
Optimal multipath forwarding in planned
wireless mesh networks

Germán Capehourata,∗, Federico Larrocaa, Pablo Belzarenaa
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Abstract

Wireless Mesh Networks (WMNs) have emerged in the last years as a cost-efficient alternative to traditional wired access net-
works. In the context of WMNs resources are intrinsically scarce, which has led to the proposal of dynamic routing in order to fully
exploit the network capacity. We argue instead in favour of separating routing from forwarding (i.e. à la MPLS). Our proposal is a
dynamic load-balancing scheme that forwards incoming packets along several pre-established paths in order to minimize a certain
congestion function. We consider a particular but very typical scenario: a planned WMN where all links do not interfere with each
other. We use a simple and versatile congestion function: the sum of the average queue length over all network nodes interfaces.
We present a method to learn this function from measurements and several simulations to illustrate the framework, comparing our
proposal with the IEEE 802.11s standard.
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1. Introduction

Wireless Mesh Networks (WMNs) [1] are no longer just a
promise for the future but a reality today, thanks mainly to the
advantage offered in terms of cost compared to traditional wired
access networks. In particular, outdoor community mesh net-
works [2] and rural deployments [3, 4] based on IEEE 802.11
have seen tremendous growth in the recent past. An example
is Plan Ceibal [5] which provides connectivity to every school
in Uruguay, where WMNs are used to reach suburban and rural
schools. Lately even service providers are beginning to use this
technology, resulting in an increasing presence of carrier-class
equipment in the market [6].

Under this scenario, the typical architecture (see Fig. 1) in-
cludes one or more internet gateways and several relay routers.
Clearly, this intermediate routers increase the coverage of the
access network without requiring more, and probably expen-
sive, connections to the internet. However, several problems
arise that are specific of this kind of architectures.

The main challenge for this kind of networks, at the wireless
mesh backbone level, is routing and forwarding. In the cur-
rent IEEE 802.11s standard [7] (and in several other proposals
[8]) each link has an associated metric value as cost. This cost
is expected to change over time, and reflect current conditions
(propagation conditions, interference, etc.), so as to maximize
a certain criteria (e.g. throughput). To choose a path to its des-
tination, each router executes a shortest path algorithm. This
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Figure 1: Wireless Mesh Network (WMN) typical architecture.

procedure is essentially the same than the one used in wired
networks. The main difference is that, just like in the internet
until the early eighties, link costs are allowed to change at a
time scale of some seconds [9]. The more static configuration
that is used nowadays is due to the oscillations caused by these
dynamic costs. It seems like history is repeating itself, since
early experiments with WMNs have also reported routing os-
cillations [10, 11].

However, a completely static routing approach is not a suit-
able solution in this context. Static means non-optimized rout-
ing. In the wired case this is not such a big issue, since re-
sources, specially in the core, are relatively inexpensive (in fact,
most core networks are overprovisioned). On the contrary, in
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wireless networks resources are intrinsically scarce, and “up-
grading” a link’s capacity is not always a possibility. Available
resources must then be used at its maximum, and for this pur-
pose a certain form of dynamism must be implemented in the
network.

We present a novel approach which separates routing from
forwarding, just like MPLS does in the wired context. That
is to say, each ingress router has several possible paths to-
wards the destinations, and these paths remain unchanged as
long as no topological change takes place (e.g. a node failure).
Please note that in the context of WMNs we may safely as-
sume that nodes are fixed and do not change status nor posi-
tion very often. Each new incoming flow will be forwarded
along one of these paths, a decision that each ingress router
will take depending on the current network condition We shall
call this procedure dynamic load-balancing. We propose one
such scheme that forwards incoming packets along several pre-
established paths in order to minimize a certain objective func-
tion. If correctly designed, load-balancing will bring improved
performance over static routing, without the difficult to avoid
oscillations of pure dynamic routing. For more arguments in
favour of load-balancing see the discussion presented in [12],
where Caesar et al. argue for a separation of timescale between
offline computation of multiple paths and online spreading of
load over these paths, or the analysis by Pham et al. [13] where
single-path and multi-path routing protocols are compared in
a wireless networks scenario, showing that the latter provides
better performance.

We consider a particular but very typical scenario: a planned
WMN, where all bidirectional point-to-point links do not in-
terfere with each other. This assumption means either that all
backhaul links use different channels or that links in the same
channel are in different collision domains. There are many sce-
narios where this assumption holds, for example suburban or
rural area networks and even campus networks, deployed with
high directional antennas with proper RF design and channel
assignment. This assumption also implies that the network
topology is already defined, typically at infrastructure deploy-
ment phase. This means we cannot decide which backhaul links
to establish but only how to use them, i.e. which traffic route
through them.

The question that remains is to what purpose should load-bal-
ancing serve and be worthwhile. That is to say, what function of
the traffic distribution should be optimized (where “traffic dis-
tribution” refers to the portion of traffic sent along each path).
In this paper we argue that this function should be the sum over
all nodes’ interfaces of the corresponding average queue length.
As shall be discussed in Sec. 3, this is a very versatile and im-
portant performance indicator. The problem we address is then
to find the traffic distribution that minimizes the sum over all
interfaces of the average queue size. However, instead of re-
lying in analytical expressions based on (arbitrary) models, we
will strive at reflecting reality as much as possible, and design a
measurement-based scheme. In this framework the relationship
between the average queue length and the current traffic distri-
bution will be learned from measurements, and the optimization
shall be performed based on this learned function.

This kind of approach, using a network model developed
from measurements of queue sizes and traffic loads, has al-
ready proved suitable for a wired scenario [14]. In this work,
we extend the framework to the previously described wireless
scenario. Furthermore, we also consider the dynamic gateway
selection problem and we obtain a load balanced solution us-
ing the proposed approach. Differently to the wired case, in the
considered wireless scenario the average queue size at a given
interface now depends not only on the incoming traffic, but also
on the activity of the interface at the other end of the link. We
model each link with only one average queue (the sum of both
interfaces involved) which depends on the traffic in both link
directions. A method to learn this bi-variable function is pre-
sented, whereas simulations illustrate the framework.

It is important to highlight that we are considering a WMN
where links performance is stable and predictable, with a
strong correlation between the error rate and the received signal
strength. In the context of WMN, as stated in [15], interference
(and not multipath fading) is the primary cause of unpredictable
performance. In the scenario of interest there is no internal in-
terference, so we expect to have a proper model with the pro-
posed learning technique.

In a nutshell, the contributions of this paper are the follow-
ing. We propose a load-balancing framework for multipath for-
warding in 802.11 WMNs and we show the advantages for this
kind of networks. We compare the performance of the pro-
posed method with static routing through shortest path and dy-
namic routing using 802.11s. Several simulations over canon-
ical topologies show the advantages of the proposed scheme
over the alternatives. The proposed framework also copes with
the gateway selection problem, typically present in WMNs.
The deployment of WMNs in recent years has grown and is
expected to continue rising, so it becomes essential to find a
proper routing/forwarding to provide adequate service to the
also growing traffic demands. The results we present suggest
that dynamic load-balancing is an excellent candidate.

