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Abstract In the Internet, user-level performance of P2P ap-
plications may be determined by the interaction of two inde-
pendent dynamics: on the one hand, by the end-to-end con-
trol policies applied at the P2P application layer (L7); on
the other hand, by Traffic Engineering (TE) decisions taken
at the network level (L3). Currently available tools do not al-
low to study L7/L3 interaction in realistic settings, due toa
number of limitations. Building over ModelNet, we develop
a framework for the real-time emulation of TE capabilities,
named ModelNet-TE, that we make available to the scien-
tific community as open source software.

ModelNet-TE allows (i) to deploy real unmodified In-
ternet P2P applications, and to test their interaction with
(ii) many TE algorithms, as its design allows to easily inte-
grate other TE algorithms that those we already provide, (iii)
in a furthermore controlled network environment. Due to
these features, ModelNet-TE is a complementary tool with
respect to hybrid simulation/protoyping toolkits (that con-
strain application development to a specific language and
framework, and cannot be used with existing or proprietary
applications) and to other open testbeds such as PlanetLab
or Grid5000 (lacking of control or TE-capabilities respec-
tively). ModelNet-TE can thus be useful to L7-researchers,
as it allows to seamlessly and transparently test any exist-
ing P2P application without requiring any software modifi-
cation. At the same time, ModelNet-TE can be useful to L3-
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researchers as well, since they can test their TE algorithms
on the traffic generated by real applications.

As a use case, in this work we carry on an experimen-
tal campaign of L7/L3 routing layers interaction through
ModelNet-TE. As TE we consider the classic minimum con-
gestion load-balancing, that we compare against standard IP
routing. As example P2P applications, we take BitTorrent,
one among the most popular file-sharing applications nowa-
days, and WineStreamer, an open source live-streaming ap-
plication. We emulate BitTorrent and WineStreamer swarms
over both realistic topologies (e.g., Abilene) and simplistic
topologies that are commonly in use today (e.g., where the
bottleneck is sited at the network edge) under a variety of
scenarios.

Results of our experimental campaign show that user-
level performance may be significantly affected by both the
TE mechanism in use at L3 (e.g., due to interactions with
TCP congestion control or P2P chunk trading logic), as well
as scenario parameters that are difficult to control in the wild
Internet, which thus testifies the interest for tools such as
ModelNet-TE.

1 Introduction

It is desirable that P2P algorithms and protocols are tested
before they can be deployed at large scale. Simulation-based
performance evaluation is often non representative of real-
world dynamics, even when simulations are carried on ex-
ploiting the very same prototype code. As such, recent re-
search on P2P networking embraced an experimental ap-
proach to assess P2P protocol performance. This usually
involves either (i) the deployment of small to large-scale
testbeds, such as Grid5000 [28], where the environment is
fully under control but not representative of real world dy-
namics, or (ii) the use of large-scale testing facilities, such
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PlanetLab [49] or OneLab [44], that benefit of the realism
of the wild Internet, but lacks however of control.

Researchers face thus the following dilemma. On the
one hand, their testbed results may be easily reproducible,
but hardly representative of real-world performance: in this
case, the large development and deployment effort invested
in the testbed does not payoff, since the offered level of real-
ism only slightly exceeds the one achievable by simulation.
On the other hand, carrying on experiments over the wild
Internet allows to gather realistic results, though in thiscase
the experimental scenario is not under control and generally
hardly reproducible. Loss ofcontrol means that it may be
very hard to correlate the observed performance with their
root cause, so that experimental results become hard to in-
terpret. Loss ofreproducibility –which has been a require-
ment of experimental science since Hipparchus (ca.190 BC
– 120 BC) measurement on Earth axial precession– can fur-
ther hinder cause-effect relationships, and is therefore not a
favorable environment for beta testing.

Efforts such as ModelNet [62] offer a third way, enabling
the control of thecore network topology. Unlike simulative
approaches, ModelNet uses a full networking stack, mean-
ing that the ability to control the network does not come
at the price of the performance evaluation realism. Notice
that the control of the core network topology is not avail-
able in Grid5000, PlanetLab and OneLab: hence, ModelNet
does not try to fully substitute to these existing experimental
facilities, but rather to complement them. In a sense, Mod-
elNet stands between these approaches for being more re-
alistic than Grid5000 or smaller testbeds and, at the same
time, more controllable than PlanetLab. Furthermore, exper-
iments on ModelNet can be reproducible (L3 topology, traf-
fic condition, etc.) as in Grid5000 and unlike in PlanetLab.
These capabilities make it a valuable complementary tool
for P2P application developer to test their systems. Mod-
elNet is however only capable of shortest-path IP routing,
which represents its major drawback. This limitation makes
it is not suitable for research in Traffic Engineering (TE),
nor completely realistic as emulation environment, since no
source-routing or load-balancing techniques, though widely
used as of today [8], are available for testing.

In this work, we present ModelNet-TE, an extension of
ModelNet that enables TE emulation and experiments. Fur-
thermore, we port the original ModelNet core code from
BSD to Linux, making it available to the scientific com-
munity [40]. The ModelNet-TE tool is interoperable, scal-
able and flexible. Interoperability and scalability are directly
inherited from the original ModelNet code, that allows to
run possibly thousands of unmodified application instances
(provided that certain constraints are met, which we detail
in the following). Flexibility is instead a key of ModelNet-
TE, as we took special emphasis in the design of a reusable

toolbox, where researchers can easily integrate their own TE
algorithms beside those that we already provide [25,42].

We use ModelNet-TE to evaluate the uncoordinated in-
teraction between Traffic Engineering (TE) at the network
layer (L3) and end-to-end control policies applied by P2P
systems at the application layer (L7). Indeed, though a num-
ber of work have studied the issue of selfish routing [30,31,
35, 45, 50, 56] most of these work adopt a theoretical ap-
proach, which is especially true for the case of the unco-
ordinated interaction of routing dynamics at different levels
[30, 31, 35]. On the other hand, while several experimen-
tal studies of popular P2P applications exists [15,22,48,51,
57,59,65] they nevertheless neglect the interaction with the
underlying network. While their approach is necessary to
understand application dynamics, it does not allow ISPs to
understand the impact of TE on the traffic of their users; nor
it allows P2P developer to assess how do their algorithms
perform over a reactive network.

Aiming at filling this gap, we study the L3/L7 interaction
via ModelNet-TE. To prove the flexibility of ModelNet-TE,
and to gather a full blown set of results, we carry on an ex-
perimental campaign that, as sketched in Fig. 1, considers
a rich set of (i) L3 topologies and routing algorithms and
of (ii) L7 applications and peer population models. At L3,
we consider both a simplistic pure overlay model, where
the bottleneck is only at the access, as well as the popu-
lar Abilene topology spanning across the US, in which any
link can become a bottleneck (depending on the traffic ma-
trix induced by the P2P application). As reactive L3 Traffic
Engineering we implement a multi-path load balancing al-
gorithm [25], that we compare to standard shortest path IP
routing. At L7, we consider two reactive P2P applications,
namely BitTorrent [14], the most popular file-sharing appli-
cation nowadays, and WineStreamer [13,34], an open source
live streaming application. Furthermore, we consider botha
uniform peer population across the network, or a skewed
population, that reflects the actual number of citizen in ma-
jor US urban areas.

