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ABSTRACT

In this work we will show that it is possible to perform three-

dimensional (3D) analysis and extract features without per-

forming a 3D surface reconstruction. We propose a novel ap-

proach that consists in acquiring the scene under the projec-

tion of structured light (plus the natural ambient illumination),

which allows us to obtain the depth gradient map using a sim-

ple processing step with very low hardware requirements.

Index Terms— Face curvatures, 3D feature extraction,

HK classification, Nose location.

1. INTRODUCTION

Landmark detection is one of the first steps on face recog-

nition or gesture detection systems. In the past five years,

most of the approaches began to include 3D information for

the sake of face detection[1], face recognition[2, 3, 4] and

landmarks localization[4, 5, 6, 7]. Due to the increasing num-

ber of three-dimensional scanners (e.g. the Kinect device of

Microsoft) some 3D databases are becoming popular (e.g.

BJUT-3D and FRGC 2.0) and a large number of publica-

tions have recently addressed this topic. Even though a great

amount of progress has been made on 2D color or intensity

face analysis, it has been demonstrated that the expression,

pose and illumination variations have significant impact on

2D systems performance.

In this work, we propose acquiring the scene under the

projection of structured light (plus the natural ambient illumi-

nation) and measure surface curvature from the deformation

of the projected pattern. The main difference with respect to

traditional one-shot 3D shape profiling methods [8] is that we

do not need to compute the scene depth, instead, depth gra-

dient is directly calculated from the acquired image and so

surface curvature. This is extremely useful for 3D curvature

analysis and other feature based techniques that use the depth

partial derivatives. In addition, the pattern we are projecting

is binary and static, we do not need the projection of several

patterns or the use of color coding techniques (this means that

no gamma or color calibration [9, 10, 11], nor synchroniza-

tion are needed). Because of that, the structured illumination

can be provided by a simple flash (including a square binary

amplitude grating and a small lens) and it could eventually be

embedded on a smart phone in the near future.

In Section 2, we present an overview of the proposed tech-

nique explaining the key features and the different processing

steps. Section 3 presents the main results showing the poten-

tiality and usefulness of the method. Finally, Section 4 con-

cludes the work and enumerates some future lines of research

and applications.

2. METHOD DESCRIPTION

When a scene is being captured by two cameras and assuming

that just a translation exists between them, the apparent image

shift (disparity) gives information about relative depth of the

scene as illustrated on Fig. 1. Assuming H ≫ max{h, f},
the disparity D(x, y) between both images (i.e., the shift of

the images on the detector arrays of the cameras) and the

depth h(x, y) of the test surface relative to the reference plane
will be related by,

h ≈
Y ′Y

B/H
, Y ′Y ≈ D

H

f
. (1)

Hence,

h ≈ D
H2

B f
(2)

where f is the focal length,H is the distance of the reference

plane andB is the distance between the cameras’ centers [12].

The previous expression was obtained by considering two

cameras, but it also holds when we have a camera and a pro-

jector, as shown in literature.[13, 8, 14, 15] For illustrative

purpose in Fig. 1 the relative translation between camera and

projector is along the y coordinate. In the following, the shift

between camera and projector will be along a direction at 45
degrees with respect to the x and y coordinates.

The procedure followed for 3D-shape retrieval was pro-

posed in [16] and consists in measuring the partial derivatives

of the disparity (D). Let us assume that we are projecting a

rectangular fringe pattern of period p in the x and y direction

over a test surface, where I(x, y) is the pattern acquired by the
camera (see Fig.2(a)). The 2D-spatial spectrum of this image



Fig. 1. Principle of stereoscopic vision. The figure shows

two cameras C1,2 with lenses of focal distance f separated a

distance B, placed at a distanceH from a reference plane.

is shown at the center of Fig. 2, in which the red points cor-

respond to the vicinity of the spatial carrier’s frequency (i.e.