The rest of the paper is structured as follows. In the next sec-
tion we describe some previous work and highlight some recent
papers. In Sec. 3 we introduce the network model and most of
the notation used in the paper. The paper continues in Sec. 4
where we describe the procedure for learning the congestion
function model from measurements, while in Sec. 5 we detail
the operation of the proposed method. Finally, in Sec. 6 we
present the simulation experiments and performance compari-
son, while conclusions and future work are discussed in Sec.
7.

2. Related work

In the context of WMNs, several previous works presented
new metrics for single path routing that take into account infor-
mation from lower layers [8]. The need to increase the WMNs
capacity led to the use of nodes with multiple radio interfaces
which was analyzed in [16, 17]. In this paper we consider a
planned WMN, where all links do not interfere with each other.
Even in an unplanned scenario several algorithms have been
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proposed [18, 19, 20] which could be used to schedule the links
so that they do not interfere with each other.

There are some recent related works that we would like to
highlight. In [21] an optimization framework is presented to
reach minimum average delay per packet in a single channel
WMN. Starting from a Markov chain model for the medium
access of a single node, they derived a closed form representa-
tion for the average system delay which is used as the objective
function. The model takes into account the neighbours inter-
ference but several parameters of the Markov chain need to be
calculated or defined which could difficult the implementation.

Another work that uses an analytical model in the context of
single channel WMNs is [22]. In particular, the authors devel-
oped a queuing-based model which is used to estimate the net-
work capacity and to identify network bottlenecks. Based on a
load-aware routing metric they choose the corresponding path
for each new incoming flow, and then based on the model a cen-
tralized entity performs admission control to guarantee network
stability. They focused on per-flow performance and compare
the results with shortest-path first routing algorithm.

Concerning dynamic gateway selection, in [23] an heuristic
algorithm was proposed to tackle the problem. A single channel
WMN is considered between routers, but operating in a differ-
ent channel than links between WMN nodes and mobile hosts.
They assume that a routing protocol is executed in the WMN
which establishes routes between every pair of nodes, includ-
ing the gateways. They seek to minimize the maximum number
of flows served by a gateway and minimize the cost of paths
in order to avoid interference in the network. Contention re-
gions are modelled as the maximal cliques of the contention
graph, which leads to a Mixed Integer Nonlinear Programming
(MINLP) formulation of the problem. Their proposal solves
gateway selection for internet flows in a centralized manner us-
ing a greedy heuristic.

To the best of our knowledge, the only work that pro-
poses a forwarding scheme for WMNs is the recent article
[24], where the authors present an MPLS-based forwarding
paradigm. However, two important differences with our pro-
posal should be highlighted. Firstly, they allow traffic splitting
at every node in the network while we only allow it at ingress
routers. Secondly, and most importantly, they considered the
hose traffic model (only knowledge about maximum traffic de-
mands) which leads to a robust routing fashion to solve the
problem. The optimization cost function of a routing solution
is calculated as the average over all the feasible flows alloca-
tions, where the function used is a weighted average of the total
utilizations over all the collision domains. We think that in the
context of WMNs, it is more appropriate to consider a dynamic
load-balancing solution rather than a robust routing scheme, be-
cause it is exactly in scenarios with highly dynamic traffic like
WMNs where the former takes advantage over the latter. For a
deep comparison between both methods please refer to [25].

All in all, two major differences should be distinguished be-
tween our proposal and previous works. The first one is the
introduction of a measurement-based model for 802.11 links,
whereas most of the literature is based on (arbitrary) MAC layer
models like the one presented in Bianchi’s seminal paper [26].

The second important difference is the time scale at which de-
cisions are taken. Most of routing algorithms proposed for
WMNs are based on a certain metric which changes at a time
scale of seconds. Our framework operates with averages taken
over tens of seconds and forwarding decision is taken with flow
granularity. This fact enables decoupling the link model learn-
ing phase from the forwarding decision, and ensures better sta-
bility properties avoiding route flapping problem.

3. Network Model and Problem
Formulation

Firstly, let us remark that in the context of WMNs we may
safely assume that nodes are fixed and do not change position
very often. In addition, power supply is not a problem, so we
will completely ignore energy consumption. We will then con-
centrate on the performance as perceived by packets in terms of
delay, dropping probability and throughput. Naturally, we will
limit ourselves to the WMN, which means that throughput will
refer to a quantity proportional to the inverse of the time that it
takes any given packet to leave the network.

Before introducing the notation, let us highlight that through-
out this paper we will assume that each node has a single FIFO
queue attached to each of its (possibly several) interfaces. This
means that all packets at each interface will receive the same
treatment, independently of its destination, number of traversed
hops, etc. This is not a very problematic assumption, since
the only queue management that most wireless routers imple-
ment is some form of prioritization of certain particular and few
packets (e.g. ARP packets).

Let n = 1, ...,N be the set of static wireless mesh routers (in-
cluding gateways) which we shall call nodes and l = 1, ..., L
the backbone bidirectional links in the network. Typically, high
gain directional antennas are used for backhaul links with other
nodes and sector panels or omnidirectional antennas are used to
provide connectivity for mobile stations. Gateways nodes have
also wired links to a fixed infrastructure network with internet
access. We will focus on the mesh core, so only backhaul links
and aggregated traffic at mesh routers will be considered. Traf-
fic generated at node n will refer to all traffic arriving at n from
the mobile hosts attached to it. We will assume that this traf-
fic uses different channels (e.g. 802.11b/g) than the ones used
within the mesh core (e.g. 802.11a). If n is a gateway, the gener-
ated traffic also includes that coming from the internet to nodes
in the WMN. As we mentioned before, we shall further assume
that channels within the mesh core do not interfere with each
other. Moreover, paths are assumed to be established a priori
and how to choose them is out of the scope of the present paper.
In particular, we will use the k shortest paths.

Traffic generated at a node will have as final destination a set
of nodes, which may contain for instance any other node in the
WMN. This defines a set of possible origin-destination (OD)
pairs, which we shall index by the integer s = 1, ..., S . The
amount of traffic corresponding to OD pair s will be noted by
ds and we further define the column vector d = [d1 ... dS ]T . We
will assume that entries in d are independent of each other. In
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Figure 2: Wireless link queues and flows in both directions.

particular, this means that the amount of traffic sent to the inter-
net through a particular gateway does not influence the amount
of traffic that gateway generates.

