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ABSTRACT

We will consider the problem of detecting configurations of
points regularly spaced and lying on a smooth curve. This
corresponds to the notion of good continuation introduced in
the Gestalt theory. We present a robust algorithm for cluster-
ing points along such curves, whilst at the same time discard-
ing noisy samples. Based on the a contrario methodology,
the detector builds upon a simple, symmetric primitive for a
triplet of points, and finds statistically meaningful chains of
such triplets. An efficient implementation is proposed using
the Floyd-Warshall algorithm. Experiments on synthetic and
real data show that the method is able to identify the percep-
tually relevant configuration of points in good continuation.

Index Terms— good continuation detection, points,
curves, Gestalt, a contrario

1. INTRODUCTION

The Gestalt school of psychology [1, 2, 3, 4] proposed in
the 1920s a theory of perception based on a list of geomet-
ric grouping laws that govern the process of visual percep-
tion. The theory implies that the sensory data is hierarchi-
cally grouped into a global interpretation of the scene. One
of these laws, the so-called good continuation principle, can
be stated as “All else being equal, elements that can be seen
as smooth continuations of each other tend to be grouped to-
gether” [5]. In the example in Fig. 1 this law would result in
a three part organization: a line, an arc of circle, and a zigzag,
all formed by dots. Unfortunately, these laws were enunci-
ated qualitatively; the theory gives no precise prediction of
how the perceptual organization would change if the dots of
the figure are gradually displaced.

D. Lowe was among the first to state the importance
of incorporating the Gestalt principles of colinearity, co-
curvilinearity and simplicity for perceptual grouping in the
computational domain [6]. Some formalizations of the good
continuation principle determine a “saliency map” of an im-
age of dot patterns or edge elements [7, 8]. [8] introduces the
tensor voting strategy, a successful approach that was contin-
ued in various work [9, 10]. A statistical analysis of curves
of points under random noise was carried out in [11, 12]. A
pyramidal model for good continuation was proposed in [13],

Fig. 1. Good Continuation law: human perception tends to
group elements on a smooth, continuous order. Image ex-
tracted from [2].

were a psychophysical study was conducted and the effect of
dot density, length, and curvatures was analyzed.

This work proposes an unsupervised method for detecting
groups of points in good continuation. The a contrario frame-
work [14] is used to provide automatic detection thresholds,
compatible with perception, and to handle noise points. The
main idea is the non-accidentalness principle, which states
that only configurations unlikely to appear just by chance
are relevant. A previous work [15] proposed an a contrario
method for the related but different problem of detecting good
continuations of image edges.

Given a set of points in a domain, we will consider each
possible chain of points as a candidate for good continuation.
We will call triplets the sets of three consecutive points in
the chain. In a perfect good continuation chain, each triplet
would have the third point as the symmetric of the first w.r.t.
the second. The precision of a triplet will be measured by the
distance from the observed third point, to its ideal position,
see Fig. 2 (left). The whole chain will be characterized by
the number of triplets and its worst precision. A chain is said
to be in good continuation when one would rarely observe
such precision if the points were randomly distributed (i.e.,
organized “just by chance”). Testing every possible chain of
points would result in a combinatorial explosion; instead, the
candidates are selected using a heuristic approximation.

This paper is organized as follows: Section 2 presents the
a contrario model of good continuation chains and Sect. 3
describes an efficient implementation. The algorithm is then



Fig. 2. Definition of the good continuation event. Left: we
shall say that a triplet of points ai−2, ai−1, ai is in good con-
tinuation when ai lies within the disc Dr(ai−1, ai−2), cen-
tered in the symmetric of ai−2 with respect to ai−1 and with
radius r. Right: we shall say that a chain of n points is in
good continuation if for each i ≥ 3, ai ∈ Dr(ai−1, ai−2).

evaluated in Sect. 4 on synthetic and real data. Finally, Sect. 5
concludes the paper.

2. MATHEMATICAL MODEL

Let us consider a configuration of three points ai−2, ai−1 and
ai, in the [0, 1] × [0, 1] square such as the one shown in the
left part of Fig. 2. Let us call Dr(ai−1, ai−2) the disc centered
in the symmetric point of ai−2 with respect to ai−1 and with
radius r. We shall call a triplet of points in good continuation
(up to a precision r), a triplet where the third point ai lies
in the disc Dr(ai−1, ai−2). We will consider a chain C of
n points a1, a2, . . . , an, to be in good continuation (up to a
precision r) if for each i ≥ 3, ai ∈ Dr(ai−1, ai−2) as shown
in the right part of Fig. 2.

