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A Complete System for Candidate Polyps Detection
in Virtual Colonoscopy
Marcelo Fiori, Pablo Musé, and Guillermo Sapiro

Abstract—Computer tomographic colonography, combined
with computer-aided detection, is a promising emerging tech-
nique for colonic polyp analysis. We present a complete pipeline
for polyp detection, starting with a simple colon segmentation
technique that enhances polyps, followed by an adaptive-scale
candidate polyp delineation and classification based on new
texture and geometric features that consider both the information
in the candidate polyp location and its immediate surrounding
area. The proposed system is tested with ground truth data,
including flat and small polyps which are hard to detect even
with optical colonoscopy. For polyps larger than 6mm in size we
achieve 100% sensitivity with just 0.9 false positives per case, and
for polyps larger than 3mm in size we achieve 93% sensitivity
with 2.8 false positives per case.

Index Terms—Computed Tomographic colonography,
computer-aided detection, colonic polyp detection, colon
segmentation, curvature motion, differential features.

I. INTRODUCTION

Colorectal cancer is nowadays the second leading cause
of cancer-related deaths in the United States (only surpassed
by lung cancer), and the third cause worldwide [1]. The
early detection of polyps is fundamental, allowing to reduce
mortality rates up to 90% [2]. Polyps can be classified into
sessile, pedunculated, and flat, according to their morphology.
Pedunculated polyps are attached to the colon wall by a stalk,
sessile polyps grow directly from the wall, and flat polyps
have less than 3mm of elevation above the colonic mucosa
[3]. Nowadays, optical colonoscopy (OC) is the most used
detection method due in part to its high performance. However,
this technique is invasive and expensive, making it hard to use
in large screening campaigns.

Computed Tomographic Colonography (CTC), or Virtual
Colonoscopy (VC), is a promising alternative technique that
emerged in the 90’s [4]. It uses volumetric Computed To-
mographic data of the cleansed and air-distended colon.
Distention is carried out by placing a thin tube into the
rectum, and performing the colon insufflation with room air
or carbon dioxide. It is less invasive than optical colonoscopy,
and much more suitable for screening campaigns once its
performance is demonstrated. However, VC is less popular
than OC not only because it is a relatively new technique,
but also because, contrarily to OC, it is not yet reimbursed
by insurance companies. On the other hand, in OC, on the
average only around 70%−80% of the colon can be explored
[5]. Incomplete studies due to obstructing colorectal lesions,
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colon twists, or anatomical variations are not rare (5% to 15%
of OC examinations) [6], and there is an additional important
risk of colon perforation. In a large study by Kim et al. [7],
where about 3000 patients went through OC and another 3000
through VC, seven perforations occurred in OC while none
was reported in VC.

Nevertheless, it takes more than 15 minutes for a trained
radiologist to complete a CTC study, and the performance of
the overall optical colonoscopy is still considered better. In this
regard, Computer-Aided Detection (CAD) algorithms can play
a key role, assisting the expert to both reduce the procedure
time and improve its accuracy [8], [9], [10], [11], [12], [13].

Flat polyps are of special interest because these are an
important source of false negatives in CTC, and although there
are different opinions, many authors claim that flat polyps are
around 10 times more likely to contain high-grade epithelial
dysplasia1 [14], [15], [16].

There are numerous discussions regarding the potential risks
of the polyps according to their size. Even though some
authors consider that “small” polyps may not represent risk,
some gastroenterologists disagree [17]. Summers [18] claims
that one of the major challenges in the field is in increasing
sensitivity for smaller polyps, and Church [19] states that small
adenomas can still be clinically significant and should not be
ignored. At the same time, Bond [20] declares that the major
disadvantage of VC is its current low performance for flat
polyps.

The goal of the work presented in this paper is to exploit
VC precisely to automatically flag (mark for attention of the
expert) colon regions with high probability of being polyps,
with special attention to results in challenging small and flat
polyps. Towards this aim, we propose a complete pipeline that
starts with a novel and simple segmentation step (segmentation
of the colon surface/lumen). We then introduce geometrical
and textural features that take into account not only the
candidate polyp region, but the surrounding area at multiple
scales as well. This way, our proposed CAD algorithm is
able to accurately detect candidate polyps by measuring local
variations of these features. The whole algorithm is completely
automatic and produces state-of-the-art results. This paper
extends our previous conference publication [21].

The rest of this paper is organized as follows. In Section
I-A we briefly review prior related work and in Section I-B
we present an overview of the whole proposed pipeline. We
address the colon segmentation problem in Section II and the

1An abnormality of development in cells that may become cancer in situ
or invasive cancer.
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feature extraction and classification in Section III. In Section
IV we describe the classification and evaluation method, and
in Section V we present numerical results. The discussion is
presented in Section VI and we conclude in Section VII.

A. Virtual Colonoscopy CAD Review

Automatic polyp detection is a very challenging problem,
not only because the polyps can have different shapes and
sizes, but also because they can be located in very different
surroundings. Most of the previous work on CAD of colonic
polyps is based on geometric features, some using additional
CT image density information, but none of them takes into
account the (geometric and texture) information of the tissues
surrounding the polyp. This local and adaptive differential
analysis is part of the contributions of this work.

Early work on CAD methods by Vining et al. [22] is
based on the detection of abnormal wall thickness. Since then,
several different approaches were proposed. Most of them have
a segmentation step first, and then the classification step itself.
We briefly discuss the main ideas in each stage.
Segmentation

The most common segmentation techniques are based on
region growing and thresholding methods. Among others,
Yoshida et al. [23] use a Gaussian smoothing and thresh-
olding. Summers et al. [24] use a region growing scheme
and obtain the final segmentation by thresholding. Paik et
al. [25] use thresholding as well, followed by morphological
dilation. Chen et al. [26] use a modified adatptive vector
quantization followed by region growing. Sundaram et al. [8]
start from manually selected seeds and segment the region by
thresholding with marching cubes. Franaszek et al. [27] use a
modified region growing, fuzzy connectedness, and Laplacian
level set segmentation to obtain a smooth surface. Chen et
al. [28] also use a level set approach, whose velocity is
determined by a Bayesian classification of the pixels.