Each pair will have a set of ns fixed, established a priori
paths, which we shall note as Psi for i = 1, ..., ns. The amount
of traffic sent along path Psi shall be noted as dPsi = αPsi ds,
where αPsi is the traffic distribution coefficient for path Psi. We
further define α = [αP11 ... αP1n1

αP21 ... αPS 1 ... αPS nS
]T as the

traffic distribution vector. The following two constraints should
hold

∑ns
i=1 dPsi = ds ∀ s and dPsi ≥ 0 ∀ s, i, which implies∑ns

i=1 αPsi = 1 ∀ s and αPsi ≥ 0 ∀ s, i.
Within this context, for each link l we have two traffic loads,

one for each direction of the communication, which we shall
call ρl1 and ρl2 taking any arbitrary convention (see Fig. 2).
Given a demand vector d and a traffic distribution vector α, the
total traffic load on link l in one direction (e.g. ρl1 ) is given by
the sum over all OD pairs of the traffic forwarded along those
paths Psi which use the link in that direction. Let Dl1 be the
average amount of time a packet spends at the queue of link l in
the direction of load ρl1 . Naturally, this non-decreasing function
depends on the traffic load ρl1 , which is the queue’s input traffic
intensity. However, and due to the half-duplex operation of the
link and the 802.11 medium access control, Dl1 also depends on
the load in the opposite direction (ρl2 ).

Let us now discuss with more detail what this delay is com-
posed of. Once a packet enters a node interface queue, it has
to wait for several things to happen. Firstly, it has to reach the
head of the line of the queue. What happens after then depends
on whether the node is a gateway and the packet goes to the in-
ternet, or not. In the former case, it has to wait for all its bits to
be sent by the wired interface. In the latter case, it has to wait
for the channel to be idle. Once this happens, the packet has
to be correctly received by the destination node. This includes
the transmission delay plus maybe some retransmissions. It is
important to highlight then that queueing delay captures several
aspects of the wireless link operation: congestion at the MAC
layer, transmission errors at PHY layer and the chosen modula-
tion rate.

Let DP be the average end-to-end delay of path P. Note that,
as mentioned above, the throughput of path P is proportional to
the inverse of DP. This fact in addition to what we discussed
above suggests the use of the average end-to-end queueing de-
lay in the network D(d,α) as a total congestion measure:

D(d,α) :=
S∑

s=1

ns∑
i=1

dPsi DP =

S∑
s=1

ns∑
i=1

αPsi dsDP (1)

Notice that this measure depends, on the one hand, of the vector
d, defined by the OD traffic demands, which cannot be set as
desired because they are given by the network usage. On the
other hand, the function also depends on the traffic distribution
vector α, which we can control and will set so as to minimize
the network congestion. Then, it is easy to prove that the sum
over all the paths is equal to the sum over all the links, so we
have:

D(d,α) =

L∑
l=1

Dl1
(
ρl1 , ρl2

)
ρl1 + Dl2

(
ρl2 , ρl1

)
ρl2

Let Ql1 and Ql2 be the mean amount of bytes on link l queues
on each direction. Then, by Little’s law we obtain the following
result: Ql1 = Dl1 × ρl1 and Ql2 = Dl2 × ρl2 . Finally D(d,α) is
given by:

D(d,α) =

L∑
l=1

Ql1
(
ρl1 , ρl2

)
+ Ql2

(
ρl1 , ρl2

)

=

L∑
l=1

Ql
(
ρl1 , ρl2

)
where Ql is the average sum over both link queues (i.e. Ql1 +

Ql2 in Fig. 2). In Sec. 4 we will present a measurement-based
scheme to characterize Ql

(
ρl1 , ρl2

)
.

All in all, the dynamic load-balancing scheme should strive
at solving the following problem:

minimize
α

D(d,α) =

L∑
l=1

Ql
(
ρl1 , ρl2

)
subject to:

ns∑
i=1

αPsi = 1 ∀ s,

αPsi ≥ 0 ∀ s, i.

Let us further justify our choice of the objective function.
Equation 1 suggests that our objective function may be regarded
as a weighted average end-to-end delay, where the weight of
each path is how much traffic is being sent along it. This means
that

∑
l Ql considers both delay and throughput at the same time.

Concerning dropping probability, the last of the three perfor-
mance indicators cited before, it should be clear that a bigger
value of it will result in a bigger queue at the output air inter-
face, resulting in a bigger

∑
l Ql. The conclusion of this dis-

cussion is that
∑

l Ql is a number that is affected by the three
performance indicators, and as such reflects the three of them.
We referred to this when we said before that

∑
l Ql is a versatile

indicator.

4. Wireless Link Average Queue

In this section we present the procedure to choose the most
appropriate Ql

(
ρl1 , ρl2

)
for every 802.11 link in the network.

We shall omit the subindex l since the procedure is the same for
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every link. The function Q (ρ1, ρ2) is not trivial as we are deal-
ing with 802.11 wireless links which use CSMA/CA as medium
access control mechanism. Several works since [26] have tried
to find the relation between wireless link parameters and the
corresponding TCP and UDP achievable throughput. We use
a different approach, that has already proved suitable for wired
links [14], which is learning the function from measurements.
This way we avoid using an arbitrary model and reflect reality
as much as possible. However, the learning procedure should
be carried out with some care. For instance, differently to the
wired case, the average queue length at a given link is now a bi-
variable function, because it depends not only on the incoming
traffic, but also on the traffic in the opposite direction.

Assume we have a set of N measurements {Q1,Q2, ...QN}

for the corresponding values {(ρ11 , ρ21 ), (ρ12 , ρ22 ), ... (ρ1N , ρ2N )}
(also called training set). Assume that the response variable Q
(the average queue length measurement) is related to (ρ1, ρ2)
(the link average traffic loads measurements) by the following
equation:

Q = f (ρ1, ρ2) + ε

where ε is the measurement error and is modelled as a random
variable such that E{ε} = 0 and Var{ε} = σ < ∞. The Weighted
Least Squares (WLS) problem consists in finding the function f
that minimizes the weighted sum of quadratic errors, assuming
that f belongs to a given family of functions F . The weights
represent the relative importance of each measurement point
with respect to the rest of the measurements in the training set.

We present a method that restrict the assumptions on the fam-
ily of functions F to the minimum. Regarding its shape, we
have only two necessary assumptions: (i) f (ρ1, ρ2) should be
non-decreasing, since more load may never mean less queue
length; (ii) f (ρ1, ρ2) should be convex in order to guarantee
the existence and uniqueness of the optimum demand vector
(later on we will discuss on this assumption). We then con-
sider F as the family of continuous, monotonous increasing
and convex functions. This WLS problem with such F is called
Convex Non-parametric Weighted Least Squares (CNWLS), a
variation of the original unweighted Convex Non-parametric
Least Squares (CNLS) [27]. The size of F makes this problem
very difficult to solve in such general form, which motivates
to use instead a subfamily of F , the piecewise linear functions
included in F . This lead us to a standard finite dimensional
Quadratic Programming (QP) problem in order to solve the re-
gression, for which mature methods to solve it exist (e.g. in-
terior point algorithms) and several solver software are avail-
able (for instance, we used MOSEK [28]). This scheme is eas-
ily adaptable to update the function in real time through online
learning as new measurements are gathered from the network.
This fact could be useful to react properly to physical changes
that may affect the link capacity (e.g. antenna misalignment or
environmental changes).