We will now use the non-accidentalness principle as ex-
plained by D. Lowe: “we need to determine the probability
that each relation in the image could have arisen by accident,
P (a). Naturally, the smaller that this value is, the more likely
the relation is to have a causal interpretation” [6, p. 39]. Our
random or a contrario modelH0, used to evaluate accidental-
ness, is a set of N independent points, drawn from a uniform
distribution on the domain. Under this hypothesis, let us con-
sider the probability P(C) of having a chain C of n points in
the [0, 1]× [0, 1] square in a good continuation configuration.
We can write this probability as:

P(C) = P(a3 ∈ Dr(a2, a1), a4 ∈ Dr(a3, a2), (1)
. . . , an ∈ Dr(an−1, an−2)) = (2)

=
∫
a1

∫
a2
· · ·
∫
an

1a3∈Dr(a2,a1)1a4∈Dr(a3,a2) (3)
. . . 1an∈Dr(an−1,an−2)da1da2 . . . dan. (4)

By the definition of Dr, we know that, in each integration
step, ∫

ai

1ai∈Dr(ai−1,ai−2)dai ≤ πr
2, (5)

where the less or equal sign is to account for the fact that por-
tions of the circles could fall outside the [0, 1]× [0, 1] domain.

Finally,

P(C) ≤ (πr2)n−2. (6)

The fundamental quantity in the a contrario methodology
is the Number of False Alarms or NFA of an event, defined
as the number of tests, times the probability of the event. The
NFA for a chain of points in good continuation is computed
as:

NFA(C) = Ntests · P(C). (7)

The number of tests Ntests is the number of possible chains
of points in an image with N points. The number of possible
groups of n points among N , without repeating a point is

N !
(N−n)! . Also, if we consider every possible length n from 1

to N , the number of possible configurations is approximately
N × N !

(N−n)! . Finally, the NFA of the event “having n points
in good continuation configuration up to a precision given by
the radius r” is then:

NFA = N × N !

(N − n)!
· (πr2)n−2. (8)

Given an observed set of N points and a candidate chain of
n points, we will consider the latter event as a ε-meaningful
good continuation when the corresponding NFA value is
lower than ε. It can be shown [14] that the expected number
of events with NFA < ε is bounded by ε in the a contrario
model H0. This justifies the definition and name of the NFA,
as it controls the average number of accidental (thus false)
detections. Following [14], we will usually set ε = 1.

Note that there is a maximum radius r that can lead to
ε-meaningful detections; in the limit case, all the N points
participate in a chain with NFA = ε. In practice, this upper
bound on r will allow the algorithm to reduce its computa-
tions by discarding all triplets that would never be part of a
valid chain. Substituting n = N in eq. 8 we get

rmax(ε) =

√
1

π

(
ε

N ×N !

) 1
N−2

. (9)

3. ALGORITHM DESCRIPTION

This section describes an efficient implementation of the
method presented in the previous section. Algorithm 1
presents a heuristic based on the Floyd-Warshall algorithm
to compute ε-meaningful good continuation chains. Algo-
rithm 2 describes a redundancy reduction step.

For the sake of limiting the complexity, the algorithm will
consider only triplets formed by points and their K nearest
neighbors1, and whose precision is lower than the maximum
obtained with Equation (9). This is the softest bound for a
triplet, since for shorter chains, a higher precision is required.
Lines 1 to 11 of Algorithm 1 build the list T of triplets to

1The results shown in this article use K = 4.



Algorithm 1: Good Continuation detection
Input: A list of N planar points
Output: A list of good continuation chains GC

1 T ← [ ]
2 for point i = 1 to N do
3 for point j ∈ NearestNeighborK(i) do
4 Compute sij , the symmetric of i w.r.t. j
5 for point k ∈ NearestNeighborK(j) do
6 if dist(sij , k) < rmax then
7 T ←

(
i, j, k; dist(sij , k)

)
8 end
9 end

10 end
11 end
12 D ← a |T | × |T | matrix of∞
13 for triplet r ∈ T do
14 for triplet s ∈ T do
15 if r is adjacent to s then
16 Dr,s ← T dist

r + T dist
s

17 end
18 end
19 end
20 P ← Floyd-Warshall(D)
21 for path p ∈ P do
22 if NFA(p) ≤ ε then
23 GC ← p
24 end
25 end

be considered. Note that each triplet is stored with the radius
dist(sij , k) that measures its precision.