We point out that we use BitTorrent and WineStreamer
asexamplesof filesharing and live-streaming P2P applica-
tions of our experimental campaign. At the same time, as
ModelNet-TE is engineered totransparently workwith any
P2P application, it requires no modification or instrumen-
tation to the P2P application. Similarly, while we limitedly
consider anexampleof multi-path load balancing, other Traf-
fic Engineering algorithms can be easily integrated in ModelNet-
TE as we will show in the following. As such, the ModelNet-
TE tool can be used by other researchers to perform simi-
lar experimental campaigns on completely different sets of
P2P applications and TE algorithms. We therefore believe
ModelNet-TE to be a valuable addition for the experimental
evaluation of P2P systems – to which it adds the ability to
control the underlying network, a feature that was missing
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Fig. 1 Synopsis of the elements taken into account in this paper

in the other available tools (see Sec. 5 for a more thorough
comparison).

Summarizing, this paper achieves two main milestones.
First, we offer the scientific community a full blown, open
source, customizable network emulator with real-time traffic
engineering capabilities. The tool can be used with modest
investment (i.e., few servers), to emulate medium to large
scale overlays. Second, we carry the first thorough cam-
paign, exploiting an experimental methodology, that focuses
on the interaction of P2P dynamics with the underlying L3
network. Experimental results yield the following interest-
ing insights: (i) bottleneck in the network (which recently
arose in case of popular applications and content [17, 38])
may have a profound impact on the P2P application per-
formance; (ii) the peer population model, other than shap-
ing the traffic perceived by the L3 network, may signifi-
cantly contribute in determining P2P performance; (iii) traf-
fic engineering may ameliorate network-centric ISP perfor-
mance (e.g., equalize traffic on links) to the detriment of
user-centric P2P performance (e.g., due to unexpected in-
teractions with TCP transfers or P2P trading logic).

The rest of this paper is organized as follows. In Sec. 2
we present a system-level view of the original ModelNet-
TEemulator, describing the TE extension and the load bal-
ancing algorithm we implement, providing an initial assess-
ment of its scalability as well. Sec. 3 provides a detailed de-
scription of the emulated scenarios, describing the P2P ap-
plications used, the different network and population mod-
els, and the evaluation metrics. Results of our experimen-
tal campaign are then reported in Sec. 4. Finally, related
work are overviewed in Sec. 5, before conclusive remarks
are drawn in Sec. 6.

2 ModelNet-TE Emulator

2.1 ModelNet Primer

The original ModelNet software [62] is an IP network emu-
lator, which allows to run unmodified applications plugging
them into realistic, large-scale networks. ModelNet imple-
ments emulated virtual topologies that are independent from
the physical testbed interconnection. A synoptic of its ar-

chitecture is sketched in Fig. 2. The ModelNet environment
consists of two kind of machines, HOST and CORE, inter-
connected by a physical LAN (address 192.168.0.0/24 in
the figure). The COREmachine emulates the virtual network
with an arbitrary topology, while each HOST machine runs
multiple instances of the application under test (in our case,
BitTorrent or WineStreamer clients, see Sec. 3.2). Each in-
stance is bounded to a Virtual Node (VN) and a virtual IP ad-
dress belonging to a private subnet (typically the 10.0.0.0/8
network), dedicated to ModelNet emulation. While in the
physical topology VNs runs on HOST machines, in the vir-
tual topology each VN is attached to a Gateway node (GW),
that constitutes its ingress/egress point in the emulated net-
work.

Notice that, for the emulation to be successful, each packet
generated by any VN application instance must be deliv-
ered to the CORE over the physical LAN: this is because,
for each packet, IP network emulation takes place at kernel
level in the CORE. Emulation tasks can be summarized as
follow: using the source and destination virtual IP addresses
of packets coming from applications running on HOST ma-
chines, the COREdetermines a path through the virtual topol-
ogy and handles the packets accordingly. Each hop on this
path has a given bandwidth, queuing, propagation delay, and
packet loss characteristics: thus, this hop-by-hop emulation
lets IP traffic experience realistic wide area effects, possibly
including congestion on core links. Notice that packet em-
ulation occurs in real time, and packet delays are handled
with millisecond accuracy.

For the sake of clarity, Fig. 2 depicts the case of an ap-
plication instance bound to a virtual node VN having IP ad-
dress 10.0.0.1, that wants to send a packet to a VN having IP
address 10.0.0.4. Though both VNs are on the same physi-
cal HOST, packets are however delivered to the CORE over
the physical LAN, through a kernel level hack happening at
the interface of the machine hosting the source VN1. The
CORE routes then the packet in the emulated topology: once
the packet has crossed all path hops (in the emulated topol-
ogy), it is delivered (again through the physical LAN) to the
HOST to which the destination VN is bound.

2.2 ModelNet-TE Overview

To overcome the single-path limit, we have modified the
original ModelNet kernel module to allow multiple paral-
lel path to be used between any source destination pair: we
call the improved emulator ModelNet-TE. We have ported

1 ModelNet-TE flips a bit of the virtual destination address, which
forces packets to exit the HOST (instead of being “captured” by the
loop-back interface), and be directed to the CORE (which is set as
HOST default gateway). The same bit of the IP destination addressis
then flipped again at packet reception in the CORE.
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the original BSD code to the Linux kernel, that we make
available2 at [40].

Notice that ModelNet-TE inherits from ModelNet its abil-
ity to seamlessly and transparently work with unmodified
applications. This implies that ModelNet-TE can be used
with any existing P2P application, as it requires no modi-
fication or instrumentation3 to the P2P application.

We now briefly describe the improved internal ModelNet-
TE structure. As can be seen in Fig. 2, the topologies emu-
lated by ModelNet-TE can be logically divided in two sec-
tions: abackbonepart that connects the gateways nodes GW
and anedgepart that comprises the set of access links inter-
connecting each VN to a single GW node. In practice, we
can imagine that each GW to which VNs are attached, acts
as WiFi hotspot or an ADSL DSLAM. We point out that
the TE algorithms only apply to thebackbonepart of the
network, acting thus on aggregated traffic demands coming
from the network edge.

The high-level idea of the ModelNet-TE extension is
depicted in Fig. 3, where all the relevant components are
represented, as well as their relationship and their mean of
interaction. Basically, theemulated topologyis described
through an XML file, as in the original ModelNet-TE. Topol-
ogy definition consists in specifying both edge and back-
bone link, by fully defining the property of each link (such
as bandwidth, delay, loss probability, queue size, etc.) and
their topological interconnection structure.

Routing tables of nodes in the emulated topology are in-
stead specified in asource routesfile, representing the For-

2 As our patch applies only to specific versions of the Linux kernel
(namely2.6.18 or 2.6.22 ), and so as to reduce the startup time
for new users, we directly provide full ready-to-use systemimagesof
the patched COREand HOST machines, containing the source code as
well.

3 Clearly, instrumentation of the P2P application, whether possible,
can bring a more detailed view of the QoE perceived by P2P users. At
the same time, we provide basic QoS monitoring of end-point traffic
(e.g., traffic volumes, delay, jitter, losses, etc.) that are general enough
for any P2P applications.

warding Information Base (FIB). In ModelNet, FIB is a text
file containing, for each VN couple, the list of hops that each
packet coming from sourceV NS and destined toV ND has
to cross. In ModelNet-TE, the FIB is extended in order to
handle multiple routes between each VN pair: more specifi-
cally, aprobability is associated to each of the multiple paths
connecting each VN couple. The kernel-level forwarding
module applies then this probability for each packet: i.e.,on
each new packet arrival, one of the multiple paths is chosen
at random according to the specified probability.

