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Abstract—In recent years we have seen the success of wireless
communications in unlicensed frequency bands, mainly driven
by the 802.11 standard. The clear trend in the growth of traffic
demand suggest that spectrum scarcity will be a serious threat
to reach the capacity needs in the near future. Looking for
more available spectrum, regulators have already begun to study
secondary assignments in licensed bands, based on the recent
cognitive network paradigm. In this context, we focus our work
in the analysis of optimum spectrum allocation mechanisms.
We introduce a stochastic model to formulate the problem,
considering primary users’ activity and a periodically scheduled
assignment scheme. To solve the problem we propose a novel
robust solution, which we argue is superior to an expectation
based approach, comparing both alternatives through extensive
simulations.

I. INTRODUCTION

Over the last years we have witnessed the highest growth
in wireless networks traffic [1] and forecasts indicate that
this growth will continue [2]. Moreover, the user density is
also increasing, resulting in scenarios where the technology
is reaching its limits. Examples include the one-to-one ed-
ucational model (e.g. Plan Ceibal [3]) with thirty or more
mobile devices in the same room, or crowded places as large
conferences, shopping centers or even sport events (e.g. the last
Super Bowl [4]). While standards are still evolving, achieving
increasingly higher spectral efficiency, we may soon be faced
with spectrum scarcity issues to properly cope with traffic
demands. Regulators have taken note about this fact and some
proposals already exist to extend the available spectrum [5].

Leaving aside traditional spectrum allocation, during the
last years a new type of spectrum assignment has emerged:
the so-called cognitive radio paradigm [6]. The main idea is
to have two types of users; licensed or primary users (PUs
from now on), which have the preferential right to use the
band; and unlicensed or secondary users (SUs from now on),
which can use the band only in the absence of the PUs. This
type of spectrum allocation contributes to a more efficient use
compared to traditional static assignments, as testified by some
recent FCC rulings [7].

Although adoption is not yet massive, much industrial
and academic efforts have been dedicated to this kind of
technology. For instance, the IEEE 802.22 standard [8] was
approved in 2011, which defines a Wireless Regional Area
Network (WRAN) based on cognitive radio. Another industrial
effort is the 802.11af amendment to enable the operation of

WiFi in TV bands, which has been recently published [9].
It is then expected that, as it has been so far for 802.11,
networks deployed using these standards will mostly operate
on infrastructure mode, so we will focus on such networks.

This paper bears on the dynamic spectrum assignment in
this kind of networks. That is to say, we will study possible
methods to decide which frequency bands may be used by
the network devices at any given time. It is worth to highlight
that such an assignment means that the bands are available
for the devices, and are not necessarily used. With this in
mind, the natural question that arises is to what purpose
this assignment should be performed [10]. In our particular
context, examples include minimizing the number of licensed
bands assigned [11] or maximizing the user’s utility (as a
function of the mean rate) [12] without exceeding a maximum
interference threshold to other networks. However, in the con-
text of a cognitive WRAN or WLAN, we argue that the most
natural objective would be to provide a lower bound to the
resulting throughput. A typical use case for these technologies
is internet access, usually following a wired connection, which
is limited to a certain fixed bandwidth. The purpose of the
spectrum allocation is to ensure this bandwidth can always be
fully exploited, no matter what the channel conditions are or
which the PU’s activity is. Therefore it should be a constraint
of the problem.

The other challenge that these systems pose is the time-
scale at which the assignment should be performed. One
possibility is to re-assign (and thus re-optimize) every time a
band is used or abandoned by PUs, or if significant changes in
channel conditions occur. Although this event-driven solution
will lead the system to operate with the optimal allocation all
the time, it will typically result in a higher signaling overhead.
In this sense, we will assume, as many researchers, a periodic
optimization every T time units, which leads us to a better
performance compromise.

However, T may include variations in PUs’ activity. This
fact implies that a licensed band assigned when the period
starts might have to be abandoned, resulting in an effective
capacity that is less than expected. In Fig. 1 we present
an example to clarify this situation. In it we have four
licensed bands, with two of them available at the first spectrum
assignment at time 0. During the interval between allocations,
a PU starts using band 4, so it is no longer available. The
problem occurs again in the second assignment, where bands



Fig. 1. Spectrum occupancy example with four licensed bands.

1 and 2 are available and the assignment is thus performed,
but a PU occupies band 2 during the interval.

To address this issue, the most commonly used approach
is to model the availability of licensed bands as random, and
optimize the expected value of indicators such as interference
or throughput, as discussed before. Although this means that
in the long run the objective will be accomplished (e.g. the
throughput will be maximized), in the shorter time-scales the
resulting performance may be far from optimal. In contrast
with previous works, we will present a frequency assignment
scheme that provides the required throughput, which will
hold with very high probability during the whole operating
time. Naturally, such guarantee will require a certain degree
of overprovisioning, but our simulations indicate that this is
usually below 15% of that required by an oracle that knows
beforehand the PUs activities. Moreover, the results show that
simply considering an expected value approach leads us to
a solution where the throughput requirement is not fulfilled
more than 30% of the time.