2π/p). By performing a simple Fourier filtering (red regions

in Fig. 2), one can obtain a pattern (Iv(x, y)) with deformed

vertical fringes and another one (Ih(x, y)) with deformed hor-

izontal fringes, as shown in Figs.2(b) and 2(c), respectively.

[In Fig. 2 we are assuming that the x and y direction are hor-

izontal and vertical, respectively.]

Therefore, it does not matter if the projected fringes are

binary or sinusoidal. Without loss of generality, by filtering

the spatial spectrum of I(x, y), one obtains

Ih(x, y) = I0(x, y) cos ((2π/p)(y +D(x, y))) (3)

and

Iv(x, y) = I0(x, y) cos ((2π/p)(x+D(x, y))) (4)

where I0(x, y) is a function of the reflectance of the test sur-

face. As usual, we are assuming that I0(x, y) andD(x, y) are
low-frequency functions in comparison with the frequency of

the spatial carrier, i.e. Di ≪ 1 and I0i ≪ 2π/p, where the

subscript denotes partial derivative with respect to the vari-

able i(= x, y).

Fig. 2. (a) Acquired image. The colored figures show the 2D-

spatial spectrum of the image. By filtering the horizontal and

vertical Fourier components (red in the figures), one obtains

the images shown in (b) and (c), respectively.

Then, by taking partial derivatives with respect to the x
and y coordinate, from Eq. (3) and Eq. (4) one obtains

Ihi(x, y) ≈− (2π/p)I0(x, y)

sin [(2π/p) (y +D(x, y))] (yi +Di(x, y)) (5)

Ivi(x, y) ≈− (2π/p)I0(x, y)

sin [(2π/p) (x+D(x, y))] (xi +Di(x, y)) (6)

where xi = 1 and yi = 0 for i = x, and xi = 0, yi = 1 for

i = y.
Hence, it is easy to demonstrate that

Dx(x, y) ≈
Ihx(x, y)

Ihy(x, y)
(7)

and

Dy(x, y) ≈
Ivy(x, y)

Ivx(x, y)
. (8)

We conclude that the gradient of the disparity (D) can be

calculated in a simple manner as the ratio of the derivatives of

the (horizontal and vertical) Fourier components of the image

I(x, y) acquired by the camera.

In order to analyze the face curvature, let S be the sur-

face defined by a twice differentiable real valued function

D : U → R, defined on an open set U ⊆ R:

S = {(x, y, z) | (x, y) ∈ U ; z ∈ R;D(x, y) = z}. (9)

For every point (x, y,D(x, y)) ∈ S we consider two differ-

ent curvature measures, the Mean (H) and the Gaussian (K)

curvature defined as[1, 17]:

H(x, y) =
(1 +D2

y)Dxx − 2DxDyDxy + (1 +D2

x)Dyy

2
(

1 +D2
x +D2

y

)3/2
,

(10)

K(x, y) =
DxxDyy −D2

xy
(

1 +D2
x +D2

y

)2
. (11)

As the presented technique allows us to directly compute

the first derivatives of the scene depth, it is only necessary to

compute the second order derivatives (Dxx, Dyy and Dxy)

e.g. using finite differences (i.e. Dxx[i, j] = (Dx[i, j + 1] +
Dx[i, j − 1])/2)) or any equivalent numeric method for dif-

ferentiation.

Once the Mean and Gaussian curvatures are calculated, it

is possible to classify the different areas of the face according

to its shape [18]. Depending on the H and K values, points

on the surface are classified following the rule shown in Table

1.