Assuming that the value of each voxel is a mixture of
different tissue types, Wang et al. [29] use the statistical
expectation-maximization (EM) algorithm to estimate the
parameters of these tissue types (they use air, soft tissue,
muscle, and bone/tagged material). The voxels are classified
as air, mixture of air with tissue, mixture of air with tagged
materials, or mixture of tissue with tagged materials, and then
dilation/erosion operations are performed.

Yamamoto et al. [30] use a vertical motion filter at the fluid
level. Serlie et al. [31] use a sophisticated method to address
the T-junction artifact with promising results.

Region growing and level sets seems to be the current
chosen techniques for colon segmentation. However, not much
work has been done in comparing the smoothing techniques
(or the regularization term in the level set method) to see which
one is more adapted to polyp detection. The segmentation
technique here proposed is geared toward the subsequent step
of polyp detection, and simultaneously segments and prepares
the obtained surface for this task.
Classification

The main variations in this topic are both in the features
used and in the classification method. Summers et al. [32]

detect polyps larger than 10mm by computing mean curva-
tures and sphericity ratio, and present results over a large
screening patient population. Yoshida et al. [23] use the shape
index (defined later in this paper) and curvedness as geometric
features, applying fuzzy clustering and then using directional
gradient concentration to reduce false positives. Paik et al. [25]
also use geometrical features, computing the Surface Normal
Overlap (SNO) instead of calculating curvatures. Wang et al.
[33] compute a global curvature, extract an ellipsoid, and
analyze morphological and texture features on this ellipsoid.
They reach 100% sensitivity with a relative low false positives
(FP) rate, using heuristic thresholds and texture features. Hong
et al. [9] map the 3D surface to a rectangle, use 2D clustering,
and reduce false positives with shape and texture features.
Sundaram et al. [8] compute curvatures via the Smoothed
Shape Operators method, and use principal curvatures and
Gaussian curvatures to detect polyps. All these described
techniques based on local geometric computations suffer from
a high dependence on the regularity of the polyp shape itself,
ignoring how pronounced it is with respect to the surrounding
area. Using geometry alone is also very sensitive to the
accuracy of the colon segmentation.

More recently, van Wijk et al. [34] proposed a Partial Dif-
ferential Equation (PDE) motion that flattens only the polyp-
like shapes, and then they consider the difference between the
original and the processed images. The main drawback of this
approach is that the PDE motion is not capable of flattening
polyps which are already flat. Consequently, for flat polyps,
the difference between the original surface and its smoothed
version is too small to be detected by the algorithm. Ong et
al. [35] use the neighborhood to compute curvatures; instead
of using only a 1-ring neighborhood to approximate second
derivatives and compute the curvatures, they use a larger
region to reduce the effect of noise. Konukoglu et al. [36]
propose a heat diffusion field method to characterize polyps.
Proprietary algorithms [37], [38] have been reported as well,
but with no better results than the methods mentioned above.
Complementary techniques

In addition to these works that tackle either the segmen-
tation, classification or both as a complete CAD system,
some other complementary techniques were proposed. These
algorithms are located in between the segmentation and the
classification steps, or after classification as a false positive
reduction technique. For example, Götkürk et al. [39] proposed
a technique to reduce the false positives based on features
calculated from three random orthogonal sections, and then
classifying with SVM. Konukoglu et al. [40] proposed to intro-
duce a polyp enhancement stage, in between the segmentation
and classification stages of the pipeline in [25]. The polyp en-
hancement is based on the heat equation, with the conductivity
term adapted to the local geometric properties of the surface.
Suzuki et al. [41] use artificial neural networks to reduce the
false positives of the algorithm in [23] described above. The
results are very promising, achieving 96.4% sensitivity (over
28 polyps) with 1.1 FP per case. However, this evaluation does
not take into account small lesions and polyps submerged in
fluid.
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General comments
The list of references included in this section is by no

means exhaustive. We do not intend here to present a full
review of existing techniques, but to discuss a set of works that
are representative of the diversity of the proposed approaches
for polyp detection. Direct quantitative comparison of the
classification results obtained by these methods is strictly
speaking meaningless, since they were obtained using different
databases.

Table I summarizes the results reported by the methods
discussed above. Notice that these results were obtained using
databases containing polyps larger than 6mm in size (or larger
than 10mm in some databases).

To the best of our knowledge, no algorithm reported in the
literature can detect small polyps properly. On the other hand,
for polyps larger than 6mm in size, no algorithm can achieve
100% sensitivity with less than one false positive per case. It
is crucial to keep improving these rates, this is the reason why
VC is still an active research field.

Technique # Polyps Size Sensit. FPs
Summers et al. [32] ≈ 30 > 10mm 89.3% 2.1
Summers et al. ≈ 120 > 6mm 60% 8
Yoshida et al. [23] 12 > 5mm 100% 2
Paik et al. [25] 7 > 10mm 100% 7
Wang et al. [33] 61 > 4mm 100% 2.68
Hong et al. [9] ≈ 120 > 5mm 100% 3
Sundaram et al. [8] 20 > 10mm 100% 18
Sundaram et al. 122 > 2mm 80% 24
van Wijk et al. [34] 57 > 6mm 95% 5
van Wijk et al. 32 > 10mm 95% 4
Suzuki et al. [41] 28 > 5mm 100% 1.1
Bogoni et al. [37] 21 > 5mm 90% > 3
Taylor et al. [38] 32 > 6mm 81% 13
Näppi et al. [11] 12 > 5mm 100% 2.4

TABLE I
NUMERICAL COMPARISON OF THE REVIEWED METHODS, INDICATING THE

NUMBER AND SIZE OF THE POLYPS IN THE DATABASE, AND THE
ACHIEVED SENSITIVITY WITH THE FALSE POSITIVES (FPS) PER STUDY.

B. Overview of the Proposed System

The main goal we are addressing in this work is to
highlight/flag all the candidate polyps, so the radiologist can
quickly check them. It is crucial to minimize the false nega-
tives, keeping a reasonable false positives number. We achieve
this by a four-steps process that is completely automatic
and constitutes the entire end-to-end algorithm, from data to
candidate polyps flagging.