Notice that the forwarding module only applies per-path
probabilities, but expects an externalL3 TE routing mod-
ule to set them: this way, routing optimization isdecoupled
from low-level forwarding, making it easy to integrate new
algorithms. Notice also that, in the context of this paper, the
TE mechanism we are considering is limited to per-packet
multi-path forwarding, though ModelNet-TE also supports
per source-destination pair load balancing (as the FIB han-
dles source-routed paths). We point out that studies such as
[9] have shown that per-packet load balancing, though not
predominant, is not rare at all in today ISPs. Furthermore,
to prove the flexibility of ModelNet-TE and the extendibil-
ity due to the FIB/forwarding decoupling, ModelNet-TE al-
ready implements two different TE algorithms [25, 42]. In
this work, for reasons of space, we use only one among [25,
42], that we briefly describe in Sec. 2.3; we instead refer
the reader to our technical report [24] for an experimental
performance evaluation of P2P systems with the other algo-
rithm [42].

We point out that centralized TE algorithms can easily
run on ModelNet-TE. Notice that, given that all GW traf-
fic transits through the CORE machine, the TE optimization
algorithms running on the CORE benefit of the knowledge
of the Traffic Matrix (TM), and of the load on each link.
TM is continuously updated by the CORE: more precisely,
at a configurable periodic interval, the CORE exports TM
information from the kernel, writing it in an output text file
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containing theload of each link on the network (expressed
as the sum of the PDU lengths that crossed each link during
that timeframe). TM information can then be used as input
by the TE toolbox running in the user space, so to compute
the FIB to be used by the CORE in the kernel-level forward-
ing process, as illustrated in Fig. 3.

The routing/forwarding decoupling is not only a natural
choice, as it follows from standard operation in IP networks,
but also simplifies the integration of new modules by (i) pro-
viding a simple, clean and natural interface for the Linux en-
vironment (i.e., a file to read TM statistics from the kernel,
a file to write FIB information for the kernel) and (ii) avoid-
ing constraints on the time-scale of TE optimization module
(which asynchronously runs in user space). To better grasp
the advantages of this design choice, let us consider which
one between the (i) TE optimization and (ii) FIB update pro-
cess may constitute a bottleneck. Consider the ideal case of
an instantaneous optimization algorithm: then, update rate
could only be limited by the time it takes ModelNet-TE to
read the new FIB from disk. As, in our experience, loading
the update routing tables takes less than a second (for mod-
erate size networks of 10-50 nodes), this poses no constraint
on the choice of TE timescale. Indeed, the bottleneck in the
FIB reconfiguration rate is more likely tied to the TE algo-
rithm running time, that depends on the algorithm complex-
ity, and is generally tied to the solution of an optimization
problem.

With respect to our L7 vs L3 routing interaction study in
a P2P vs TE scenario, notice that once the source routes are
updated by the TE module, the CORE will use the updated
routes in the emulated topology, possibly triggering in turn
changes at L7 due to P2P traffic dynamics, as depicted in
Fig. 3. This feedback happens naturally, i.e., without requir-
ing any modification at the application level, which is thus
unaware of the L3 dynamics. In turn, changes in the L7 traf-
fic matrix translate into different loads at L3, which possibly
triggers a new update of the source routes by TE, closing the
feedback loop.

2.3 ModelNet-TE Minimum Congestion Load Balancing

The L3 TE algorithm we consider in this paper is the classic
minimum congestion load balancing problem, probably first
introduced in [19]. For each linkl, we define a convex in-
creasing functionfl(ρl), whereρl is the load on linkl, and
the problem objective is to minimize the sum over all links
of

∑
l fl(ρl). The rationale is that this function represents

the congestion on the link, and that TE should strive to min-
imize the total congestion on the network. Convexity is in-
tuitively justified by the fact that at higher loads, an increase
in load generates more congestion than at lower loads. This
objective function has become very popular, to the point
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that [66] defines TE as the procedure through which the net-
work operator minimizes

∑
l fl(ρl).

Regarding the link congestion functionfl(ρl) we chose
the resulting mean queue size of a M/M/1 queue:

fl(ρl) =
ρl

cl − ρl

(1)

The influence of the particular choice offl(ρl) on different
performance indicators is studied in [25]: as long as (1) is
convex, increasing and diverges asρl reachescl, the exact
choice is unimportant in what regards path available band-
width and link utilization.

The first input to the algorithm is the TM information.
If every GW is ordered by an index, TE traffic matrix con-
tains in itsij-th entry the mean traffic demand from nodei
destined to nodej, usually called Origin-Destination (OD)
pair. In addition to the TM, the algorithm also requires a set
of paths that each OD pair may use. By specifying this seta
priori , the resulting optimization problem is convex, which
simplifies its solution (note that paths in this set are onlypo-
tentially used in the solution, i.e., the amount of traffic sent
along some paths may be zero). In particular, we bound the
length of alternate paths|A| with respect to the length of the
shortest path|S| found by Dijkstra, so that|A| < |S|+3. In
other words, we take alternate paths that exceed the shortest
path by at most two hops, so to be able to route around a
congested link or node, without incurring the load overhead
of longer paths.

All in all, given the topology, thefl(ρl) associated to
each link on the network, the traffic matrix and the paths
that each OD pair may use, an algorithm is needed to find
the amount of traffic that each GW should send along each
path, so as to minimize

∑
l fl(ρl). With this respect, sev-

eral choices are possible since the problem is convex. For
instance, a classical approach to this kind of problems is
the gradient descent method [18]. However, most of gradient
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based algorithms include a parameter that controls conver-
gence speed, which may be very tricky to assign. Although
for each algorithm there exists a range for this parameter that
makes the solution converge, in turn these values may result
in slow convergence in certain situations. Conversely, larger
values for the descent parameters may translate into faster
convergence, but can possibly also trigger oscillations.

To avoid this reactivity-stability tradeoff, we resort to the
use of so-called no-regret algorithms: in particular, ModelNet-
TE implements the Incrementally Adaptive Weighted Ma-
jority (iAWM) algorithm [7], that presents the advantage of
self-regulation. For instance, its convergence speed is auto-
matically set, depending on previously observed values of
fl(ρl). For lack of space, we invite the reader to [7] for a
thorough algorithm description, and to [25] for extensive
simulations results.

2.4 ModelNet-TE Scalability

It should not be forgotten that virtual nodes and virtual topol-
ogy are ultimately emulated by the over a physical network,
and that multiple virtual nodes are run on HOST machines.
Hence, certain constraints must be met so to avoid that LAN
capacity, CPU or RAM bottlenecks perturb the experiments.
Our setups comprises 6 HOSTs and 1 CORE machines, each
equipped with Intel Xeon CPUs (4 cores in hyper-threading
running at 1.86GHz) and 4GB RAM, that are interconnected
by an Ethernet Foundry EdgeIron 24G-A switch with 1 Gbps
ports ports and a 4 Gbps back-plane.

Concerning CPU and RAM bottleneck, we can sepa-
rately consider COREand HOSTs machines. First, the CORE

machine runs the forwarding and optimization engines: the
first is highly efficient as implemented at kernel-layer, while
the efficiency of the second depends on the TE algorithm
implemented (and in our setup, it was never the bottleneck).
Second, we experimentally verified that each HOST is able
to run up to 35 P2P clients without incurring CPU penal-
ties (i.e. CPU idle time was always higher than 20%): hence
for instance, with 6 machines, we can build overlays whose
size reachesNP = 200 P2P clients (which is also a reason-
able swarm size for both file-sharing and live-streaming, cfr.
Sec. 3.2). Notice that we are considering much more conser-
vative settings than, e.g., what usually considered in Planet-
Lab (for instance, [48] limits the overlay size on PlanetLab
to 160 peers running on machines that report at least 5%
idle CPU time). All in all, CPU bottleneck limitations are
easy to get around, e.g., by increasing the number of HOST

machines (to scale up the size of the L7 overlay), or by up-
grading the raw computational power of the CORE (to scale
up the size of the L3 network).