In this work, z coordinate (named h in Fig. 1) is mea-

sured from a reference plane, it is clear that for this coordi-

nate system the area of the nose can be identified as a well

defined elliptical concave region while the corner of the eyes



K < 0 K = 0 K > 0

H < 0 Hyperbolic concave Cylindrical concave Elliptical concave

H = 0 Hyperbolic symmetric Planar Impossible

H > 0 Hyperbolic convex Cylindrical convex Elliptical convex

Table 1. HK classification.

must present an elliptical convex shape. To remove smooth

regions from the areas of interest a threshold approach was

followed[1, 19], then those points with high absolute value of

K and H were isolated. For those points with K > 0 and

H > 0 the eye candidate label was assigned while those with

K > 0 and H < 0 were selected as nose candidates.

2.1. Implementation details.

The main ideas were presented in the previous section. In

this subsection, some details concerning the implementation

are addressed. Figure 3 shows the main processing steps and

illustrative images of the outputs obtained.

Fig. 3. Block diagram.

In this work, a black background was used, and the in-

put image was filtered using Hann windows over the Fourier

domain (we also tried other kinds of windows such as rectan-

gular or hamming ones, they all yielded very similar results).

Partial derivatives are computed following Eqs. (7) and (8).

Due to shadows or surface discontinuities some singularities

appear inDx andDy (areas where Ihy ≈ 0 or Ivx ≈ 0), these
noisy points were removed by applying a median filter. Be-

fore proceeding with the curvature analysis, a downsampling

step may be required to set the correct scale of the shapes we

are looking for (also a multi-scale approach can be followed

if the scale of nose and eyes is unknown on input image). In

this work the resolution was 600 × 400 pixels (after remov-

ing the black edges) and we used one tenth of resolution for

the curvature analysis. Finally, concerning the thresholding

step, values of Hth and Kth are selected proportional to the

mean values (to make the selection independent of the image

range): Hth = 3|H(x, y)|, Kth = 5|K(x, y)|, these values

were empirically set looking for a compromise between false

positive and false negative rates. The values of thresholds ob-

tained are similar to those reported in [1] and [20].

3. RESULTS

We projected a rectangular pattern over the face as shown in

Fig.4(a). As described above, by filtering in the Fourier do-

main we obtained two different images with just horizontal

and vertical fringes from which we computed depth map par-

tial derivatives (Figs. 4(b) and 4(c)). Finally Mean and Gaus-

sian curvatures were calculated (Figs. 4(d) and 4(e)). The

last step was the isolation of those areas with large curva-

ture values ( i.e. the thresholding step) and then by the HK-

classifications candidates to nose and corners of the eyes were

found.

Figure 5 shows the three-dimensional face surface, eye

candidate points are displayed in green and the nose ones in

red. The 3D reconstruction of the face was achieved by the

integration ofDx andDy , the integration was performed only

for illustrative purposes, it is not used in any of the processing

steps.

The last set of experiments illustrated in Fig. 6 consist in

testing the proposed framework in different conditions such

as: different poses, expressions and faces partially covered by

a scarf or a bonnet. In all the tested cases, nose and eye po-

sitions were detected (in conjunction with other false positive

points). However, it is possible to remove the false positive

detections by considering all the possible triplets (left eye,

right eye and nose) and removing those with abnormal pro-

portions, distances and orientations as was suggested in [1].

4. CONCLUSION

A novel framework for 3D curvature analysis was proposed

showing that it is possible to perform three-dimensional fea-

ture extraction without the need of 3D reconstruction. Instead

we propose an approach that is capable of providing depth

gradient maps using very low hardware resources. Besides

we used a commercial projector in the experiments presented

(because it was what we have available), it is clear that just a

modified flash can be used (as the pattern is binary and static).



(a) Input image (b) Dx (c) Dy (d) Mean curvature (H) (e) Gaussian curvature (K)

Fig. 4.

Fig. 5. Reconstructed 3D surface and landmarks detected.

Also this kind of illumination pattern can be generated using

a led source like the ones already available in most smart-

phones. We presented the main steps to compute the gradient

depth map from the input image as well as some implementa-

tion details that must be taken into account. Results are very

promising and we think the proposed method is suitable for

many commercial and academical applications due to its sim-

plicity and robustness.
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