The proposed system with its four steps is illustrated in Fig-
ure 1. The first step is colon segmentation, which takes as input
the CT volume data, and produces a 3D mesh representing the
colon surface. In the second step, from the segmented mesh
we perform an adaptive-scale search of candidates in order to
capture the appropriate polyp size, obtaining a set of candidate
patches. In the third step, both the CT volume data and the
segmented colon surface are used to compute geometrical and
textural features for each candidate patch that was identified
in the previous stage. The final step consists of a machine
learning algorithm that uses the computed features to classify

patches as polyps or normal tissue. In the following sections
we describe each of these steps in detail.

C. Paper contributions

In this work we introduce several novelties at every stage of
the polyps detection system. These novelties result from the
consideration of several alternatives. As it will be clear from
the following, the solutions that were kept outperform other
alternatives that were considered in this work, and significantly
contribute to the quality of the results presented in Section V.
These contributions are:
• We propose a simple segmentation approach, specifically

designed to reduce tagged fluid artifacts;
• The smoothing PDE algorithm outperforms the classical

curvature motions in terms of polyp enhancement and
classification;

• Our proposed adaptive-scale candidate search allows to
precisely delineate the polyp region;

• We propose to characterize the texture in the tissue by
Haralick features, which have proved successful in other
applications in the image processing and computer vision
literature;

• Instead of only measuring texture or geometric features
within a candidate region, we consider measures that
explicitly take into account the tissue properties in the
surrounding area. We call these differential features,
and we show that their use improves the classification
performance.

• We explicitly deal with the class imbalance problem
(polyp vs non-polyp) in the learning step. We consider
three machine learning techniques that were specifically
designed to deal with this problem. The best classification
results were obtained with cost sensitive learning.

All these contributions will be detailed in the next sections.

II. COLON SEGMENTATION

The segmentation of the colon surface, which is critical
in particular to compute geometric features, is divided into
two parts: a pre-processing stage for dealing with the air-
fluid composition of the colon volume, and a second stage
that consists on smoothing the pre-processed image and ob-
taining the final colon surface by thresholding the smoothed
volume. The overall procedure here presented is very simple
and computationally efficient, leading to the state-of-the-art
classification results later reported.

A. Classifying CT regions

All the cases from the used database have the same prepa-
ration, which includes solid-stool tagging and opacification
of luminal fluid, and can be noticed as the white liquid in
Figure 2. One of the strongest difficulties concerning the
segmentation of the colon from abdominal volumes in CT is
the presence of this tagged fluid and its interfaces with air and
tissue. Figure 2 shows a CT slice and its pixel values over the
highlighted vertical profile. At first sight there are three clearly
distinguishable classes: the lowest gray levels correspond to
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Fig. 1. Basic pipeline of the proposed polyp flagging system.

air, the highest levels correspond to fluid, and the middle gray
values correspond to tissue. Nevertheless, there are around 6
interface voxels between air and fluid whose gray values, due
to continuity, lie within the normal tissue range. Therefore,
a naı̈ve approach based on gray values only, ignoring the
physical nature of the tissue and its environment, is not suitable
for proper tissue classification and segmentation.

Fig. 2. CT slice and its different gray values for air, fluid and normal tissue,
along the vertical profile.

The goal of this first pre-processing stage is to obtain
an initial segmentation, as close as possible to the actual
colon boundary (border). This border is diffuse due to the CT
resolution, and if we adopt a binary segmentation approach
(interior/exterior) the border will be necessarily bumpy. We
prefer not to lose information about the gray decay throughout
the border, so we compute a volume u0 intended to have
homogeneous values in the colon interior and exterior, and
a smooth transition between them.

In order to do that, it makes sense to assign to each voxel
the likelihood of being air, fluid or air-fluid interface. The air
and fluid likelihoods are estimated as follows. We pick any
CT study and manually segment the regions corresponding
to air (class w1) and tagged fluid (class w2). Then, their
gray level distributions are learned using standard kernel
density estimation techniques [42]. This step is done just
once. Then, at runtime, for each new study, the gray level
histogram is computed. These histograms are trimodal, with
peaks corresponding to air, tissue, and tagged fluid. We assume
that the distribution of the gray values, both for air and
tagged fluid, are shifted versions of the previously learned
ones (this assumption was experimentally validated). Then, the
air and tagged fluid distributions for the considered study, are
determined by localizing their peaks. These shifted functions

are used to assign the air and tagged fluid likelihood values
to the voxels.

Note that this assignment fails on the air-fluid and air-fluid-
tissue interfaces. The basic idea for assigning a value to these
voxels is presented next.

Here we take advantage of the physics of the problem, and
in particular of the gravity and the position of the patient:
the subject is laid horizontally so the interface between the
fluid and the air is a plane parallel to the floor. The voxels
situated on the interface then have a large gradient in the
vertical direction. However, the transition is about 6 voxels
wide for the standard data resolution used in this work, so
the computations should be done taking this into account.
Additionally, if a given voxel belongs to the interface layer,
it is expected that at least half of the neighbor voxels at the
same horizontal plane also belong to the interface layer.

The implementation of these criteria is as follows. A cubic
neighborhood around each voxel x is considered, and for
each one of the “columns” that result of fixing the x and
y coordinates, the air-likelihoods of the upper voxels and the
fluid-likelihoods of the lower voxels are accumulated. If the
tested voxel belongs indeed to the interface layer, then all
these air and fluid likelihoods will be high. The value IC(x)
that represents the confidence level of x being an interface
voxel is then an increasing function of this accumulated
measures. Algorithm 1 provides a pseudo-code that represents
this procedure.

In order to guarantee that a high value is associated to
every notoriously interior voxel, we assign to the initial
segmentation u0 the maximum of these three values, namely,
the air and fluid likelihoods and the interface confidence level:
u0(x) = max (p(x|w1), p(x|w2), IC(x)). This way, internal
voxels (air, fluid and interface) will have values close to
one, external voxels will have values close to zero, and the
transition will be smooth across the actual colonic wall.