Rather, we point out that the number of P2P applica-
tion instances that can be run on a single HOST machine
also depends on the emulated VN uplinkCU,i and downlink

CD,i access capacities, as these translate into constraint on
the physical HOSTcapacity (in our scenarios, we verify that
such safety constraints are met, see Sec. 3.2).

An even more stringent constraint applies however to
CORE capacity: indeed, in ModelNet-TE each packet needs
to traverse the core twice, and although packets are sent on
virtual interfaces, they enter the CORE through the same
physical interface. As emulation happens in real time, at any
time the overall traffic sent by all HOSTs in the physical net-
work (or, equivalently, by all VNs in the emulated network)
must not exceed the capacity of the CORE as otherwise un-
wanted queuing and drop effects may arise in the physi-
cal LAN, perturbing thus the experiments. In other words,
it must be ensured that the sum of uplink and downlink
traffic does not exceed the CORE capacity, translating into
CU + CD < 1 Gbps, whereCU andCD represent the ag-
gregated uplinkCU =

∑NV N

i=1
CU,i and downlinkCD =

∑NV N

i=1
CD,i capacities respectively. To this extent, from our

measures we derive that maximum aggregated throughput
generated by BitTorrent is 377Mbps while for WineStreamer
is 140Mbps.

Our setup can therefore be considered conservative also
with respect to bandwidth bottlenecks, since both applica-
tions generate an aggregate traffic which is lower than the
1Gbps threshold discussed above. From the above data, we
can also infer that theoretically our testbed settings could
scale-up by a factor of 2.5 and 7 respectively for BitTor-
rent and WineStreamer, already without any change in the
LAN speed. Even larger testbeds could be obtained upgrad-
ing the LAN interconnections between HOSTs and CORE
to a 10Gbit Ethernet4.

Finally, notice that ModelNet-TE does not allow to run
experiments on parallel. This is however a design decision,
as the primary tool usage is intended for individual research
groups, that can easily decide a scheduling to run experi-
ments on series. Notice that this limitation also applies to
large dedicated experimental infrastructures, such as Grid’5000,
whose aim is instead to be shared among different groups.
Further, we point out that there could rather be more draw-
backs in case mutual experiments would be run in parallel
on the same infrastructure, since the traffic of the different
experiments may have unwanted mutual influence, affecting
and perturbing the experimental results.

3 Scenario and methodology

We now describe the scenarios emulated in our experimen-
tal campaign, providing motivation and detailed information
concerning our choice of (i) network topologies, (ii) TE al-

4 At the same time, care should be taken in this case, as [47] experi-
enced degradation of ModelNet precision for aggregate traffic exceed-
ing 600Mbps, so that further testing would be needed in this case.
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gorithm details, (iii) population models, (iv) P2P applica-
tions.

3.1 L3 Network

3.1.1 Topology

Irrespectively of the P2P application, we consider two net-
work topologies: namely, (i) a realistic Abilene topology and
(ii) a simplified pure overlay model.

Often indeed, network topology is not considered due to
studies such as [4], showing the bottleneck to be sitedat the
edgeof the network. However, the above assumption holds
for scenarios with a majority of low-capacity access tech-
nologies, such as e.g., ADSL lines, whose upload capacity
is significantly limited. Conversely, the above assumption
may no longer hold in case of fast FTTx Internet access [58]
(i.e., Fiber To The Curb/Home), which is in the agenda of
all major developed countries, and that reinforces the need
of studying more realistic network scenarios.

Second, signals of the fact that P2P (or other user-level
applications) are already causing congestion to ISPs can be
inferred by recent issues such as (i) the throttling of BitTor-
rent connections by Comcast in the US [17] or (ii) the throt-
tling of Megaupload by France Telecom in Europe [38]. The
above examples show that, actually, ISPs arealready strug-
gling with the amount of data in their networks as of today,
i.e., even when FTTx represent a minority of access tech-
nologies.

We take into account the above observation while build-
ing an emulation scenario. Due to the scale of our testbed,
and to the physical limits of the interconnection (i.e., Eth-
ernet transceivers, switches back-plane, number of HOST

described in Sec. 2.4), it is however clearly impossible to
emulate a full speed Internet core. Rather, we observe that
problems may arise when the aggregated traffic generated
by the user may cause congestion in the network, and decide
thus tojointly scale access and core capacities so to produce
situations similar to [17,38]. Notice also that while, the Bit-
Torrent vs Comcast case has already hit the media, P2P-TV
application may represent a similar threat due to the forecast
ed growth of Internet video [16].

The realistic network scenario we design is thus as in
Fig. 4, with core links interconnected according to the well-
known Abilene topology [3], comprisingNR = 11 routers
spanning over the US country. In our scaled setup, we con-
sider core links capacities inC = {5, 10}Mbps and we
model peer access capacity as loose symmetric FTTH equal
to CD,i = CU,i = 5Mbps. Notice also that, though realistic,
the Abilene topology is also a hard scenario for load balanc-
ing, since the level of path diversity may not always allow to
routearoundcongestion.

To better grasp the impact of the network topology, we
compare the Abilene scenario with a simplified model (not
shown in the picture) where all peers are interconnected in a
star topology to a single network core router. No capacities
or delay are emulated in the network core (but only at the ac-
cess): hence, due to our physical setup, the backbone runs at
1 Gbps switched Ethernet speed (which is much faster than
the Abilene case, and where congestion never arises). Still,
in this scenario we may enforce realistic access latencies,
depending on the population model (see Sec. 3.2.1).

3.1.2 Traffic Engineering

We now discuss some implementation details of the iAWM
algorithm described in Sec. 2.3, notably the timescale at
which the algorithm is run. Let us recall that one of the
inputs to the algorithm is the traffic matrix (TM), defined
as the amount of aggregated VN traffic each GW node ex-
changes with each other.

In ModelNet-TE, the TM is sampled over windows ofw

seconds (w = 1 in our case), and ModelNet-TE can perform
simple operations5 (e.g., average, standard deviation, maxi-
mum, etc.) overW consecutive time windows. Then, after
W consecutive windows, these demands are exported from
the kernel to the TE algorithm (see Sec. 2.2). For the ex-
perimental campaign reported in this paper, we setW = 30,
and run iAWM periodically afterW windows, to set the new
routing tables. Notice that the resulting timescale of the L3
traffic engineering decisions is on the order of 30 seconds
(which is comparable with the order of the L7 timescale, as
we describe in the next section).

3.2 L7 P2P Applications

At L7, we build realistic scenarios by considering hetero-
geneity in the (i) class of P2P applications and (ii) peer pop-
ulation models.

We select two P2P applications, namely BitTorrent [14]
and WineStreamer [13, 34], that offer heterogeneous ser-
vices and have thus a rather dissimilar design. Indeed, Bit-
Torrent and WineStreamer are rather diverse in their con-
straints (i.e., elastic file-sharing vs minimum rate live-streaming),
architectural choices (i.e., TCP vs UDP) and trading logic
(i.e., rarest-first vs playout-deadline based). Yet, theseap-
plications also share some similarities (i.e., both are built on
an unstructured an mesh overlay, with each peer optimiz-
ing its neighborhood by preferring high-bandwidth peers)
that are a natural result of the evolution of the Internet P2P
ecosystem, following the good performance these choices
have exhibited [20,33].

5 The support for different operations simplify the implementation
of different algorithms, that may rely on different inputs (e.g., average
for iAWM [7] or maximum for [42]).
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Fig. 4 L3 Abilene topology and L7 swarm: uniform (left) vs skewed (right) population models.