We will now discuss on the convexity assumption mentioned
before. A necessary condition for the convexity of Q (ρ1, ρ2)
is that the feasible region of the link is convex (i.e. the set of
{(ρ1, ρ2)} such that Q (ρ1, ρ2) < ∞). Several previous works
studied the feasible region for 802.11 wireless multihop net-
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Figure 3: Feasible region analysis for a 802.11a link @54Mbps.

works. This region is known to be not necessarily convex,
which is demonstrated in [29] with models and simulations for
different topologies. This fact is also analyzed in [30], where
the log-convexity of this region is established, a fact that is
taken as a basis for characterising max-min fair rate alloca-
tions for 802.11 WMNs in [31]. However, the model presented
in [32] approximates the feasible region by a convex polytope.
The procedure is based on the computation of extreme points in
order to get the polytope convex hull (boundary) and it is shown
that most of the cases presented in [29] can be adequately cap-
tured by this model.

For the case we are considering in this paper, a planned
WMN, the analysis is much simpler because we have only two
nodes that can interfere with each other (i.e. the endpoints of
each link). This simplifies the feasibility region analysis to the
study of the behaviour of only one link as the traffic loads in
both directions changes. For this purpose, first let us take a
look at the well-known Bianchi model [26] to notice that the
capacity for two nodes is 2.5% larger than for a single node.
This fact indicates that two simultaneously transmitting nodes
may support more traffic than only one, which means that feasi-
ble region of a 802.11 point to point link should be convex. We
further studied the feasible region for a 802.11a link operating
at 54 Mbps with simulations performed with the ns-3 simulator
[33] and real data measurements. In Fig. 3 we can see the re-
sults for different traffic compositions combining TCP and UDP
flows. As we can see, the feasible region increases as the pro-
portion of UDP traffic increase, with throughput ranging from
24 to almost 30 Mbps. It is clear from the results that for all
cases it is suitable to use a convex model as an approximation,
as used in [32].

4.1. Average queue regression example

In order to illustrate the proposed procedure we will show an
example with simulations performed with ns-3. We configured
a wireless link operating in 802.11a, with a distance = 100m be-
tween nodes and fixed RSS = −65 dBm as propagation model.
This implies that the link is always operating at the same mod-
ulation rate (54Mbps in this case).
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Figure 4: RSS measurements for two real 802.11 links.

As we said before, we are considering a WMN where links
performance is stable and predictable, with a strong correlation
between the error rate and the received signal strength. Under
this assumption, if we do not have much RSS variation for our
network links, we will not have variation at all on each link
modulation rate. This assumption is valid for a wide range of
WMNs, not only in rural or suburban areas, but also in some
urban scenarios with LOS links using directional antennas. As
an example in Fig. 4 we show the RSS for one week for two
urban links from Plan Ceibal network. Both of them operate
with line of sight and with an approximated distance of 200m
between nodes. As we can see the RSS variation is not signif-
icant and enables a stable link operation at a fixed modulation
rate, as the receiver sensitivity for 54Mbps is -71dBm. This fact
is consistent with the data shown in [15].

Now, we present an example for one link to illustrate the pro-
cedure followed for every link in the network in the learning
phase. In this example we generated a dataset of 484 measure-
ments, 228 used for learning the function and the remaining
256 for testing the regression performance. To generate each
flow with the desired traffic load ρ, we used a combination of
random TCP and UDP flows (80% and 20% respectively). TCP
flows were generated with exponential file sizes with mean 500
Kbytes. UDP flows were generated with a fixed rate of 100
kbps and exponential length with mean 30 seconds. The arrival
rate distribution was also exponential for both cases, with mean
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Figure 6: Relative RMSE for the example test data.

according with the desired traffic loads (0.8ρ and 0.2ρ respec-
tively). Each measurement corresponds to the average traffic
load in both directions (ρ1, ρ2) and the average queue length Q,
where averages are considered over 100 seconds.

In Fig. 5 we present the resulting function after the regres-
sion in logarithmic scale (for the sake of clarity). Queue size
is expressed in packets because both ns-3 simulator and typical
wireless equipment use 802.11 packet-based queues [34]. The
RMSE for training data was 4.3 packets, while the RMSE for
test data was 5.5 packets. The relative RMSE for training data
was 2.9% with a maximum of 14.2%, while for test data was
4% with a maximum of 15.2%. The RRMSE for test data is
shown in Fig. 6. This results show that the function approxima-
tion is suitable.

The presented example is only to show the procedure we fol-
lowed for every link in the network in the learning phase. Once
we have learned the function Ql(ρl1 , ρl2 ) for each link, we are
in position to tackle the optimization problem defined in Sec.
3. The forwarding decision will come up from the optimum
traffic distribution vector α which minimizes the total network
congestion.
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5. Optimal forwarding proposal

In order to drive the network to the desired operation point,
we have to solve the optimization problem detailed in Sec. 3:

min
α

L∑
l=1

Ql
(
ρl1 , ρl2

)
; s.t.

ns∑
i=1

αPsi = 1, αPsi ≥ 0.

For this purpose, we used a gradient descent method to iter-
atively update the traffic distribution vector α by setting the
proper load balance leading to the optimum. We can assure
that there are no local minima because we are minimizing a
sum of convex functions, which is also a convex function. To
start the optimization algorithm we need an initialization step,
so certain initial values have to be set to enable the network to
begin the operation. Then, we consider a periodic update every
∆T seconds, given by:

αt+∆T = αt − γ · ∇

 L∑
l=1

Ql
(
ρl1 , ρl2

)
where γ is the gradient descent step size. Before updating α
we have a normalization step to guarantee the constraints on
αPsi . With this procedure the demands are periodically adjusted,
using the following equation for updating the traffic distribution
coefficient which corresponds to the path Psi:

α̂t+∆T
Psi

=

αt
Psi
− γ

∑
l:l∈Psi

∂Ql

∂ρlsi

(
ρt

l1 , ρ
t
l2

)+

(2)

αt+∆T
Psi

= α̂t+∆T
Psi

/

ns∑
i=1

α̂t+∆T
Psi

(3)

Notice that the partial derivatives in the second term are with
respect to ρlsi , which is the traffic load of link l in the direction
that corresponds to path Psi. This fact implies that for updating
the traffic distribution coefficients αPsi we only need to know
the learned functions for the links used by the path Psi, which
means that edge routers only need information from the inter-
mediate routers included in the pre-established paths they will
use, enabling a decentralized implementation of the algorithm.
All the notation used in this paper is summarized in Tab. 1.