After the computation of the initial segmentation u0, some
spurious (isolated) voxels may have high values (bones for
example, or simply noise), so we clean the initial segmenta-
tion by keeping the connected components2 containing some
chosen voxels used as seeds. It is important for the system to
be automatic, so no human intervention should be needed to

2Actually, since the initial segmentation u0 is not binary, a (conservative)
threshold of 0.6 is considered to separate the connected components.
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for each voxel (x,y,z) do
sum=0;
for i=−1 to 1 do

for j=−1 to 1 do
for k=1 to 2 do

sum += p((x+i,y+j,z+k)|w1);
sum += p((x+i,y+j,z-k)|w2);

end
end

end
IC(x, y, z) = sum/18;

end
Algorithm 1: Computation of interface confidence level.

choose these seeds. In order to do that, the seeds are auto-
matically detected by choosing the voxels with largest values
of IC(x), since these high values only occur at the interface
between air and fluid. Voxels with the largest values of the air
likelihood can be used too. After the first seed has been used
and a connected component has been obtained, we look for
a new seed outside this component, apply the filter with this
seed, and append the new corresponding connected component
to the previous ones. This iterative procedure continues until
no seed outside the extracted connected components is found
or a maximum number of connected components is reached.
Usually, only two iterations are sufficient. This way, the
segmentation step is able to handle the lumen discontinuities
problem and to obtain the multiple pieces of the colon that
might be disconnected.

Figure 3 shows a slice of the original volume data and the
same slice of the initial segmentation u0.

Fig. 3. CT slice and its corresponding slice on the initial segmentation u0.
Patient in prone position.

The air-fluid-tissue joint may create artifacts in the seg-
mentation. This is a critical point, not only because of the
quality of the segmentation, but mainly for the potential
of yielding several false positives in the polyps detection
step. It is not rare that segmentation algorithms result in
“gutter-like” shapes along this interface. This improvement is
crucial, since if small oscillations occur along the “gutter”
(which is expectable due to the resolution of the CT image),
artifacts with polyp-like shape are produced, and this, of
course, degrades the performance of the whole CAD system.
We paid particular attention to this issue while designing
the segmentation algorithm: the IC computation allows to
avoid these artifacts. Figure 4 illustrates the performance of

our segmentation method compared to another version that
presents some problems along this interface. The aim of the
comparison is not to discuss which segmentation is better, but
to show that our algorithm presents a smooth surface along
the place where the gutter is expected to be.

Fig. 4. Comparison of reduced artifacts in our segmentation (left) with a
previously tested more standard version.

B. Smoothing and colon surface computation
In order to eliminate noise and to obtain a smoother colon

surface after the segmentation stage, we proceed to smooth the
initial segmentation u0. In this section we derive a PDE-driven
smoothing technique that preserves the shape of the polyps,
while obtaining a smooth enough surface to reliably compute
local geometric features such as curvatures. Of course, the
ultimate goal of the method is to simplify and to improve
the polyp/non-polyp classification system. The effectiveness
of the proposed approach will be assessed with experiments
both qualitatively and quantitatively in Section V, where ROC
curves obtained with the proposed PDE and other filtering
alternatives will be compared.

We concentrate here on a family of smoothing PDEs of the
form

∂u(x, t)

∂t
= β|∇u| , u(x, 0) = u0(x) , (1)

where the initial volume u0 results form the preprocessing
technique described in the previous section. After a few
iterations of this PDE evolution, the inner colonic wall will
be extracted as a suitable iso-level surface of the resulting 3D
image u(x, T ). The choice of the number of iterations and the
iso-level are not arbitrary and will be discussed in detail at the
end of this section.

We recall that the Level Set Method [43] states that if u(x, t)
evolves according to (1), then its iso-levels (level sets) satisfy

∂S
∂t

= β ~N , (2)

where S is any iso-level surface and ~N its unit normal.
This geometric view enables to design β to fulfill a set of
requirements we will impose to the surface evolution. In
particular, we are interested in motions driven by the principal
curvatures κmax and κmin.

With the mean curvature motion (β = H), the polyps
are flattened too fast, as shown in in Figure 5. A suitable
variation of the motion by Gaussian curvature,3 namely the
affine motion

∂S
∂t

= (K+)1/4 ~N where K+ = max(K, 0) ,

3The motion by Gaussian curvature β = K has several problems with
surfaces containing non-convex parts [44].
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has a better behavior in general, but the results regarding polyp
flattening are comparable with the mean curvature.

Fig. 5. Mean Curvature Motion: original surface and the result after 2, 8,
15, 30 and 50 iterations. Note how both the surface (as desired) and potential
polyps (undesired) are smoothed and flattened.

A classical motion that appears to be well suited for our
problem is the motion by minimal curvature [45]. Indeed,
polyps have a curve of inflection points all around it, sepa-
rating its upper and lower sections (see Figure 6). Along this
curve, the minimal curvature is κmin = 0, and therefore this
section of the polyp does not move (or moves very slowly), so
intuitively under this motion the polyps should persist longer.
In our application, this evolution yields very good results in
terms of both surface smoothing and polyp enhancement.

Fig. 6. Polyp with a curve of inflection points (in red), where κmin = 0.

This PDE can be modified to obtain better results in terms
of polyp detection. We now propose a set of modifications
that lead us to the proposed smoothing evolution equation,
and we show qualitative results to support this claim. The
improvement in terms of polyp detection performance is
discussed in Section V.

The first modification is inspired by the exponent 1/4 of
the affine motions in dimension 3, and yields to the following
curvature motion equation:

∂S
∂t

= κ
1/4
min

~N .

Figure 7 shows the result after a few iterations; comparing to
Figure 5, it can be readily seen that this motion achieves a
better trade-off in terms of noise reduction and polyp preser-
vation. Figure 8 evidences the difference with a comparative
image: the result of the motions by κmin and κ1/4min are shown
in gray and in orange, respectively. On the polyp protrusion,
the orange surface is above the gray surface, while the opposite
is observed in the surrounding area. This shows that the
evolution by κ1/4min leads to better polyp enhancement.

The second modification that we introduce is based on the
idea of preserving the polyps qualities that we later use to
identify them. Towards this aim, we take into account a surface
property that will be used in the feature extraction stage as

Fig. 7. Evolution by κ1/4min: original surface and the result after 2, 8, 15,
30 and 50 iterations.

Fig. 8. Comparison between evolutions. Motion by kmin in light gray vs.
motion by k1/4min in dark gray. Both surfaces are overlaid, so sections that are
not visible are hidden below the other surface.

well. A measure of the local shape of a surface is the so-
called shape index [46],

SI := − 2

π
arctan

(
κmax + κmin

κmax − κmin

)
.

A complementary measure called curvedness C, is defined as

R :=

√
κ2max + κ2min

2
, C :=

2

π
lnR .