For both applications, we emulate a flash-crowd scenario
in which a single source initially provides content (i.e., afile,
or a TV channel) to a swarm ofNP = 200 peers. Notice that
this is a reasonable swarm size for file-sharing applications,
that furthermore trades off between observation in [46, 67]:
more precisely, [67] observes that only about 1% of the tor-
rents have more than 100 peers, while [46] reports typical
sizes of BitTorrent swarms to be around 300-800 peers6.
As far as live-streaming is concerned [29] observes that the
swarm size for the same channel also depends on the appli-
cation (i.e., which reflects the application popularity rather
than the popularity of the content itself), with swarms rang-
ing from 500 peers in TVAnts to about 180,000 peers for
PPLive for the most popular content. Hence,NP = 200 can
represent an highly popular channel over a mildly popular
application, or a mildly popular content over an highly pop-
ular application.

For the sake of simplicity, we consider homogeneous
swarms capacities: notice that the effect of heterogeneous
swarms with multiple capacities are well-known [32] from
a pure L7 standpoint, and may be worth investigating from
a joint L7/L3 viewpoint as future work.

3.2.1 Population model

Irrespectively of the P2P application, we may consider dif-
ferent swarm population models. In the Abilene topology of
Fig. 4, each router acts as access router for several peers of
the network: since the Abilene network comprisesNR = 11

nodes, and since we emulateNP = 200 peers swarms, on
average there are about 20 peers per node. In both cases,
swarms initially have a single source located in Kansas City
(in the middle of US).

6 This may be due to the fact that [67] exhaustively exploresall tor-
rents, while observation in [46] are limited to a smaller torrents catalog.
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However, while emulation studies usually uniformly dis-
tribute peers in the network (e.g., by spreading peers at ran-
dom over PlanetLab nodes), we argue that peer population is
more likely to reflect the actual human population in the real
world. As the Abilene network spans across the US, we con-
sider US cities of Abilene PoP and distribute peers to routers
proportionally to the population of the corresponding urban
area [63].

The skew in the population distribution translates into a
more clustered swarm population, where several peers (users)
may be found behind the same router (city). In turn, this also
affect the distribution of the end-to-end7 latencies, as peers
are now more likely to be close.

7 Notice that edge-to-edge latencies are measured between any pair
of gateways GW (or IP routers), taking into account the physical dis-
tance between US cities. End-to-end latencies are emulatedby addi-
tionally taking into account the local loop network beside the access
GW [36].
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The difference in the uniform vs skewed population mod-
els is pictorially represented in Fig. 4, and the corresponding
distributions of edge-to-edge latencies are reported in Fig. 5.
Latency distribution shows the impact of skewed peer pop-
ulation, as three peaks clearly arise: these correspond to (i)
low delay for nearby communication (i.e., behind the same
GW or confined in the east cost, west cost, or mid US), (ii)
moderate delay for mid-range communication (i.e., between
east cost and mid US, or west cost and mid US), and (iii)
high delay for faraway communications (i.e., between both
coasts). Notice also that high delay PDF peak is pronounced,
as the majority of US inhabitants can be found along the
eastern and western US coasts. Conversely, uniform peer
distribution yields to a completely different latency distri-
bution, which is unrealistic with respect to actual measure-
ments carried on in measurement projects such as [64].

3.2.2 P2P Filesharing: BitTorrent

For file-sharing, we use the Python version of BitTorrent-
4.0.0-GPL. In file-sharing, the main aim is to let all peers
in the swarm download the content in the shortest possi-
ble time. Notice that the BitTorrent version we consider em-
ploys TCP at transport layer (L4). While we are aware that
recently BitTorrent introduced a new application-layer trans-
port protocol based on UDP at L4 [53], we choose TCP file-
sharing since the new protocol is for the time being imple-
mented only in a specific client (namely,µTorrent, that is
estimated to account for varying ratio of BitTorrent clients
15 [46]-60 [67]%. Besides, our attention is here more fo-
cused on the interaction of P2P applications and L3 network,
rather than to the performance of BitTorrent under a new
congestion control paradigm, which we instead investigate
in [61].

We point out that providing a survey of BitTorrent is out
of the purpose of this work, for which we refer the reader
to [14, 32]. Here, we only mention that BitTorrent peers es-
tablish and maintain a limited number of connections, over
which they download small portions (or chunks) of the file
they are interested in obtaining. Periodically (every 20 sec-
onds), peers rank their connections depending on the down-
load rate, keeping only the best connections (“chocking” the
least performing ones), and optimistically trying to discover
new potential good peers (nicknamed as “optimistically un-
choking” in BitTorrent, and performed every 30 seconds).
To avoid free-riding, BitTorrent enforces reciprocation of
content exchange (tit-for-tat) and, to avoid resources hot-
spot, BitTorrent peers try to equalize the chunk availabil-
ity in the system by downloading the rarest chunk first. The
timescale of the L7 application dynamics is on the order of
20 seconds, thus comparable with L3 dynamics.

In a flash crowd scenario, BitTorrent peers behave dif-
ferently depending on whether they are leecher or seed. Ini-

tially, the seed is the unique source of a 100 MBytes file:
hence, at the very beginning we expect most of the traffic
to be originated from a single VN (i.e., the seed). However,
as chunks start spreading in the swarm, exchanges between
leechers become prominent, until the seed contribution is no
longer necessary [32]. Hence, the traffic matrix offered at L3
by L7 will change during the whole experiment duration, so
that the system evolves without ever reaching a stationary
state.

3.2.3 P2P-TV: WineStreamer

For live-streaming, we use WineStreamer, an application de-
veloped in the context of the FP7 Strep Project on Network
Aware P2P Applications over Wise Networks (Napa-Wine)
[34]. In live-streaming the main aim is to let all peers in the
swarm receive the minimum stream rate (similarly to video-
on-demand), and to minimize the playout lag with the source
(additionally to video-on-demand).

WineStreamer belongs to the last generation of live-streaming
applications, and is able to take informed decisions with
respect to the network state [21]. Knowledge of the net-
work state is commonly nicknamed as “network awareness”,
and can either (i) be measured by the application or (ii) be
achieved with ISP cooperation. Examples of (i) include pre-
ferring nearby peers to faraway ones based on RTT or IP
hop-count measurements, or preferring high capacity peers
by means of bandwidth measurements, etc. [21]). An exam-
ples of (ii) is represented by IETF ALTO [5], defining ISP
servers that acts as “oracles” and participate in the P2P peer
selection process with informed suggestion on good candi-
date peers.

In this work, we only consider L7 measurements per-
formed by the application itself, and turn off WineStreamer
ALTO capabilities. Notice that, due to chunk transmission
duration over ADSL lines, we expect the bandwidth-aware
[20] peer selection criterion to prevail over latency-aware
[11] or power-aware [52] (i.e., the ratio of bandwidth over
latency) peer selection criteria. In other words, as for slow
ADSL peers the chunk transmission time exceeds the prop-
agation delay, in order to keep the overall system latency
low, the ability to find high-capacity peers prevails over the
ability to find nearby peers [55].

In all of the following experiments we stream a 600 Kbps
video at 25 fps encoded with H264. In the video diffusion,
we map every video frame to a single chunk (while several
audio frames are grouped together in a single chunk to re-
duce the overhead). Video stream is not decoded at destina-
tion, but is discarded to avoid too many concurrent blocking
IO calls; however, we log chunk-level arrival patterns to later
evaluate the quality of user experience.