II. PROBLEM FORMULATION AND PROPOSED SOLUTIONS

In this paper we study the spectrum allocation problem in
a mixed licensed and unlicensed scenario. In the proposed
scheme, devices operate always as unlicensed devices but in
two types of frequency bands, licensed ones, where they are
only allowed to operate when there is no PUs, and unlicensed
ones, where they can operate all the time. This offers greater
flexibility to meet the requirements, given the scarcity of
unlicensed spectrum. Furthermore, by having both type of
bands, we simplify some protocol design complexity compared
to solutions which only use licensed bands, as we can perform
control communications through unlicensed bands, which are
available all the time. To accomplish this goal we will impose
that any possible assignment should include at least one
unlicensed band. This way we ensure the connectivity between
nodes which makes possible the proper coordination for the
use of the allocated frequency bands.

As in other previous works (e.g. [13]) we will assume
that each node has a dedicated interface to enable cognitive
sensing capabilities. By this mean, each node is able to
keep a record for the PUs’ activity on each licensed band.
Besides, this interface is used to collect air measurements data,
which are used to estimate the available capacity on each
band, either licensed or unlicensed. This effective capacity
depends on several factors such as channel conditions and

other SUs’ activity (devices from other networks that are not
under our control), but it can be estimated passively through
measurements [14] [15]. We consider a solution where the
assignment is performed every T time units and we will
further assume that T is realatively small, so that an accurate
estimation of each band’s available capacity may be obtained
using information from the previous interval. In this work we
suppose that such estimation is exact, so as to concentrate only
in the PUs’ dynamics.

We will also assume that devices can fully exploit the
available spectrum (even disjoint available bands), using a
PHY layer such as OFDM. We also assume there is a MAC
layer mechanism in order to share the spectrum between
nodes (e.g. 802.11 MAC layer). We will focus on a single-
domain spectrum assignment, that is to say, a single cell of an
infrastructure mode network. For example, a use case scenario
would be an access point covering several clients or a point
to point link between two nodes.

Let u = 1, ..., U , be the set of unlicensed frequency bands
(i.e. no PUs, as in ISM bands). Let b = 1, ..., Bt, be the set
of licensed frequency bands (which are assigned to a PU)
available at time t (i.e. PUs are not present). We will note
as cb(t) the effective capacity available on licensed frequency
band b and cu(t) the effective capacity available on unlicensed
frequency band u. We define as spectrum assignment variables
αb(t) and αu(t), which belong to [0, 1], assuming partial band
assignment is possible (e.g. via OFDMA or TDMA).

Now, we can define the total capacity assigned for the
interval starting at T as:

C(αT ) =

B∑
b=1

αb(T )cb(T )hb(T ) +

U∑
u=1

αu(T )cu(T )

where hb(T ) is a real number in [0, 1], according to how much
time each licensed band was actually available during the inter-
val. We will model hb as a random variable, whose distribution
will be learnt from the previously observed dynamics. As we
stated previously the objective is to provide a lower bound to
the resulting throughput, so we will set this bound as a problem
constraint, and we shall note it as d. This lower bound d is
actually the minimum total capacity our system should have
considering all nodes. We further define a cost function:

C(αt) = Clic (α1(t), . . . , αB(t)) + Cunlic (α1(t), . . . , αU (t))

The cost functions Clic() and Cunlic() allow us to give different
weights for each band, depending on the desired spectrum
allocation goal. For example, it is possible to have different
costs depending if the band corresponds to a higher or lower
frequency, which may imply different transmission power
requirements.

After all the stated assumptions, definitions and goals, we
can now define an optimization problem which will lead us
to the assignment algorithm. This problem should be solved
periodically each time T , so we will omit the time index from
now on for a matter of clarity. That is to say, each time T we



should strive at solving the following problem:

minimize
α

Clic (α1, . . . , αB) + Cunlic (α1, . . . , αU ) ,

subject to
B∑
b=1

αbcbhb +

U∑
u=1

αucu ≥ d,

U∑
u=1

αu ≥ 1,

αb ∈ [0, 1], b = 1, . . . , B,

αu ∈ [0, 1], u = 1, . . . , U.

The problem above is actually not well defined, as hb is a
random variable. To take into account this fact, the first and,
as discussed in the introduction, most common approach, is
to use the expected capacity, which is simply:

C(α) =

B∑
b=1

αbcbE{hb}+
U∑
u=1

αucu ≥ d,

where E{hb} can be estimated from the previous records of the
PU’s activity. Thus, the problem above is convex (assuming
the defined cost functions are convex) and can be solved with
standard optimization tools.