The (κmax, κmin) plane is then transformed into the
(SI,C) plane. While the value of SI is scale-invariant and
measures the local shape of the surface, the value of C
indicates how pronounced it is. Figure 9 shows different
shapes and their corresponding shape index. Due to the chosen
orientation, shape index values close to −1 (protrusions) are
of special interest for polyp detection.

Fig. 9. Some shapes and their corresponding shape index values.
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Special care must be taken when computing the shape
index. Principal curvatures are usually derived from H and K,
however, as shown by [47], this may lead to inaccuracies that
can be strongly amplified when computing the shape index. A
much more stable estimation can be obtained by computing
κmin and κmax directly from u (see [47]).

Back to the PDE motion, the next step is to include this
information concerning the shape of the surface in order to
make potential polyps evolve differently than the rest of the
colon surface. More precisely, we modify the best motion so
far (β = κ

1/4
min), in such a way that the resulting motion further

enhances the potential polyps. In order to achieve this, we
first need to characterize the potentially polyp points, and then
modify the deformation function accordingly.

We define a function that acts as a multiplying factor to the
term κ

1/4
min, making the surface evolve slower at the interest

points. One option is to choose this function to depend on the
shape index only, assigning low values to shape index near −1,
and values close to unity to other points. A smooth function
g(SI) verifying these constraints is shown in Figure 10.

Fig. 10. Function g(SI) = 1
π
arctan ((SI − 0.75) · 10) + 1

2
, multiplying

factor for PDE curvature evolution.

The final motion then becomes
∂S
∂t

= g(SI)κ
1/4
min

~N .

This proposed evolution keeps all the advantages of the
motion by κ

1/4
min and in addition, the polyps are flattened

slower, so at the end the obtained surface is smooth and the
polyps are still outstanding.

As discussed in Section I-A, the aim of the work by [40]
is to enhance polyps, although they present their work as a
preprocessing stage and not a complete CAD system. How-
ever, there are several differences with our approach. We use
a function of both minimum curvature and shape index, while
they use (modified) mean curvature; we use the same evolution
for the whole surface, while they use a different function for
each polyp candidate; our algorithm smooths the whole surface
(needed in order to compute curvatures properly), where their
approach is thought to modify the polyp regions only. As our
evolution algorithm is part of the segmentation step, while
theirs is a stage between segmentation and classification, it is
not clear how to quantitatively compare the performances. In
any case, as our proposed PDE is part of the segmentation,
these two techniques are complementary.

The number of iterations can be set by choosing the value
that maximizes the overall performance of the system, mea-
sured in terms of the free-response ROC curve (FROC), so the
number of iterations is set to obtain the best FROC curve. This
can be done by trying with several values and keeping the one
which maximize this performance, using cross validation over
the training dataset. Alternatively, we can consider a sphere
of the size of the CT resolution and compute analytically the
number of iterations that are needed to make it vanish (see
Appendix A). The idea behind this procedure is to smooth the
surface up to the resolution limit. These two approaches led
to the same result, namely 15 iterations, and therefore this is
the chosen value for the experiments in this paper.

At this point, after choosing the appropriate diffusion and
the number of iterations, we have a smoothed volume u(x, T )
indicating the volume inside of the colon. We then extract the
surface of the colon, using the marching cubes algorithm [48],
obtaining the iso-value surface of level α ∈ [0, 1]. The choice
of the value α can be made by maximizing some criteria, in
order to obtain the most contrasted surface in a given sense
[49]. This optimization-oriented method was tested, and we
observed that in our particular application all the consistent
surfaces are very close to each other (see Figure 11), and all
of them are reasonable segmentations of the colon. Therefore,
the computational effort is not justified and we simply kept the
iso-level surface α = 0.7. Note that this choice can be safely
made once for all the data. The result of this stage is then a
triangulated surface S representing the colon wall, Figure 12.

Due to the lack of ground truth, we simply evaluated
the segmentation visually and as a component of the polyp
detection pipeline (for which we do have ground truth). Visual
inspection indicated that the segmentation only missed two
very small parts in the entire dataset, and no extra regions
(like small bowel) were included. We estimate that only < 1%
of all the database colon surfaces was missed. We have also
observed that earlier versions of our segmentation algorithm,
e.g., with different velocity functions, do negatively affect the
polyps detection. We did not test our algorithm with another
bowel preparation due to the lack of such data, and this is an
important subject of future research.

Fig. 11. Different iso-level surfaces (a thin section of the colon wall): α
values 0.5, 0.6, 0.7, 0.8, and 0.9. Recall that the whole variation range for
α is (0, 1). Note that, although the α values are very different, the obtained
iso-level surfaces are very close to each other.
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Fig. 12. Example of a segmented colon.

III. POLYP DELINEATION AND FEATURE EXTRACTION

For each case study, we consider as input both the raw CT
images and the segmentation of the colon volume as obtained
following the procedure described in the previous section. The
first stage of the proposed polyps flagging algorithm consists
in detecting surface patches that are candidates of being
polyps. The complete set of connected points that constitutes
the candidate patch is found by progressively growing the
patch and keeping the one that maximizes the geometric
dissimilarity with the surrounding area, in the sense of the
features presented below (the starting point for this growth is
also detailed below). The detection system is therefore based
on differential (non-absolute) features, thereby better adapting
to intrinsic variabilities both of the colon region and of the
potential polyps, as further explained next.

All the polyp detection methods reported in the literature
try to detect or classify the polyps from properties defined
only within the candidate region, without considering the data
surrounding the region (of course, the fact that the polyp is
raised respect to the surrounding area is always used, but
no features measured explicitly taking into account context
information were proposed yet). However, it is important to
analyze the context in which the candidate patch is located, not
only because different sections of the colon present different
characteristics, but also because polyps can be situated over
different structures such as folds or plain colonic wall. A good
feature including the shape of the neighborhood for example,
can help in the discrimination between irregular folds and
polyps over folds. In addition, looking for significant differ-
ences in the gray level imitates the human-based inspection,
which highlights zones that contrast with their vicinity.