Again, providing a survey of WineStreamer is out of
the purpose of this work, for which we refer the reader to
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Fig. 6 L7 traffic demands (Abilene topology, skewed population,
IP routing): Swarm adjacency matrix for BitTorrent (left) and
WineStreamer (right)

[13, 34]. Rather, here we highlight the complementarity of
WineStreamer with respect to BitTorrent. On this regards,
we point out that the application exploits UDP and, though
it implements a simple retransmission mechanism, the ver-
sion we use in the testbed does not implement any form
of congestion or flow control – hence, it sends out chunks
at full speed. Moreover, chunk size is smaller than the one
normally used in BitTorrent: as the scheduler performs de-
cisions at a higher rate, hence we expect the P2P neigh-
borhood to be more dynamic. Due to the use of UDP and
to the minimum stream-rate requirement, WineStreamer is
therefore a non-elastic application, with stringent near real-
time requirements, unlike BitTorrent. Also, differently from
BitTorrent, WineStreamer source is always providing new
content to the swarm, at the same average rate, so that the
system tends to a stationary state (although with a varying
neighborhood).

4 Experimental Results

In this section, we report results of our experimental cam-
paign, adopting two complementary viewpoints. First, we
analyze the traffic that the P2P applications induce on the
L3 network. Then, we analyze the impact that each simplis-
tic vs realistic parameter choice has on the quality that the
user perceives.

4.1 Traffic demands and link load

Let us investigate the traffic demands that P2P traffic induces
over the whole network, and how these demands translate
into individual link load. A pictorial representation of the
traffic demands, at L7 and L3, is shown in Fig. 6 and Fig. 7
respectively.

IP routing
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Fig. 7 L3 traffic demands (Abilene topology, BitTorrent file-sharing
application). Plots represent uniform (top) vs skewed (bottom) popu-
lation models, with IP shortest path (left) and TE multi-path (right)
routing.

Fig. 6 exploits a matrix representation to compare traf-
fic demands of the applications, measured over the whole
experiment duration, where black points indicate a chunk
exchange between two peers. Already at a first glance we
can observe the difference in matrix density: WineStreamer
behavior is much more “loquacious”, while BitTorrent con-
tacts a lower number of nodes.

Augmenting the same kind of representation with gray
levels proportional to the volume of exchanged data, we an-
alyze load on L3 induced by the L7 application. While Fig. 6
reported host-to-host communication with a binary seman-
tic (i.e., the matrix representation reports a black dot if two
peers communicate during the experiment), Fig. 7 reports
the router-to-router traffic matrix (i.e., where the intensity of
the traffic exchanged between any router is represented with
gray colors). Considering for the sake of example only the
BitTorrent application, we vary the L7 population model and
the L3 routing, and depict the L3 TM in Fig. 7. Comparing
top and bottom rows, one can gather the difference between
uniform (top) and skewed (bottom) population models: data
exchange in the skewed population is much more concen-
trated around few points (i.e. GW of large US cities as New
York or Los Angeles) while in the uniform case, chunks are
more evenly exchanged. Especially, for the uniform popu-
lation the traffic concentrate on the matrix diagonal, so that
peers prefer to exchange with peers behind the same router;
conversely, in the skewed population cluster forms involving
routers sited in regions where users (and, hence, peers) are
more numerous.

Comparing instead left and right columns, one can gather
the difference between IP shortest-path (left) and TE multi-
path (right) routing: as expected, traffic is more spread out
under TE load balancing, which is especially visible in the
case of skewed population.
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Fig. 8 Network link load (positive y-axis) and packet loss rate (nega-
tive y-axis) , BitTorrent (top) vs WineStreamer (bottom), in the IP vs
TE cases, Abilene topology and skewed population

Performance of L3 network are reported in Fig. 8, show-
ing link load and packet loss rate of individual links in the
backbone, for both P2P applications and comparing IP vs
TE routing. Notice that link load is reported on the posi-
tive y-axis, while packet loss rate is repored on the negative
y-axis. For the sake of simplicity, we only consider a sce-
nario with realistic Abilene topology, 5Mbps core links, and
skewed population. The striking differences that the L7 traf-
fic matrix exhibited in Fig. 6, also entails different impact
on L3, which can easily be explained. Notice that while in
this work we focus mostly on the performance implication
on L7 application of the TE decision at L3, in our techni-
cal report [24] we provide further insights on the TE inner-
working (such as paths and paths-probability) for the inter-
ested reader.

Consider first the BitTorrent case in Fig. 8(a): as the ap-
plication version we use employs TCP at L4, peers attempt
at fully utilizing their uplink bandwidth (provided that they
have enough chunk requests). In turn, this yields to a signif-
icant utilization of core link, which are mostly above 70%
average utilization. Notice also that important links, such

as those serving the gateways where the source is located,
are not facing severe congestion (i.e., higher load or losses),
which is again due to TCP congestion control. Hence, TE
only provides marginal changes in the traffic matrix, increas-
ing by about 2% the fairness of the link utilization (measured
with Jain fairness index(

∑N

i=0
ρi)

2/(N
∑N

i=0
ρ2

i ) with ρi

load on thei-th link).
Conversely, in the WineStreamer case of Fig. 8(b), we

notice that load is unevenly distributed, with some links be-
ing lightly loaded and other carrying significant traffic amount,
and experiencing non marginal losses. This striking differ-
ence is due to (i) chunk scheduling dynamics and (ii) the
transmission of chunks as spurts of back-to-back packets
over UDP. As for chunk scheduling, peers need to receive
content over small time windows, and as new content is con-
stantly being produced at the source, the source is possibly
overwhelmed by chunk requests. Moreover, as no conges-
tion control is implemented by the application, the chunk
transmission process can be very bursty, so that aggregated
traffic load is no longer smooth as in the TCP case, but is
more likely to cause drops on some links. It must be said that
Fig. 8(b) depicts a severe congestion scenario due to narrow
5Mbps link, that however let us better grasp some effects:
notice indeed that while it can be seen that TE manages to
equalize link level load to some extent (fairness increasesby
about 6%), TE efforts are not sufficient in this severe con-
gestion scenario. Worse yet, use of multi-path TE can sel-
dom overload links (that were only mildly loaded under IP
routing), further inducing losses (that were absent under IP).
This behavior can be induced by the two uncoordinated con-
trol policies at L3 and L7, that happen independently and at
the same timescale, and that we can exemplify as follows.
Assume that L7 application decides to route content toward
a peer whose path is lightly loaded and has never experi-
enced losses. Assume further that, roughly at the same time,
L3 realizes that links along the same path are lightly loaded,
and decides to reconfigure the FIB. Now, what happens is
that links along that path will experience a sudden, unex-
pected, load increase – that in case of live-streaming will be
exacerbated by the use of full-rate UDP chunk spurts.

Notice also that Fig. 8(b) suggests that not all the net-
work capacity is fully utilized, while a swarm of the same
size in Fig. 8(a) was able to use more resources. This hints to
the fact that peers in the WineStreamer application could po-
tentially serve more other peers, thus offloading the source
and further ameliorating system performance. Similar ob-
servations lately led to the development in WineStreamer of
a dynamic aggregated congestion control over UDP, named
Hose Rate Control (HRC) [12], showing thus that ModelNet-
TE can provide an invaluable help to P2P application devel-
opers8.

8 HRC was however not available at the time of the experimental
campaign.
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Fig. 9 Impact of (i) uniform vs skewed population model and (ii) core
link capacities C=5Mbps vs C=10Mbps. Arrows are used to highlight
the percentage of difference between themean valuesof the corre-
sponding CDF curves.

