figure 5. Some results of our method. The first three columns correspond to images from the York Urban Dataset, while the last three
columns are from the Eurasian Cities Dataset. Top Row: Original image. 2nd Row: Line segments (black) and alignments of line segments
endpoints (blue). 3rd Row: PClines straight and twisted dual spaces and point alignment detections (parallel black lines). The ground truth
is represented with colored dashed lines. Bottom Row: Line segments corresponding to each final VP detection and horizon line (yellow-
orange: ground truth, magenta-cyan: ours). In the last row, line segments from endpoint alignments have been removed for clarity. Note
that the refinement and redundancy steps are not represented in this figure.
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Figure 6. Cumulative histograms of the horizon detection error.
The horizontal axis represents the horizon line error [4]. The ver-
tical axis represents the ratio of images with horizon line error
lower than the corresponding abscissa.

4. Conclusion

We have introduced a method for vanishing point detec-
tion based on four key ideas: First, the use of a robust point
alignment detector, used in the image domain as well as
in dual space, without any modification or parameter tun-
ing. Second, finding alignments of line segment endpoints,
which enhances the accuracy of short line segments and
produces new oriented elements as extra cues to the vanish-

ing directions. Third, the use of the PClines parameteriza-
tion in its two variants, straight and twisted, to improve the
discriminability of vanishing points. Finally, exploiting the
measure of meaningfulness provided by the alignment de-
tector to estimate the horizon line. Our experimental results
show that our method performs, in general, as well as state-
of-the-art methods, and achieves significantly better accu-
racy when the Manhattan world assumption is applicable.
The main drawback of our method is a high computational
cost; future work will concentrate on improving speed.
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