The complete network operation is defined by the three pro-
cesses: measurement-based learning of the objective function,
update of traffic demands distribution via gradient descent op-
timization and packet forwarding on a per-flow basis. These
processes operate at different time scales as shown in Fig. 7.

At the longer time scale we have the measurement-based
learning of the average queue length function, which takes sev-
eral hours of information to update the Ql

(
ρl1 , ρl2

)
for every link

in the network following the procedure described in the previ-
ous section.

Then we have the update of traffic demands distribution in
order to lead the network to the minimum queue length load
balance (i.e. for each OD pair we use Eqs. 2 and 3). In this case
each iteration is performed at a smaller time scale than model

Table 1: Index of key notations.
Variable Description
1, .., n, ..,N Set of nodes (i.e., wireless mesh routers)
1, .., l, .., L Set of bidirectional links
1, .., s, .., S Set of OD pairs
ds Average traffic demand for OD pair s
ns Number of paths for OD pair s
Psi i-th path for OD pair s
dPsi Average amount of traffic for path Psi

d Average traffic demands vector
αPsi Traffic distribution coefficient for path Psi

α Traffic distribution vector
ρl1 , ρl2 Average traffic load on link l for each di-

rection
Dl1 Average delay at link l in the direction of

load ρl1
DP Average delay at path P
Ql1 Average queue size at link l in the direction

of load ρl1
Ql Sum of the average queues sizes at link l
αt

Psi
Traffic distribution coefficient for path Psi

at time t
γ Gradient descent step size

learning, but a much longer time scale than packet forward-
ing. The optimization takes into account average values, so we
need an update period long enough to take good quality aver-
age measurements. On the other hand, this period should not
be excessive in order to be able to respond quickly when traffic
conditions change abruptly. Typically a suitable period is some
tens of seconds, which is the minimum time to get reasonable
average measurements (e.g. we used 100 seconds).

The smaller time scale corresponds to the packet forwarding,
which is performed with flow granularity. This means that ev-
ery new traffic flow at an ingress router corresponding to OD
pair s is associated with a certain path Psi with probability αPsi .
Let us recall that we have certain pre-established paths defined
by the network topology. This packet forwarding scheme is
very similar to the one used in wired networks with MPLS. Sev-
eral paths are defined at edge routers, where incoming traffic is
labelled according to the corresponding path and then packet
forwarding at relay routers is based on labels. This is why we
say that our proposal of separating routing from forwarding is

Figure 7: Processes involved in the proposed framework.
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a solution à la MPLS.
With respect to the running time of each action, its precise

value depends on the specific hardware at use (e.g. ingress
router, relay nodes). However, it is clear that the more costly
actions are the ones that operate at a larger timescale (i.e. func-
tion learning costs more than gradient descent and both of them
more than forwarding).

5.1. Implementation Issues

The application of the proposed framework in a real-world
network is relatively simple. First of all we need a routing pro-
tocol to establish the multiple routes for each OD pair defined
by the wireless network topology. Once we have learnt Ql for
every link l, each ingress router receives the values ρl from the
links used by the OD flows with origin in that ingress router.
A routing protocol that supports information distribution such
as OSPF-TE may be used for this purpose. With that informa-
tion, each ingress router is able to update the traffic portion that
has to be routed through each path. This process is repeated
indefinitely every some seconds.

With respect to the flow-based multipath forwarding imple-
mentation, the idea is to use an MPLS-based solution, similar
to the wired case. Although an standard of MPLS over WMNs
does not exist yet, several proposals were already presented.
For example in [24] the proposal considers traffic splitting at
every router and optimization over the average of all possible
traffic matrices. Our proposal could be implemented reusing
the same splitting-based scheme, but considering splitting only
at ingress routers over all the different end-to-end paths and en-
abling dynamic load-balancing for the average load at each mo-
ment.

Regarding the learning phase we envisage several possibili-
ties differing in the resulting architecture. One possibility is that
a central entity gathers the measurements, performs the regres-
sion and communicates the obtained parameters to all ingress
routers. This option has the advantage that the required new
functionalities on routers are minimal. However, as all cen-
tralized arquitectures, it may not be suitable for some network
scenarios, and handling the failure of this central entity could
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Figure 8: Training set size analysis. On each box, the central red mark is the
median and the edges of the box are the 25th and 75th percentiles.

be very complicated. An alternative is that for each wireless
link only the two directly involved routers perform the regres-
sion. They should keep the average queue size measurements
for themselves, perform the regression and communicate the
result to the ingress routers.

Another aspect that has different possibilities is what char-
acterization (i.e. Ql learnt function) use at each moment and
which measurements to keep for the training set. Measurements
could be gathered every day, the regression performed, and its
result could be used the next day or the same day the next week.
In addition, it is clear that newer measurements should be given
priority over older ones. A possible way to manage training
data is to keep always the newer measurements and use weights
in the regression to introduce temporal information (e.g. expo-
nential decay). It may also be necessary to force keeping par-
ticular measurements to ensure a proper coverage density of the
whole load value range.

Concerning the number of measurements needed for training,
we now show how the considered learning algorithm (CNWLS)
does not need a large number of measurements, as long as the
training samples adequately covers the whole range of possible
values. In Fig. 8 we show the test error analysis for training sets
with different sizes, using the same data as in the example dis-
cussed in section 4.1. In particular, for each size, we randomly
sampled several training sets (we used 20) and computed the
corresponding average RRMSE with the test data for the result-
ing learned function. As we can see, the RRMSE is always
below 10% with only 60 training samples and falls below 5%
with more than 150 samples.

Finally, rare events like node failures or changes in propa-
gation conditions can be taken into account in our framework
as follows. If interference on a particular link changes, this is
captured when the learning of the function associated with that
link is repeated. As we mentioned before, this learning pro-
cess is periodically repeated. However, if several new measure-
ments differ greatly from the learned model, one could decide
to trigger a new learning process. Moreover, if a node fails, the
ingress routers will not receive the corresponding link load in-
formation. If no such announcements are received for a certain
period of time, this should lead to the decision of disabling all
paths that use the faulty router.

6. Simulation experiments

In order to validate the framework we tested the proposed
minimum queue length load-balancing (MQLLB from now
on) algorithm with simulations performed with ns-3. Most of
the examples considered correspond to canonical topologies of
WMNs [29] but also to typical configurations in real deploy-
ments (e.g. Plan Ceibal network [5]).

In this paper we will present four examples. The first one is a
three node topology used to describe the framework operation.
In the second example we illustrate the gateway selection prob-
lem which can be solved within the same proposed framework.
The third example corresponds to a four node topology where
we deeply analyze the advantage of the proposed model under
asymmetric traffic demands, comparing the performance with
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IEEE 802.11s. Finally, we present an example with a larger
network, a 25 node uniform square grid, where we analyze con-
vergence and scalability of the algorithm.