4.2 Impact of population model and network capacity

We now focus on the performance of L7 applications, con-
sidering (i) the download rate of BitTorrent peers and (ii) the
percentage of correctly received chunks for WineStreamer.
We argue these to be the most relevant metrics that further-
more intuitively express the quality of user experience: as
for (i), download rate is tied to the system efficiency and to
the time it takes peers to complete their download; as for
(ii), the video quality is badly affected by chunks that are
received after the playout deadline (e.g., due to queuing de-
lay at L3) or that are only partially received (e.g., due to
packet loss at L3 that WineStreamer retransmission mech-
anism failed to recover). Both metrics are evaluated over
windows of 10 seconds (i.e., the same timescale employed
by BitTorrent to rank the active peer set for the choke op-
eration). In the following, we report results gathered over5
different runs for any given experimental settings.

We first consider the impact that the capacityC on core
links and the peer population model have, and depict the

cumulative distribution function (CDF) of the download and
chunk reception rates, measured over the whole swarm in
Fig. 9 (for the time being, we fix the topology to Abilene and
limitedly consider IP shortest path routing, whose impact we
instead assess in Sec. 4.3).

Consider the population distribution first. The general
consideration is that skewed population is beneficial in that,
provided that the application is aware of latency or band-
width9, it can establish neighboring relationships with peers
attached to the same GW router, thus confining traffic at the
edge and avoiding narrow core links.

Focusing on BitTorrent clients, we see that lowest down-
load rates are achieved by peers on the C=5Mbps uniform
population scenario: then, notice that a roughly equivalent
performance gain can obtained by either (i) doubling the ca-
pacity under the same population model or (ii) considering a
skewed population model at the same capacity level. Notice
indeed that the average download rate increases by 25% and
26% respectively, as reported in Fig. 9-(a).

Considering WineStreamer clients, we see that the im-
pact of the population model remains considerable, although
in this case core links capacities plays a determinant role
due to streaming constraints. Indeed, considering the under-
provisioned C=5Mbps scenario in Fig. 9-(b), on average 22%
more chunks are received under a skewed population model
with respect a uniform one. Yet, change in the population
model are not sufficient, as the percentage of received chunks
for C=5Mbps is still low for some peers (those that were
serviced by the underprovisioned link exhibiting up to 40%
packet losses in Fig. 8), while situation improves consider-
ably for C=10Mbps.

4.3 Impact of network topology and multi-path routing

Let us now consider the impact of the network topology and
routing policies, where for the sake of simplicity, we only
consider a skewed population model. To assess the impact
of the topology, we compare a pure overlay model against
a well provisioned Abilene network with core link capacity
equal to C=10Mbps. While it is straightforward to foresee
that on a pure overlay model both applications will perform
better, as we removed any topological bottleneck, it would
not be possible to quantify this gain without ModelNet-TE.

As expected, we see that in the case of BitTorrent the
performance achieved on a pure overlay model can be sig-
nificantly higher with respect to the Abilene case. This is
because once in network capacity bottleneck are removed,
TCP can make better use of the access capacity: on average

9 Since TCP is advantaged by smaller RTT, application preferring
high-bandwidth peers will also likely prefer nearby peers.Even for ap-
plication such as PPLive, using UDP at L4 and measuring transfer rates
at L7, we experimentally verified that bandwidth preferenceinduces a
clustering of nearby peers [54].
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Fig. 10 Impact of (i) Abilene vs Pure overlay network topology and
(ii) IP single-path vs TE multi-path routing. Arrows are used to high-
light the percentage of difference between themean valuesof the cor-
responding CDF curves.

BitTorrent can download at a 40% faster rate in a overlay-
only scenario with respect to shortest-path IP routing. Con-
versely, as the video stream sent by WineStreamer has a
fixed bitrate, and since the capacity of the network is pro-
visioned to transport almost all that traffic, the difference
between the overlay-only vs IP routing is limited to 4% (re-
spectively, 95% vs 91% of chunks are received on average).

Finally we analyze the influence that TE techniques can
have on P2P systems, by contrasting IP vs TE routing on the
Abilene topology: counter-intuitively, we see that TE may
lower the performance of both applications.

In BitTorrent, this can be explained by the fact that, re-
calling Fig. 8(a)-(a), nearly all links already operates ata
regime close to their capacity. Hence, as TE reroutes the
traffic along possibly longer paths, it extends the number
of traversed link for each packet: thus, while TE balances
the load more evenly across links, it may in turn raise the
global network load. Second, since TE operates on a per
packet basis, it may alter TCP congestion control: indeed,
TCP transmission mechanism is self-clocked on the basis

of RTT estimation. As each packet may traverse different
paths, of different lengths, with different levels of conges-
tion, this can significantly affects the RTT estimate. Second,
as packets can now arrive out of order, this may possibly
trigger spurious TCP retransmissions [39]

WineStreamer is a network aware application, that al-
ready executes measurement on the underlying L3 network,
so to perform informed peer selection and scheduling deci-
sions: in this case, periodical changes in the network topol-
ogy due to TE are not beneficial to the already complex L7
algorithms. Recalling Fig. 8, we see that due to the highly
bursty chunk transmission process, it seldom happens that
independent L7 and L3 decisions increase the loads on some
link. However, since this is the result of two uncoordinated
decisions, it is impossible to blame a single actor between
L3 or L7, as problems arise from the interplay of both. In
fact, both L3 TE and L7 algorithm take decisions on the
assumption that, respectively, traffic and network topology
are static: thanks to ModelNet-TE we see that when this
assumption no longer holds, unexpected phenomena may
arise.

5 Related work

Two bodies of work are related to ours. On the one hand,
there is work focusing on the experimental evaluation of
P2P applications by means of testbeds [12, 15, 51] or large
scale-experiments [37, 46, 65], possibly stemming from hy-
brid simulative/experimental approaches [1,6,10,26,27,41].
On the other hand, work exists that focuses on the interac-
tion of the overlay and network layers [30,31,35,45,50,56,
68].

5.1 Experimental evaluation

Performance evaluation of P2P system has often involved
simulation approaches, due to the relatively rapid prototyp-
ing of new applications on the one hand, and on possibility
to inexpensively validate the application performance on of
a controlled tool on the other hand. For a more in-depth dis-
cussion of simulators tools for P2P networks, we invite the
reader to [43].

At the same time, as simulative environments forcibly
incurr in a number of simplification of the reality, the perfor-
mance gathered by means of simulation still need to be vali-
dated against experiments of real applications prototypes. In
recent P2P research, we observe that basically three trends
emerged: the first employs an hybrid simulative/experimental
approach [1,6,10,26,27,41], the second controlled testbeds
[12,15,51], and the latter world-wide infrastructures [37,46,
65].
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In thehybrid simulative/experimental approach, researchers
are offered a development toolkit that eases the transition
from simulation to network testbeds, so that the same code
can be reused for both simulation and experiments. Example
of this line of effort include PlanetSim [27], PeerSim [41]
and its latest evolutions, Protopeer [26], Kompics [6], ns3[1]
(whose scope goes beyond that of P2P performance evalua-
tion) and Oversim [10] (the latter a P2P toolkit for the well
known Omnetpp [2] simulator).

The issue is that [6, 10, 26, 27, 41] forces the user to
develop new applications using a specific toolkit, that may
sometimes be too constraining. Notice indeed that this means
that existing applications should be re-implemented in the
framework – a possibly overwhelmingeffort that may counter
the success of the above tools. Also, such toolkits cannot
clearly be used to evaluate very popular but closed-source
and proprietary applications such as Skype (VoIP), PPLive
or SopCast (P2P-TV) or uTorrent (filesharing the popular
implementation of BitTorrent, that lately become closed-source).
Finally, notice that while these toolkits offer the abilityto
simulate the system, they generally fall short in offering ex-
perimental evaluation capabilities as well.