In this regard, most of the features described in this section
take into account the local information of the area surrounding
the candidate patch. Polyps (actually all the candidate patches)
are then characterized not only by their intrinsic geometry and
structure, but also by their relationship with the surrounding
area. This makes the features more robust to the particular
local phenomena, in a context where the natural variations of
the properties of the colon tissue impact the measures and
make absolutes thresholds or decision rules impractical. The
normal tissue of different cases may vary (due to different

biological properties of the subjects or to different conditions
of the studies), so absolute thresholds in texture features lack
meaning; while texture patterns differ from study to study,
what does not vary is the fact that polyps have different
properties than normal tissue.

A. Candidate detection and geometrical features

The starting point for the geometric features described in
this section is the segmented surface S. Let us consider the
shape index as a function SI : S → [−1, 1], and recall that the
polyps have shape index values close to −1. Therefore, it is
expected that a region (patch) of the surface that corresponds to
a polyp contains at least one local minimum of the shape index
function. The detection of the candidate patches starts from
this observation, and follows an adaptive-scale search. For
each local minimum x0 ∈ S of the function SI , several level
sets of SI (P1 . . .Pn) around x0 are tested, and the level set Pi

that maximizes the distances between the histograms described
below, is the considered candidate patch, which we simply
denote by P , Figure 13. A total of n = 7 level sets are tested,
corresponding to the shape index values from −0.8 to −0.5
with a 0.05 step. The following description is given for the
final chosen patch P , but the ring and histogram computations
are made for all the level sets Pi in order to select the most
appropriate of them (the most appropriate scale).

Fig. 13. Sets P1 . . .Pn: different sizes are tested in order to select the most
appropriate patch. P1 . . .Pn.

Given a candidate patch P , a ring R around P is computed,
in order to consider geometrical measurements with respect
to the area surrounding the patch. The ring is calculated
by dilating the patch P a certain geodesic distance, such
that the areas of P and R are equal. The geodesic distance
computation is performed using the algorithm by [50]. Figure
14 shows a candidate patch (actually a true polyp), and its
corresponding ring.

Histograms of the shape index values are then computed
for the patch P and the ring R, and two different distances
between them are computed: the L1 distance (defined as∑

i |xi − yi|, where xi and yi are the histogram values) and
the symmetric Kullback-Leibler divergence [51]. If the patch
corresponds to a polyp-like shape then the values of the
histogram P will be concentrated around the −1 extrema, on
the other hand, the histogram R will be inclined to the other
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extreme in case of a polyp on a normal colon wall (concave),
or with tendency to values near −0.5 if the polyp is on a
fold. These two features give a measure of the geometric local
variation of the candidate patch P . We assume that there are
no other polyps in R or that they do not significantly affect
the statistics on the ring.

Fig. 14. Ring (in blue) surrounding a candidate polyp (in orange).

Although these two distances are the most discriminative
features4, we also consider the following additional ones since
they still help to discriminate some typical false positives:
• The mean value of the shape index over the patch P ,

which describes the shape of the selected patch.
• The area of the patch, since we want to detect polyps in

a certain range of size.
• The growth rate of the areas at the adaptive-size stage,

meaning the ratio between the area of the chosen patch
P = Pi and the area of the immediately smaller tested
patch Pi−1; this feature measures how fast the shape of
the patch is changing, in a context where it is difficult to
quantize the variation of the shape.

• And finally the shape factor,

SF =
4π ·Area
Perimeter2

,

which measures the shape of the patch border, how
efficiently the perimeter is used in order to gain area,5 and
it favors circle-like patches (like the polyp patch in Figure
14), avoiding elongated patches (like the false positives
in folds).

We then end-up with a total of 6 geometric features for
detecting candidate polyps, namely: L1 and Kullback-Leibler
distance between shape index histograms of patches and
corresponding rings, the mean shape index over P , the area
of the candidate patch, the growth rate of the areas and the
shape factor.

B. Texture features

Due to the differences in biological activity of polyp cells,
the gray-level of the CT image and its texture can be very
helpful for detecting polyps. This is in particular useful for flat

4Several feature selection techniques confirmed this. For instance, the
following methods available in Weka [52]: Information Gain, Gain Ratio, and
Relief-F. Using the data described below, these techniques sort the features
according to their discriminative power.

5The maximum value for the shape factor is 1 and it is achieved only by
the circle.

or small polyps, where the geometric information is limited.
Some work has been done on the inclusion of texture features
(inside the candidate polyps only), in order to reduce false
positives [33]. According to the reported results, there is a
lot of room for improvement in texture features. [11] also
propose a texture feature, but it relies on structures located at
the interface between the polyp and the interior of the colon
(tagged fluid or air). It does not make explicit use of the
information of the normal tissue surrounding the polyp. We
propose both the use of new texture features and the inclusion
of the information on the candidate’s surrounding area.

First, for each polyp candidate P ⊂ S , a volume V1 is
calculated, containing the patch P and a portion of the inner
tissue next to the patch. The volume V1 is obtained by dilating
(in 3D) the patch P towards the inner colon tissue (we discard
the air or fluid voxels). A second volume V2 surrounding V1
is calculated by dilating V1. Volume V2 is intended to contain
normal tissue in order to compare it with the polyp candidate
tissue. In order to choose how much dilation is performed,
we use a technique similar to the one in the previous section:
several dilation distances are tested, and we keep the distance
that makes the differential features most discriminative.

The features chosen are a subset of the classical
Haralick texture features [53], namely, entropy, energy,
contrast, sumMean, and homogeneity. Seven co-
occurrence matrices (considering seven directions in
R3, (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (1, 1, 0), (0, 1, 1) and
(1, 1, 1)) are calculated with the voxels of V1, and all the five
features are averaged over the seven directions. The analogous
computation is made for V2, and the differences between
the two volumes, for each texture feature, is considered.
Additionally, the mean gray levels of the voxels in both
volumes is computed, and their difference is considered as
a feature. In this way, six texture features are considered.
The rest of the Haralick features were discarded because the
overall performance was not as good as the performance with
this particular subset. We have confirmed this choice with
several feature selection techniques, with the same procedure
described above. This approach for computing the texture
features, measuring differences with the surrounding area,
leads to better discrimination than the features computed just
for V1, as demonstrated next.

IV. CLASSIFICATION

After the candidates detection with the adaptive-scale ap-
proach, the number of true polyps was much lower than the
number of non-polyps patches, a relation on the order of 500:1,
which is a significant problem for the learning stage of the
classifier. Three techniques were considered to overcome this
shortcoming.