In all the examples the traffic considered is the same de-
scribed before in Sec. 4 with a combination of TCP and UDP
flows (80% and 20% respectively), both of them with exponen-
tial arrival rates. We also used exponential distributions for the
file size (in case of TCP flows) and length (in case of UDP
flows), with the same characteristics mentioned for the model
learning example shown before. Wireless links were set to the
standard 802.11a with a distance of 100m between nodes, while
the propagation model used was fixed received signal strength
(RSS = −65 dBm) which implies that links always operate at
the same modulation rate (@54Mbps). The buffer size for each
interface is 400 packets (ns-3 default) which is consistent with
typical wireless equipment [34]. In every case, we used 235
measurements in the learning phase for each link, which is ap-
proximately 6.5 hours of training data. Then, we implemented
the MQLLB method which uses the described optimization
framework to iteratively update α, taking the forwarding de-
cision with a flow level granularity.

For performance comparison we considered as a benchmark
the IEEE 802.11s routing scheme, which uses HWMP (Hy-
brid Wireless Mesh Protocol) to compute paths. We think this
benchmark is the most suitable one, as HWMP is the only al-
gorithm included in an approved standard up to date and can
be used by everyone to compare with. In addition, there are
implementations available as the one included in the ns-3 simu-
lator. Such protocol uses a routing metric called airtime metric
which is designed to represent the channel resources needed for
a frame to be transmitted over a wireless link and is calculated
as follows:

airtime =

(
Oca + Op +

Bt

r

) 1
1 − e f r

where Oca, Op, and Bt are constants quantifying respectively
the Channel Access Overhead, the Protocol Overhead, and the
number of Bits in a probe frame. Oca and Op depend solely on
the underlying modulation scheme, r is the transmission rate,
and e f r is the frame error rate. This routing metric is simi-
lar to ETX (Expected Transmission Count) and ETT (Expected
Transmission Time) [8, 16]. However, airtime further accounts
for channel access and protocol overheads. An implementation
of 802.11s is available in the ns-3 simulator.

For performance analysis and comparison we considered
three metrics: average delay and jitter of UDP flows and av-
erage goodput of TCP flows, which corresponds to the amount
of data per second carried by TCP flows discarding TCP ACKs.
The analysis for each flow was done using the ns-3 flow monitor
[35] which enables flow level statistical analysis of the simula-
tion. We compared the results with the 802.11s performance for
the different scenarios. We also considered static routing as a
different alternative, using shortest path routing with hop count
as metric.

d1
d2

d1

d2
n=3

n=2

n=1
l=1

l=2

l=3

Figure 9: 3-nodes topology multipath forwarding example.

6.1. Multipath forwarding: 3-nodes topology

The first example is presented to illustrate the framework and
corresponds to the topology and flows shown in Fig. 9. This
topology has three links 1, 2 and 3, which implies we have also
three functions Q1, Q2 and Q3, each of them corresponding
to the sum of the link queues in both directions. In this case
we considered flows from node 1 to nodes 2 and 3 with traf-
fic loads d1 and d2 respectively. When we apply the described
framework to this particular topology and the considered traf-
fic flows, we have the following function for the average end to
end queueing delay in the network:

D(d,α) = Q1(ρ11 , ρ12 ) + Q2(ρ21 , ρ22 ) + Q3(ρ31 , ρ32 )

For each OD pair we have two possible paths:

• P11 = {1, 2} and P12 = {1, 3, 2} for d1.

• P21 = {1, 2, 3} and P22 = {1, 3} for d2.

We will call αP11 the portion of traffic d1 that is routed through
path P11, which leaves αP12 = 1−αP11 through path P12. We will
call αP21 the portion of traffic d2 that is routed through path P21,
which leaves αP22 = 1 − αP21 through path P22. Functions Q1,
Q2 and Q3 are learned from previous measurements following
the procedure described in Sec. 4. Then, in order to find the
optimum forwarding decision for a particular combination of
the considered traffic flows, we have to find the optimum values
of αPsi which lead us to the minimum network congestion. The
proposed framework applied to this particular case leads us to
the following optimization problem:

min
αP11 ,αP21 ,αP12 ,αP22

Q1 + Q2 + Q3

subject to: αP11 + αP12 = 1

αP21 + αP22 = 1

αP11 , αP21 , αP12 , αP22 ≥ 0

Then, in order to update αP11 (for αP21 is analogous) we have
to use the following equations:

α̂t+∆T
P11

=

[
αt

P11
− γ

(
∂Q1

dρ11

−
∂Q2

dρ22

−
∂Q3

dρ32

)]+

αt+∆T
P11

= min
(
α̂t+∆T

P11
, 1

)
9
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Figure 10: Total queue for the 3-nodes topology symmetric case.

UDP flows UDP flows TCP flows
Method Delay (ms) Jitter (ms) Goodput (Mbps)
MQLLB 14.6 6.7 15.2
802.11s 17.5 7.6 13.9
static routing 14.3 7.1 15.4

Table 2: Performance metrics for the 3-nodes topology symmetric case.

In order to choose the most appropriate function Ql for each
link we followed the measurement-based method described in
Sec. 4. In the learning phase, to generate the training data we
used simulations with different traffic distribution coefficients
αPsi , uniformly covering all the possibles values. Then, to cal-
culate the partial derivatives of each link queue Ql we used the
learned functions in order to periodically update the αPsi .

Now, we will present the simulation results using the pre-
sented framework for two different traffic loads: symmetric and
asymmetric cases. First we will show a symmetric example
where traffic loads were d1 = d2 = 13 Mbps. In Fig. 10 we
can see the evolution during the simulation of the total queue
size (expressed in packets), which corresponds to the sum of all
interfaces queues in the network. We present the comparison of
the instantaneous queue size and the 100-seconds average with
the theoretical optimum queue length, which is calculated from
the learned model and the traffic average measures. We show
from time t = 400s, when we have already reached steady state,
starting with αP11 = 1 and αP21 = 1 (i.e. both flows forwarded
through link 1), which causes saturation at link 1 and we start
using MQLLB at time t = 1000s. Concerning the performance
metrics, the results are summarized in Table 2. We can see that
none of the metrics show significant differences between the
three alternatives. It is clear that with symmetric traffic as in
this case, static routing through shortest paths is a good alterna-
tive, as the results reflect. Notice that 802.11s presents slightly
worse results, something which will be deeper analyzed in the
next simulations.

The other example with the three-node topology corresponds
to an asymmetric case, where traffic loads were d1 = 20 Mbps,
d2 = 5 Mbps. We started the simulation with αP11 = 1 and

UDP flows UDP flows TCP flows
Method Delay (ms) Jitter (ms) Goodput (Mbps)
MQLLB 14.3 6.6 15.5
802.11s 43.1 8.9 9.6
static routing 35.1 8.6 11.2

Table 3: Performance metrics for the 3-nodes topology asymmetric case.