Ultimately, this implies that a great effort is still required
to evaluate the developed prototype in controlled testbeds
[12,15,51] or world-wide infrastructures [37,46,65]. Hence,
as far as experimental evaluation is concerned, this lead us
to considering two main class of methodologies.

Controlled experimentsare run in dedicated infrastruc-
tures, such as Grid5000 [15, 51] or ad hoc testbeds [12],
where clusters of several coordinated machine, which are
usually connected through LAN, run P2P clients. As these
infrastructures are general purpose (i.e., not tailored for net-
work experiments) experimental setup can be a burden. Be-
sides, latency and packet drops must be artificially enforced
by external tools and it is impossible to carry out studies
on L3/L7 interaction. Nonetheless, [51] concludes that Bit-
Torrent experiments performed on cluster are realistic and
that wide area network latency and packet losses impact for
less than 15% of the download time. If we agree that this
precision is realistic enough for elastic file-sharing applica-
tions, such error margin cannot be tolerated for interactive
live-streaming applications – where chunk losses or delayed
arrivals heavily impact the quality of experience.

World-wide infrastructuressuch as PlanetLab [49] and
OneLab [44], have long been used to test and benchmark
distributed applications [37,46,65]. Currently, PlanetLab pro-
vides about 1000 nodes at 500 different sites scattered around
the globe. Yet, one of the perception is that PlanetLab is not
suitable for P2P experiments since it is composed mainly by
high capacity nodes and few DSLs [60]. Another potential
problem arises from the fact that access to nodes is shared
among users, each of which is getting different “slices”:
yet, as multiple concurrent experiments can be run on the

same infrastructure, there is no control on CPU load (for in-
stance, [48] points out that “Since most Planetlab machines
are usually over-loaded, we limit the overlay size to 160
peers running on machines that report at least 5% idle CPU
time.”) other traffic (e.g., two P2P experiments running con-
currently, or measurement between PlanetLab nodes) that
can both alter experiment results10.

5.2 Routing layer interaction

The study of the interaction of several routing layers is in-
stead motivated by findings in [45, 50, 56]. Briefly, while
selfish routing may be highly unoptimal in general settings [45,
56], in practice it performs reasonably well in Internet-like
environment [50], which justify and confirms its interest. At
the same time, an important observation is that local opti-
mization entailed by selfish overlay routing may counter ac-
tions taken by the underlaying network, overall resulting in
poor system stability.

As a consequence, there has been a recently increased
attention [30, 31, 35, 68] on the potential issues on uncoor-
dinated, uncontrolled interaction of two routing paradigms.
Different studies consider different levels of interaction such
as a P2P overlay network and the underlying IP network
routing [31,35], IP routing and the underlying MPLS/GMPLS
network [68], multiple P2P overlays routing, coexisting on
a given underlay network [30].

5.3 Advances with respect to the State of Art

This work extends and complements both bodies of work.
On the one hand, though we use an experimental methodol-
ogy, to the best of our knowledge P2P traffic has been stud-
ied with a pure overlay model [12,15,22,32,37,48,51,57],
neglecting thus the mutual impact with lower-layer network.
On the other hand, most of the work focusing on interaction
between different routing layers exploits a Game Theoretical
approach [23, 35, 68], with a simulative approach limitedly
used in [31].

As such, the research community still lacks more real-
istic and practical studies, which is precisely what we ad-
dress in this work: thanks to the ModelNet-TE framework,
we encompass both classes of work, by proposing the first
study of routing layer interaction that exploits an experimen-
tal methodology. Notice instead, that our work is orthogonal
to hybrid simulative/experimental approach [1, 6, 10, 26, 27,
41], in that ModelNet-TE transparently work with any work-
ing P2P application, irrespectively of how the prototype has
been engineered/developed.

10 Notice that this should change with the recent ability in OneLab to
reserve resources similarly to what happens in Grid5000
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Table 1 Scale of different P2P experiments (this work in bold)

Ref. Testbed Nodes Nodes/ Machine
[15] Grid5000 10000 100
[12] Own testbed 1000 5
[22] PlanetLab 400 1
[48] PlanetLab 320 32
[51] Grid5000 300 100
[57] PlanetLab 280 1

ModelNet-TE 200 35
[48] PlanetLab 160 1
[47] Modelnet 80 8
[32,37] PlanetLab 41 1

Moreover, ModelNet-TE tool sits between controlled and
wild testbed infrastructures, trading off between the realism
of PlanetLab, and the scalability of Grid5000, and adding
the control over the network topology and routing algorithm.
Yet, the scale of the experiments that can be performed is
not compromised: to prove this, Tab. 1 reports a comparison
of different closely related work, highlighting the scalability
aspects for the methodologies discussed so far.

Notice that most works scale up to a few hundreds peers,
i.e., the same order of magnitude of our ModelNet-TE ex-
periments, confirming the validity and usefulness of the tool.
Only two notable exceptions push the experiment scale to
1,000 [12] and 10,000 [15], trading off experimental scale
with simplicity of the experimental setup.

6 Conclusions

This paper presents ModelNet-TE [40], a open source emu-
lation tool with Traffic Engineering (TE) capabilities: build-
ing over the original ModelNet core, which only offers stan-
dard IP routing, we added the support of TE and imple-
mented a multi-path load balancing algorithm. At the same
time, our purpose was to design a flexible tool, that can be
easily integrated with many other TE algorithms beyond the
one that we provide.

As a case study, we use ModelNet-TE to analyze the in-
teraction between Traffic Engineering at the network level
(L3) and end-to-end control policies implemented at the application-
layer (L7) by P2P application such as BitTorrent (one of the
most popular file-sharing applications) and WineStreamer (a
mesh-based network-aware live-streaming application). We
performed a thorough experimental campaign, considering
several parameters (such as topology, core link capacities,
IP vs TE routing, peer population models, etc.) in the sce-
nario definition. To gather a comprehensive understanding
of the system dynamics, we express performance in terms
of both network-centric and user-centric metrics: at L3, we
measure link load and losses and at L3 we measure the Bit-
Torrent download rate and WineStreamer chunk reception
rate.

Our results not only validate ModelNet-TE as a com-
plementary tool to test P2P applications in realistic environ-
ment, but also yield several interesting insights on L7/L3 dy-
namics. Summarizing our main findings, we have that overlay-
only models yield an overly optimistic evaluation of P2P
application: while the overlay-only model applies to toady’s
ADSL access, we have increasing evidence [17, 38] that in
the near future bottlenecks may no longer sits at the user
access link. Second, we observed that the population model
heavily impacts overlay performance, as its impact can be of
the same order of magnitude of in-network capacity limita-
tions: hence, the ability to localize part of traffic behind the
same access gateway, e.g., by means of IETF ALTO servers,
seen an interesting option to offload the network and ame-
liorate the user experience. Third, we see that TE can notice-
ably worsen L7 performance: this counter-intuitive results is
due to the interplay of several factors, among which (i) the
impact of per-packet load balancing on TCP performance,
and (ii) the uncoordinated reconfiguration of the overlay and
underlay networks for unelastic applications.

While this work attempts at analyzing a large spectrum
of scenarios, it also leaves many points open. As far as the
experimental results are concerned, for example, it would
be interesting to assess whether the conclusions gathered in
this paper are more general than the explored settings, i.e., if
they continue to hold for different topologies, TE algorithms
and P2P applications. As far as the tool itself is concerned,it
would instead be interesting to further extend the scale of the
achievable experiments, e.g., by allowing the newly intro-
duced TE functionalities to work on multiple parallel COREs
as supported by the original ModelNet core for shortest path
IP routing.
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