The MetaCost approach [54] consists of combining several
instances of the classifier instead of stratification (modify the
proportion of classes in the training data according to the
costs). This method does not work with “stable” classifiers
(those that produce similar models with slightly different
training sets) like SVM or Naive Bayes.

The Cost Sensitive Learning approach, unlike the MetaCost,
tries to balance the classes before the learning stage. The
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implementation we used from Weka [52] simply takes as
input the re-balance parameters (cost matrix) and replicates
instances of the minority class. One of the advantages of
this approach is that no assumptions are made about the
behavior of the classifiers (unlike the previous method) nor
the distribution of the data (unlike the next method).

Finally, the Synthetic Minority Over-sampling TEchnique
(SMOTE) is a method to generate artificial instances of the
minority class, in order to get a balanced data to learn
from. The new artificial instances are created as a convex
combination of the existing instances of the minority class.
Therefore, there is an underlying assumption that the optimal
partition in the feature space gives convex sets, which may not
be the case in several applications.

We tested all these options and the best results were
obtained using Cost Sensitive Learning, as expected from the
comments above.

The numerical results listed below were obtained by classi-
fying with SVM using Cost Sensitive Learning, after normal-
izing the data; Naı̈ve Bayes performed similarly.

V. RESULTS

A total of 150 patients of the Walter Reed Army Medi-
cal Center (WRAMC) database [55] were used to test the
proposed CAD algorithm6. Most of these patients have two
sets of CT images, one for supine and one for prone position.
Taking precautions not to train the classifier with, for instance,
the prone images set and test it with the supine set (i.e. one
cannot use a supine study of a given patient for training, an
the corresponding prone study for testing, or vice versa), we
can consider the 300 images sets as independent. From now
on, we refer to each of these 300 images sets as a case. The
database contains 134 polyps detected by optical colonoscopy,
including 12 flat polyps. Among these 134 polyps, 86 are
larger than 6mm in size, and the other 48 are between 3mm
and 6mm in size. Figure 15 shows the distribution of polyps’
sizes in the database. The size and shape classification of these
polyps was taken from the WRAMC database description.
These descriptions were provided by the physicians involved in
the OC examinations. Taking these examinations as the ground
truth, patches classified as polyp were considered TP if the
distance to a ground truth polyp was less than 3mm.

The evaluation was carried out by splitting the dataset
into two halves, training and testing. Under this setting, we
obtained the FROC in Figure 16, which shows the performance
for different polyps sizes. About 40% of the polyps were
covered by tagging, but the classification results do not vary
depending on this fact, the performance is the same for covered
and for non-covered polyps.

These values are comparable with the state-of-the-art results
[33], [41], but our database includes very small polyps. A more
precise comparison of results is not necessarily meaningful,
since in general each work considers its own database.

The FROC curve in Figure 17 compares the performance of
the system with the different smoothing methods discussed in

6Data provided courtesy of Dr. Richard Choi, Virtual Colonoscopy Center,
Walter Reed Army Medical Center.

Fig. 15. Histogram of the polyps’ sizes.
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Fig. 16. FROC curve of the proposed system for different polyps sizes: larger
than 6mm (solid), smaller than 6mm (dashed), and all polyps (dotted).

Section II. The proposed smoothing technique achieves better
results than the other discussed methods.
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Fig. 17. FROC curve comparing the performances using the different
smoothing methods, classifying large polyps (left) and small polyps (right).
The curve for the proposed evolution is shown in solid line, the results for the
evolution by H and κmin are shown in dotted and dashed lines respectively,
and the lower curve is the result when no smoothing is performed.

Texture features
Absolute Differential

Sensitivity 96% 100%
FP per case 3.1 2.2

TABLE II
COMPARISON OF ABSOLUTE AND DIFFERENTIAL TEXTURE FEATURES,

WITH POLYPS LARGER THAN 3mm IN SIZE.

Table II shows the comparison between absolute and differ-
ential texture features. The classification was performed using
all the geometric features and either the absolute texture fea-
tures (computed just for V1), or the differential texture features,
using the standard leave-one-patient-out strategy. The results
show that, when combined with the differential geometric
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Polyp sizes
> 3mm > 6mm

Sensitivity 93% 100%
FP per case 2.8 0.9

TABLE III
COMPARISON OF PERFORMANCE BY POLYP SIZE.

features, differential texture features are more discriminative
than the absolute ones. The FROC curve in Figure 18 extends
the results in Table II and compares the performance of the
classifier when using differential or absolute features. Table
III compares the classification results according to the polyps
size. Again, the work with such small, as well as flat polyps, is
unique to the framework here presented, as will be discussed
in Section VI-A.
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Fig. 18. FROC curve with 95% confidence intervals, comparing the
performances with differential (solid) and absolute (dashed) texture features,
classifying polyps larger than 6mm in size (left) and smaller than 6mm in
size (right). Confidence intervals computed according to [56].

Finally the FROC curve in Figure 19 compares the re-
sults of the different classification approaches. Cost Sensitive,
SMOTE, and MetaCost were used as a pre-processing stage
for SVM, AdaBoost was used with C4.5 trees. Parameters in
all classifiers were optimized via cross validation. Other tested
classifiers were not included due to their lower performance.
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Fig. 19. FROC curve comparing the performances of different classification
approaches. SVM with Cost Sensitive (solid), SVM with SMOTE (dashed),
C4.5 trees with AdaBoost (dotted) and plain SVM (long-dashed).

VI. DISCUSSION

A. Small, big and flat polyps

It is clear that both the small and flat polyps are much more
difficult to detect than the other polyps. What is not clear is
if the same kind of algorithm and features are suitable for

detecting all the range of polyp types and sizes. We showed
that the proposed combination of features, although it may not
be optimal for every specific type of lesion, is able to correctly
detect all of them.

All the stages in the pipeline, specially the segmentation and
the features, contribute to the good classification results for
the whole database. However, it would be interesting to study
which pre-processing techniques and features are better for
each type and size of polyp, and to possibly propose different
CAD systems for each class of polyp. Nevertheless, the 93%
sensitivity together with the 2.8 FP rate for polyps larger than
3mm in size is as remarkable as the 0.9 FP rate for polyps
beyond 6mm in size with 100% detection.