αP21 = 0 (i.e. only the one-hop path for each OD pair). In
Fig. 11(a) we can see the total queue size evolution from time
t = 400s. We started the operation of MQLLB at time t = 1000s
and as we can see the average queue size goes down which
means the network is better load balanced. Fig. 11(b) shows
the traffic distribution coefficients evolution. Notice that at time
t = 1100s, when the second update round happens, we already
reached the optimum load-balancing. Looking at performance
metrics shown in Table 3, we can see that the difference is clear
in favour of MQLLB in this case where we have asymmetric
traffic. As expected, for the asymmetric example we have an
important improvement in the network performance due to the
load-balancing mechanism.
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(a) Total queue size evolution.
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Figure 11: 3-nodes topology asymmetric case simulation.
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UDP flows UDP flows TCP flows
Method Delay (ms) Jitter (ms) Goodput (Mbps)
MQLLB 21.4 8.1 10.8
static routing 48.4 9.2 8.3

Table 4: Performance metrics for the gateway selection asymmetric case.

6.2. Gateway selection problem

In this subsection we will analyze an example correspond-
ing to the gateway selection scenario shown in Fig. 12. We
will show that it is possible to solve this problem under the pro-
posed framework, treated as an equivalent multipath forwarding
one. In this topology we considered downlink flows to nodes 3
and 4, with demands d1 and d2 respectively, which can be dis-
tributed between the two gateways GW 1 and GW 2. Notice
that both gateways could be considered as the same traffic ori-
gin (internet). We can think this origin as a super node, con-
nected to both gateways by links with infinite capacity (shown
with dashed lines in Fig. 12). Then, the gateway selection prob-
lem turns into a multipath forwarding problem, where we have
to decide which portion of traffic demands d1 and d2 to forward
through each of the possible paths from the super node (inter-
net), which is equivalent to decide which portion of traffic to
route from each gateway.

In this example, we also considered inter-gateways flows
from node 1 to node 2 and viceversa, with demands d3 (from
1 to 2) and d4 (from 2 to 1) respectively. This traffic flows may
exist due to mobile hosts directly attached to one gateway that
access resources allocated at servers in the other gateway. There
is only one possible path for this flows, so there is no forward-
ing decision to take for that OD pairs. However, they affect the
amount of traffic on each link, which leads the network to a dif-
ferent load condition than the one without inter-gateways flows.
It is a desirable property of the algorithm that the existence of
those inter-gateways flows do not affect the forwarding decision
of the other flows.

We will analyze an asymmetric simulation example where
traffic loads are d1 = 15 Mbps, d2 = 5 Mbps and d3 = d4 =

3 Mbps. In this case network started operating with shortest

d1

d3

d2

d4
GW 1

3 4

GW 2

Figure 12: Gateway selection problem.
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(a) Total queue size evolution.
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(b) Average packet delay for UDP flows.

Figure 13: Gateway selection with asymmetric traffic loads.

path routing with hop count as routing metric (i.e. d1 through
GW 1 and d2 through GW 2). The heavy traffic load from GW
1 to node 3 produces congestion in that link, which is visible
in Fig. 13(a) where the total average queue evolution is shown
from t = 400s, when we have already reached steady state. The
operation of MQLLB starts at t = 1000s and reached conver-
gence at t = 1200s. The final total average queue length as
we reached convergence is 79 packets, which is almost 50%
smaller than before starting MQLLB where it was 154 pack-
ets (with peaks up to 235). In Fig. 13(b) we show the average
packet delay analysis for UDP flows. Please note that the x-axis
does not correspond to time but to the flow index. It is clear that
after MQLLB starts there is an important improvement with a
smaller average delay. Performance metrics are summarized in
Table 4, where we compare the results of MQLLB with static
routing through the nearest gateway (802.11s was not consid-
ered in this gateway selection example). It is clear the advan-
tage of using MQLLB in this case, particularly noticeable in the
UDP flows delay with an improvement of more than 50%.

For the gateway selection problem there is an important issue
to solve for a real-world implementation. For the downlink case
(traffic coming from the internet) we cannot perform path selec-
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UDP flows UDP flows TCP flows
Method Delay (ms) Jitter (ms) Goodput (Mbps)
MQLLB 19.0 6.7 15.4
802.11s 141.3 8.0 4.8
static routing 104.0 8.4 6.8

Table 5: Performance metrics for 4-node topology example, situation 1.

tion at the ingress routers (i.e. the gateways) since we are dis-
tributing traffic between paths that do not share the same origin
node. A simple alternative to solve this issue is to make gateway
selection with client granularity. In this case, the routers which
are directly connected to mobile hosts may decide the proper
gateway for each client. In order to improve the performance
of this approach these routers could monitor each client traf-
fic demand. Thus, the optimization process could use a client
granularity but including the client demand information, which
allows a better traffic forwarding update at each step.

6.3. Multipath forwarding: 4-node topology

The next example correspond to a four nodes topology with
five 802.11 links and two OD pairs (see Figs. 14 and 17). In this
scenario we have three possible paths for each OD pair, each of
them of distance 1, 2 and 3 links. We will consider only the
two shortest paths for each one, so we have to decide for each
OD pair, how much traffic to forward on each route. As we
said before, the possible paths for each OD pair are defined by
the network topology, but we can decide not to use any given
path by configuration, because we want to simplify the network
operation or just avoid the usage of a particular path. We will
consider two different situations, both of them with asymmet-
ric traffic demands, but the difference between them is how the
paths share the different links.

First, we will analyze the situation shown in Fig. 14, where
both flows are from left to right, so links are shared by flows
in the same direction. We simulated the scenario with d1 =

25 Mbps and d2 = 10 Mbps and compared the performance of
MQLLB with 802.11s. Both simulations have a total duration
of 2500s, in one case beginning with static routing using only
the single-hop paths and MQLLB starting at time 500s and in
the other case using 802.11s during all the simulation. The dif-
ferent performance metrics analyzed show a clear advantage of
MQLLB over 802.11s and static routing. The results are sum-
marized in Table 5, where we can see an improvement of more
than 70% in the average delay for UDP flows and more than
100% in the average goodput for TCP flows. In Figs. 15(a)

d1
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d2

Figure 14: 4-node topology multipath forwarding example, situation 1.
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(a) Simulation with 802.11s.
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(b) Simulation with static routing and MQLLB.

Figure 15: UDP flows average delay analysis for 4-node topology example,
situation 1.

and 15(b) we show the average packet delay evolution for UDP
flows in time order during the first 1000s of the simulations.
Similarly, in Figs. 16(a) and 16(b) we show the average good-
put evolution for TCP flows. In both cases it is clear the moment
when MQLLB starts the operation (at 500s), which is reflected
on the network performance with a smaller average delay for
UDP flows and a larger average goodput for TCP flows.