The alternative is to change the expected effective capacity
constraint for a probabilistic one:

Prob

(
B∑
b=1

αbcbhb +

U∑
u=1

αucu ≥ d

)
≥ 1− ε,

where ε is a fixed value (close to 0), which leads us to a
convex chance constrained optimization problem (assuming
hb has a log-concave distribution). This approach, with the
advantage of being robust, is more difficult to solve in the
general case. In our particular case it is possible to use the
distributionally robust deterministic equivalent proposed in
[16], which is defined by hb’s means and variances, values that
can be estimated from the previous records of the PU’s activity.
This way, we have again a convex optimization problem, but
now with a deterministic equivalent constraint:

B∑
b=1

αbcbE{hb}+
U∑
u=1

αucu − κε
B∑
b=1

αbcb
√

Var{hb} ≥ d

where κε =
√
1− ε/ε. By this equivalence the problem can

also be solved by standard optimization tools.

III. SIMULATION EXPERIMENTS

In order to model and simulate the licensed band’s scenario
under study, we considered a two-state On-Off discrete time
markov chain (DTMC) spectrum occupancy model (see Fig.
2), which has been proved to be suitable [17]. The parameters
involved in the model are the transition probabilities pon and
poff, which will determine the average busy and non-busy time,
πon = pon/(pon+poff) and πoff = poff/(pon+poff), respectively.
While it is not necessary for the implementation of the
algorithms, as a measurement-based estimation is sufficient, it

Fig. 2. Two-state On-Off DTMC spectrum occupancy model.

is possible with this model to obtain closed-form expressions
of E{hb} and Var{hb} from the model parameters.

We considered a total of 50 frequency bands for all the
simulations, performed for different scenarios. The effective
capacities for each band were all drawn once from a uniform
distribution between 5 and 25 Mbps, and remained the same
for all the simulations. All bands were considered of equal
spectrum bandwidth, each with a generic value BW. Each
simulation was performed for a total time period of 1000 T,
where T (also a generic value) is the time interval between
spectrum allocations. Finally, we used the DTMC spectrum
occupancy model to simulate the PUs’ activity, completing a
total of 20 transitions during each interval, a fixed value used
for all the experiments. The initial occupancy for each licensed
band was drawn in all cases from the corresponding stationary
distribution πon, in order to start each simulation already at
steady state. In order to solve the optimization involved in
each method we used CVX [18], working with MOSEK [19]
as solver.

First, we set 15 unlicensed bands and 35 licensed, and we
analyze the algorithm allocation for different values of pon
and πon. Then, we varied the proportion of bands of each
type, and we study the algorithm allocation for different values
of d (now with fixed pon and πon). As reference results we
considered the solution to the proposed problem when the
realization of hb is known in advance. We shall call this
method the fortune teller (FT). We also include as reference
another simple approach to solve the problem, which we shall
note as CONS (for conservative), and consists of assigning
only unlicensed bands to meet the requirements. It is clear
that this assignment is the safer one concerning the PUs, but
it has the disadvantage of missing out on using all the available
licensed bands. Furthermore, it cannot solve the problem when
the unlicensed spectrum is not enough to reach the throughput
lower bound. To reference the proposed algorithms, we shall
call EXP the one that uses the constraint with the expected
effective capacity. On the other hand, we shall call ROB-ε the
one that takes the robust deterministic equivalent constraint,
where ε is 0.1 or 0.2.

A. Example: minimize the number of bands assigned

For the experiments we set as goal to minimize the total as-
signed spectrum, which might be a suitable objective for SUs,
to have a friendly coexistence of multiple devices from dif-
ferent networks, sharing all the available spectrum. This leads
us to use the following cost functions: Clic (α1, . . . , αB) =∑B
b=1 αb and Cunlic (α1, . . . , αU ) =

∑U
u=1 αu. Anyway, the
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Fig. 3. Experiment example with d = 230 Mbps, pon = 0.01 and πon = 0.1.

framework presented is more general and other issues could
be considered that would lead to different cost functions.

In Fig. 3 we show an example simulation with parameters
pon = 0.01 and πon = 0.1, the same for all licensed bands. The
throughput lower bound d in this case is 230 Mbps, somewhat
below the total unlicensed bands’ capacity which is 248 Mbps.
Notice that CONS and FT are superimposed in the capacity
plot, as they both reach the equality in the constraint. In the
experiments we analyze the average effective capacity and
spectrum assigned during the simulations lasting 1000 T (in
this example we only show 40 T). We also study the short
term success of the proposed methods, which is the percentage
of intervals where the effective capacity is above the defined
lower bound. We will see that although the expected value
approach meets the requirements in average, and is the most
efficient regarding spectrum usage, robust approaches perform
much better at short scales, with a reasonable cost in terms
of spectrum bandwidth allocated. In all the simulated situa-
tions, only using unlicensed spectrum is enough to meet the
requirements, which allows to get a solution with CONS.