B. Geometric and texture importance

Although geometrical features are the most discriminative
ones (see Table IV), texture features still play a fundamental
role in the classification. Adding the texture features to the
geometric ones, the sensitivity reaches 93%, and at the same
time the false positives rate decreases by 30%.

Features
All Geometric Texture Excl. L1 & KL

Sensitivity 93% 88% 68% 83%
FPs p/case 2.8 6.5 19 12.8

TABLE IV
COMPARISON OF PERFORMANCE USING ONLY GEOMETRIC VS ONLY
TEXTURE FEATURES, AND EXCLUDING THE HISTOGRAM L1 AND KL

DISTANCES, FOR POLYPS LARGER THAN 3mm.

Figure 20 shows a detected polyp, where the geometry is
crucial, because the gray-level does not present considerable
local variations. This is specially true for polyps submerged
in tagged material. On the other hand, in the flat polyp of
Figure 21, the geometry is weakly discriminative (although
the measure considering the ring enhances the detectability),
and the texture features lead to a correct classification.

Texture information is very important also because it is
more robust to segmentation errors, as the texture features are
computed by integrating over the volumetric data. Moreover,
the differential texture features (the differences between V1 and
V2) outperform the absolute texture features (just computed in
V1), as shown in Table II.

C. Qualitative analysis of false positives

In addition to the number of false positives, it is very
important to study how these FP patches look like, since some
of them can be quickly ruled out by the expert and some can
be avoided by improving some aspects of the segmentation
step.

About half of the false positives are quite reasonable, in
the sense that they are (usually small) sections of the colon
that are polyp-like shaped, (see Figure 22), specially taking
into account that we designed the system to also detect small
and flat polyps. Among these false positives, 40% are very
small patches that may be avoided by incorporating some new
features to the classification, or by adding a size threshold
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Fig. 20. Polyp with no texture information.

Fig. 21. Polyp with texture information, but weak geometric information.

if very small polyps are not considered of interest (which
was not our case). On the other hand, about 10% of the
FPs occurred in fold sections of the wall, Figure 22, and
another 10% occurred in parts of the insufflation tube. All
these patches (from folds and the insufflation tube), are easily
ruled out by visual inspection. Another 20% of the FPs were
caused by colon segmentation errors, this number having been
significantly reduced thanks to the texture features as discussed
above. About half of these false positives due to segmentation
errors are caused by bad quality original CT slices in the
region (generally due to the partial volume effect), like the
bottom-left example in Figure 23. Another fraction of FP due
to segmentation are protuberances caused by some fluid voxels
near to the colon wall, where the gray value is away from
standard values. This is the case of the bottom-right example
in Figure 23. An additional representative set of false positives
is shown in Figure 23.

Fig. 22. False positives: fold and patch similar to polyp.

The region in Figure 24 was classified as polyp by our
system. However it was not labeled as such in the database,
so we have decided to count it as a false positive. We have
first included this false positive in the “segmentation error”
category, as suggested by visual inspection. Nevertheless, a
more careful examination using the original CT slices shows
that the structure is indeed a tissue protuberance, and it is
not a segmentation artifact. It may be a part of the colon

Fig. 23. Examples of false positives according to the available labeled data,
with some segmentation errors, parts of the insufflation tube, and some patches
with polyp-like shape.

not explored in the OC. Unfortunately we have no additional
information that would allow us to clarify whether this region
corresponds to a polyp or not.

Fig. 24. Visual inspection of the CT slices seems to support that the geometry
is well reconstructed by the segmentation procedure. Nevertheless, since this
structure was not labeled as a polyp in the ground truth database, here we
consider this detection to be a false positive.

D. Contribution of each novelty

In this work we have presented a complete system for polyp
flagging, with several novelties. Each one of these novelties,
presented in the introduction and detailed along the paper,
contributes to different aspects and in different ways to reach
the final system performance:

• Artifacts due to the tagged fluid are usually a very impor-
tant source of false positives. We have minimized these
false positives with our region pre-processing approach.

• The smoothing PDE algorithm helps to detect small
polyps, and it has proven to outperform the classical
curvature motions.

• The adaptive-scale candidate search provides a correct
delineation of the polyp region, as illustrated in the
figures presented along the paper.

• The new differential features improve the performance
with respect to the features measured on the polyp region
only, as shown by the corresponding FROC curves.

• The use of Cost Sensitive learning is crucial to overcome
the class imbalance problem. It has proven successful, al-
lowing to reach higher performance than other techniques
also specifically designed to deal with the class imbalance
problem.
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VII. CONCLUSION

We introduced a complete pipeline for a Computer Aided
Detection algorithm that flags candidate polyp regions. The
segmentation stage is very simple and fast, and its main
novelty is the smoothing PDE which enhances the polyps,
leading to a better detection. In addition to the incorporation
of the Haralick texture features, the main yet simple novelties
of the proposed features and classification stages are twofold.
First, the surrounding area of candidate polyps are explicitly
taken into account. Indeed, the proposed (so-called differen-
tial) features are computed by comparing properties in the
central and surrounding regions of the polyps. We show that
differential features are more discriminative than the absolute
ones, as they emphasize local deviations of the geometry and
texture over the colon. The other novelty is a adaptive-scale
strategy that test regions of different sizes and automatically
selects the region that best delineates each candidate polyp.
The obtained quantitative results are very promising, detecting
100% of the true-polyps, including small and flat ones, with
a low false positives rate. Additional improvement of the
segmentation and, in collaborations with radiologists, finding
features that are tailored to polyp-like geometries, can further
improve these results.
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APPENDIX

We want to compute the number of iterations needed to
make a certain sphere (of the size of the CT resolution) vanish,
according to our proposed PDE. For a sphere, the shape index
is constant, so the PDE becomes:

∂S
∂t

= κ
1/4
min

~N .

Then, as kmin = 1/r, the sphere radious satisfies the following
differential equation:

r′(t) =
−1

r(t)1/4
.

Therefore,∫ T

0

r′(t)r(t)1/4dt = −
∫ T

0

1dt⇒ 4

5

(
r(T )4/5 − r(0)4/5

)
= −T .

As we want to find the value of T so that r(T ) = 0,

T =
4

5
r(0)4/5 .

The resolution in the z direction is 1mm in our examples,
and the time step considered for the numerical method was
ts = 0.055. That gives a value N for the number of iterations
N = d14.54e = 15.