The other considered situation is shown in Fig. 17. The
traffic loads are the same than before (d1 = 25 Mbps and
d2 = 10 Mbps), but now d1 is from left to right and d2 from
right to left, so links are shared by flows in the opposite direc-
tion. The results, which are summarized in Table 6, are quite
similar to the previous situation, with significant improvements
in all the analyzed performance metrics in favour of MQLLB.
The purpose of this example is to show the ability of the pro-
posed framework to cope with different link sharing situations,
with traffic demands sharing the links both in the same direction
or in opposite directions.

To explain the improvements of using an scheme like
MQLLB instead of 802.11s, we must first note the advantage
of considering multiple paths for each origin-destination pair,
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(a) Simulation with 802.11s.
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(b) Simulation with static routing and MQLLB.

Figure 16: TCP flows average goodput analysis for 4-node topology example,
situation 1.

which allows a better adaptation to the particular traffic con-
ditions. This fact is particularly clear when we analyze asym-
metric traffic situations like the one of the examples. Second,
we must consider the problems of using a metric that reflects
the dynamics of each link at each moment as the airtime used
by 802.11s. As studied in [11] routing oscillations may happen
because of the dynamics of the different links metric. When
more traffic is forwarded through a link, the metric is degraded,
which causes that quickly we can find an unloaded link with
a better metric. This fact causes that the node will change the
selected path and it will start forwarding the traffic on the other
link. The new selected link will suffer the same metric degrada-
tion that the other one had before, so the node will change the

UDP flows UDP flows TCP flows
Method Delay (ms) Jitter (ms) Goodput (Mbps)
MQLLB 25.9 7.2 13.9
802.11s 141.6 8.4 4.7
static routing 101.9 8.2 6.8

Table 6: Performance metrics for 4-node topology example, situation 2.

d1

d2
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d2

Figure 17: 4-node topology multipath forwarding example, situation 2.

selected path again. This phenomenon is repeated indefinitely
generating an oscillation of the chosen path. This phenomenon
was also noticed in [36] where it was called “ping-pong” ef-
fect, and the results reported in that work were similar with the
ETX metric. This fact explains the bad performance of 802.11s,
which is even worse than the one for static routing through one-
hop paths in this examples. The proposed MQLLB uses aver-
age measurements to reflect the dynamics which allows a quick
adaptation to traffic changes but ensuring an stable operation
for steady state situations.

6.4. Gateway selection: 25-node topology

Finally, we present a gateway selection scenario in a 25-node
topology to take a look into scalability and convergence of the
proposed framework. The nodes are disposed in a 5 x 5 uni-
form square grid with side 500m and links are established be-
tween the closest nodes, all with a 100m distance. We call each
node ni j using matrix notation and we have two gateways corre-
sponding to nodes n15 and n51 (top right and bottom left of the
square respectively). We have a routing protocol (OSPF) which
establishes routes between every pair of nodes, so, as we have
two gateways, each node has two possibles routes to the inter-
net. We will use the proposed method to find the proper traffic
distribution between gateways for each node, which is called in
this example αi j (α = 1 means all the traffic comes from n15).

The traffic considered in this example is all downlink (from
the gateways to the other nodes) and it was generated with the
same characteristics as in previous examples. In the simulation,
we started with αi j = 0.5 for all nodes, which corresponds to
half of the traffic coming from each gateway for all of them.
The load values used in the simulation were 5Mbps for nodes
{n11, n12, n13, n14, n52, n53, n54, n55} and 2.5Mbps for the rest of
the nodes.

We enabled the operation of MQLLB at t = 300s. In Fig.
18 we show the evolution of the traffic distribution αi j for each
node, while for the gateways we show the total traffic load that
comes from each of them. We can see that all the nodes which
are at the same distance from each gateway (nodes nii, at 4-hop
distance to gateways) remained with αii = 0.5 during all the
simulation. On the other hand, nodes which are closer to gate-
way n15 changed to αi j = 1 while the ones closer to gateway n51
changed to αi j = 0. This means that nodes with one gateway
closer than the other, change the traffic distribution in order to
receive all the traffic from the closest gateway. Taking into ac-
count the convergence, we can see that nodes which are closer
to gateways converge in less optimization steps than the oth-
ers. For example, looking at gateway n51 we can see that nodes
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Figure 18: Traffic distribution and aggregate load at each GW as a function of
time (subplot i j corresponds to node ni j).

at one hop distance converge in one step, while nodes at two
hop distance take two iterations to converge and finally nodes
at three hop distance take three iterations to reach convergence.
In Fig. 19 we show the evolution of the total average queue,
where we can appreciate its steep descent when MQLLB starts
the operation.

7. Conclusions and Future Work

In this paper we proposed an algorithm for dynamic mul-
tipath forwarding in a WMN. The algorithm enables load-
balancing and conducts the network to operate at the mini-
mum average congestion. The proposed framework also allows
to solve the gateway selection problem in a WMN. This was
achieved learning the average queue length function from mea-
surements for each link and applying an optimization method
in order to reach the minimum average queue length in the net-
work. The proper evolution and convergence of the proposed
method was verified by our packet-level simulations over sev-
eral canonical topologies which served as a proof of concept.

We further analyzed the simulations taking several flow-level
performance metrics as average delay and jitter for UDP traf-
fic and average goodput for TCP traffic. With this metrics we
studied the performance of the proposed MQLLB method com-
pared with the IEEE 802.11s standard. The results show a clear
advantage of MQLLB against a dynamic metric routing method
like the one used by 802.11s. In all the simulations, indepen-
dently of the topology size, we observed a quick adaptation of
MQLLB to traffic changes and also an stable operation, avoid-
ing the routing oscillations of 802.11s, already noticed before
by [11, 36].

In our future work we will perform the learning phase with
real data which includes among other issues the non-zero chan-
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Figure 19: Total queue size evolution.

nel error rate, typical of a real-world wireless link. All the sim-
ulations presented in this paper are done with synthetic traffic,
so we would like to extend our work using real traffic data. It
would also be very interesting to perform a statistical analy-
sis of the behaviour of the mean queue size with respect to the
load. A possible analysis would be to study how often does the
regression function change over time (i.e. answer the question
of whether the mean queue size function changes over time, and
how often it does).

Another aspect of our future work is the implementation of
the proposed framework in a real-world network which was
briefly discussed in this article. One possible way is to ex-
plore the adaptation of a recent MPLS-based routing scheme
for WMNs [24] to our proposal. A testbed deployment would
be useful for enhancing the algorithm and detecting real-world
driven problems that need to be solved. An interesting point
which could be more profoundly studied in the future is the
optimization phase. This problem could be solved by several
different methods and was not analyzed in the present paper. Fi-
nally, we would like to extend the proposed framework, which
was developed for a link disjoint WMN, to scenarios that have
not only point to point links but also point to multipoint links.
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