We first analyze the results for different values of pon (see
Fig. 4). As we can see all the methods meet the throughput
lower bound in average, something we ensured by placing
it as a constraint in the problem formulation. Looking at
the spectrum assignment, the stochastic approaches clearly
outperform CONS, with better spectral efficiency and closer
to the FT optimum solution as soon as pon goes to 0. It
is clear that for lower values of pon is when these methods
make better sense, as it indicates higher possibilities of making
profit from licensed bands. While robust approaches allocate
more spectrum than the expected value solution, in exchange
they get much better performance at short scale. The average
success rate is 95.4% and 91.5%, for ROB-0.1 and ROB-
0.2 respectively, while EXP only gets 72.8%. The extra
spectrum assigned in average by robust approaches implies
some average capacity overallocation with respect to the stated
throughput lower bound. However, this mild conservatism,
allocating not much more spectrum than FT, is what enables
a higher probability to meet the throughput lower bound also
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Fig. 4. Effective capacity and spectrum allocated as a function of pon when
πon = 0.1 and d = 240 Mbps (total unlicensed capacity = 248 Mbps).

at the short scale.
Now, we analyze the performance for different busy times

(see Fig. 5). We have again a clear advantage of the stochastic
methods against CONS, with less spectrum allocated to meet
the same requirements. Furthermore, the advantage is higher
for lower values of πon, which are the most interesting situ-
ations to benefit from licensed spectrum. Robust approaches
present again some average capacity overallocation, which is
higher for lower values of πon. In return, their short term
effectiveness stands out again, with an average success rate
of 86.4% and 82.6%, for ROB-0.1 and ROB-0.2 respectively,
against 61.6% for EXP. This implies that, although the EXP
solution meets the requirements in average, almost 40% of
the time the effective capacity assigned is below the stated
throughput lower bound. Except for particular cases, where
an expectation based solution might be sufficient, we argue
instead that a robust approach will be more suitable in practice,
with much higher short term performance at a reasonable cost
in terms of spectrum.

Lastly, we set as fixed values pon = 0.01 and πon = 0.1,
and we vary the number of unlicensed bands (from 10 to 30),
keeping the same total number of bands (50) for all cases.
This way, the total unlicensed bands’ capacity changes and we
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Fig. 5. Effective capacity and spectrum allocated as a function of πon when
pon = 0.01 and d = 240 Mbps (total unlicensed capacity = 248 Mbps).
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Fig. 6. Simulation results for d = 0.9 ·
∑

u cu (pon = 0.01 and πon = 0.1).

consider for each case a throughput lower bound equal to 90%
of its value. In Fig. 6 we can see the spectrum overallocation
compared to the FT optimum. The stochastic methods clearly
outperform CONS, with higher advantage for lower minimum
throughput requirements, which is a expected result, as in this
case it corresponds to a situation with more licensed bands.
As the proportion of unlicensed spectrum gets higher, the
benefit from using available licensed bands is lower, but even
in situations where it is greater than the licensed spectrum,
is still worth using it for reaching greater spectral efficiency.
When we look at the short scale performance, we can see again
that the proposed robust approach clearly outperforms the
expectation based solution. While ROB-0.1 achieves 87.3%
of success and ROB-0.2 reaches 83.6%, EXP only gets a poor
59.7%. Furthermore, the price for that performance is only
between 5% to 10% more spectrum assigned than EXP, and
between 10% to 20% more than the optimum lower bound
defined by the FT solution.

IV. CONCLUSIONS AND FUTURE WORK

The spectrum allocation was studied in a mixed scenario,
with both type of frequency bands, licensed and non licensed.
The problem was analyzed from the perspective of SUs, which
might use licensed bands whenever available and unlicensed
bands all the time. We developed a general stochastic formu-
lation considering a periodically scheduled assignment. We
proposed a novel robust approach to solve the problem and
analyzed the advantage against an expectation based solution,
comparing their performance by extensive simulations. The
results show that the proposed solution presents much better
performance with not much additional allocated spectrum.

For future work, we will extend our framework to a
multiple-domain scenario, where we also have to consider
inter-domain interference. The goal will be to analyze how the
spectrum sharing between different domains affect the optimal
spectrum allocation. This is the situation in a multihop wireless
mesh network, where links between nodes might interfere with
each other. In that case, an individual spectrum allocation
by each node would lead to an inefficient solution, so some
kind of coordination between nodes would be necessary. On

the other hand, it would also be interesting to compare the
periodically scheduled allocation proposed with an event-
driven solution. We could analyze which is the threshold in the
PUs’ dynamics when signaling overhead of the latter becomes
tolerable to get a more efficient spectrum allocation.
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