A pair of triplets will be called adjacent when they share
two points in such a way that they can form a chain of four
points. (Triplets that share two points but form a “Y” shape
are not adjacent.) We define a graph where triplets are the
vertices and adjacent triplets share an edge with value rs+rr.
Lines 12 to 19 compute the distance matrixD that defines this
graph.

Once the adjacencies are determined, our method uses the
Floyd-Warshall algorithm to compute the path with shortest
distances between every two vertices. This will provide the
best chain going from every pair of triplets, in the sense of the
smallest sum

∑
i ri along the path. This does not necessarily

correspond to the smallest NFA value; thus, it may not pro-
vide the best solution, but in general it would get a satisfac-
tory one. In this sense, this is a heuristic to obtain candidate
chains.

The Floyd-Warshall algorithm provides the whole solu-
tion in O(|V |3), where |V | is the number of vertices in the
graph, i.e., the number of triplets. The result is a non-linear
algorithm, but fast enough to be used in practice. Finally, all
the candidate chains provided by Floyd-Warshall will be eval-

uated for significance using eq. 8 and the ones with NFA ≤ ε
will be kept (lines 21 to 25).

Algorithm 2: Redundancy Reduction
Input: A list of Good Continuation chains GC
Output: A list of Non-Redundant Good Continuation

chains F
1 F ← [ ]
2 for chain c ∈ GC, from small to large NFA values do
3 for chain f ∈ F do
4 if c is masked by f then
5 c←Masked
6 end
7 end
8 if c is not Masked then
9 F ← c

10 end
11 end

Once all the good continuation events are found, one
might be interested in keeping only the maximal meaningful
events. Note that one good continuation event might mask
another smaller event contained in itself. We say that an event
Amasks an event B, if, when we take the elements of A from
B, B is no longer meaningful. Obtaining a list of only the
most meaningful events, which are not masked by any other
event, can be done by following the simple steps described in
Algorithm 2. First, the meaningful chains are ordered by their
significance value (lowest NFA first). A second list is created
which in the beginning contains only the most meaningful
chain. Then, the first list is traversed, checking each chain for
maskings with the chains in the second list. If the chain is not
masked, it is added to the second list.

4. EXPERIMENTS

This section illustrates the proposed algorithm on synthetic
and real sets of points. An online demonstration of the
method is available and readers are invited to draw or upload
a list of 2D points, as well as to visit the archive of previous
experiments.2

Figure 3 shows experimental results for the good contin-
uation detector algorithm on dot patterns drawn manually on
the online demo. In Fig. 4, we used example data from the
signature validation dataset presented in [16]. Each example
consists of a pattern of 2D points that follows the trace of a
signature, as it is captured by a drawing tablet. To make the
examples more challenging, we also added 100 random points
to the original data to create a second dataset.

The examples in the first four rows of Fig. 3 show the
ability of the algorithm to cope with background noise. In the

2http://dev.ipol.im/˜jlezama/ipol_demo/lgrm_
good_continuation_icip/ (User: demo Password: demo)



Fig. 3. Experimental results for the good continuation detec-
tor. The input examples have been drawn using the online tool
companion to this article. Left: original points. Right: most
meaningful chains after applying the masking principle.

last row, the algorithm continues the spiral into a path that is
not the most perceptually relevant.

The sets of points on Fig. 4 are somehow more challeng-
ing. In the first example, some gaps are not completed. This
can be explained by the fact that the triplet model is not scale
invariant, so more spaced points make triplets more costly.
Another source of error is that the paths retrieved by Floyd-
Warshall are suboptimal with respect to the NFA minimiza-
tion that is intended by the algorithm.

Fig. 4. Algorithm results on signature images from [16]. Left:
original points. Right: most meaningful chains after applying
the masking principle. In the two bottom rows, we added 100
dots of random noise to the original data. Our algorithm is
still able to detect the meaningful configurations of points in
good continuation.

5. CONCLUSION

We presented an unsupervised algorithm to detect good con-
tinuation configurations of points, among a noisy set. The
method is robust and produces good results without parameter
tuning. The algorithm is able to handle the smoothness of the
curve and the regularity of its points. Nevertheless, when both
aspects vary rapidly, the algorithm may fail to capture the best
interpretation. Future work will concentrate on higher-order
models, adding the local curvature in the evaluation, as well
as scale invariance.
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