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Abstract. Computer tomographic colonography, combined with
computer-aided detection, is a promising emerging technique for colonic
polyp analysis. We present a complete pipeline for polyp detection, start-
ing with a simple colon segmentation technique that enhances polyps,
followed by an adaptive-scale candidate polyp delineation and classifi-
cation based on new texture and geometric features that consider both
the information in the candidate polyp and its immediate surrounding
area. The proposed system is tested with ground truth data, including
challenging flat and small polyps. For polyps larger than 6mm in size
we achieve 100% sensitivity with just 0.9 false positives per case, and for
polyps larger than 3mm in size we achieve 93% sensitivity with 2.8 false
positives per case.

1 Introduction

Colorectal cancer is nowadays the third leading cause of cancer-related deaths
worldwide. The early detection of polyps is fundamental, allowing to reduce
mortality rates up to 90%. Nowadays, optical colonoscopy (OC) is the most used
detection method due in part to its high performance. However, this technique
is invasive and expensive, making it hard to use in large screening campaigns.

Virtual Colonoscopy (VC) is a promising alternative technique that emerged
in the 90’s, which uses volumetric Computed Tomographic data of the cleansed
and air-distended colon. It is less invasive than optical colonoscopy, and much
more suitable for screening campaigns once its performance is demonstrated.

However, it takes more than 15 minutes for a trained radiologist to complete
a VC study, and the overall performance of OC is still considered better. In
this regard, Computer-Aided Detection (CAD) algorithms can play a key role,
assisting the expert to both reduce the procedure time and improve its accuracy.

Flat polyps (those having < 3mm of elevation above the mucosa) and “small”
polyps are of special interest because these are an important source of false
negatives in VC, and many authors claim that flat polyps are around 10 times
more likely to contain high-grade epithelial dysplasia [1]. The goal of this work is
to exploit VC to automatically flag colon regions with high probability of being
polyps, with special attention to challenging small and flat polyps.

Automatic polyp detection is a very challenging problem, not only because the
polyps can have different shapes and sizes, but also because they can be located
in very different surroundings. Most of the previous work on CAD of colonic
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polyps consists in a segmentation step followed by a classification stage based
on geometric features, some using additional texture information, but none of
them takes into account the information of the tissues surrounding the polyp.
On the other hand, for the segmentation step, not much work has been done in
comparing the smoothing techniques to see which one is more adapted to polyp
detection. To the best of our knowledge, no algorithm reported in the literature
can detect small polyps properly, and for polyps larger than 6mm in size, no
algorithm can achieve 100% sensitivity with less than one false positive per case.

The proposed system is illustrated in Figure 1, and consists of the following
steps: colon segmentation, an adaptive-scale search of candidates in order to
capture the appropriate size, computation of geometrical and textural features,
and a machine learning algorithm to classify patches as polyps or normal tissue.

Fig. 1. Basic pipeline of the proposed polyp flagging system

2 Summary of the Colon Segmentation Method

The segmentation of the colon surface, which is critical in particular to compute
geometric features, is divided into two parts: a pre-processing stage for dealing
with the air-fluid composition of the colon volume, and a second stage that
consists on smoothing the pre-processed image and obtaining the final colon
surface by thresholding the smoothed volume. More details are available in [2].

Classifying CT Regions
All the database cases have the same preparation, which includes solid-stool
tagging and opacification of luminal fluid. Figure 2 shows a CT slice and its pixel
values over the highlighted vertical profile. There are 3 clearly distinguishable
classes: lowest gray levels correspond to air, highest levels to fluid, and middle
gray values to tissue. However, there are around 6 interface voxels between air
and fluid whose gray values lie within the normal tissue range. Therefore, a näıve
approach is not suitable for tissue classification. We propose to compute a volume
u0 intended to have homogeneous values in the colon interior and exterior, and
a smooth transition between them. To do that, we assign to each voxel the
likelihood of being air, fluid, or air-fluid interface. Air and fluid distributions are
estimated using standard kernel density estimation methods; these functions are
then used to assign air and fluid likelihood values to the voxels.

Note that this assignment fails on the air-fluid and air-fluid-tissue interfaces.
For assigning a value to these voxels, we take advantage of the physics of the
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Fig. 2. CT slice and its differ-
ent gray values for air, fluid and
normal tissue, along the verti-
cal profile

problem: the subject is laid horizontally so the interface between the fluid and the
air is a plane parallel to the floor. The voxels situated on the interface then have
a large gradient in the vertical direction. The implementation of these criteria
is as follows. A cubic neighborhood around each voxel x is considered, and for
each one of the “columns” that result of fixing the x and y coordinates, the air-
likelihoods of the upper voxels and the fluid-likelihoods of the lower voxels are
accumulated. The value IC(x) that represents the confidence level of x being an
interface voxel is then an increasing function of this accumulated measures.

We then assign to the initial segmentation u0 the maximum of these three
values, namely, the air and fluid likelihoods and the interface confidence level.

It is not rare that segmentation algorithms result in “gutter-like” shapes along
the air-fluid-tissue interface. This is a critical point because of the potential of
yielding several FPs in the detection step. If small oscillations occur along the
“gutter” (which is expectable), artifacts with polyp-like shape are produced, thus
degrading the overall performance. We paid special attention to this issue: the
IC computation allows to avoid these artifacts. Figure 2 shows the comparison
of our segmentation with a version of the method without the IC computation.

Fig. 3. Comparison of reduced
artifacts in our segmentation
(left) with a previously tested
more standard version (right)

Smoothing and Colon Surface Computation
In order to eliminate noise and to obtain a smoother colon surface after the
segmentation stage, we proceed to smooth the initial segmentation u0. We derive
a PDE-driven smoothing technique that preserves the shape of the polyps, while
obtaining a smooth enough surface to reliably compute local geometric features.

We concentrate on a family of smoothing PDEs of the form

∂u(x, t)

∂t
= β|∇u| , u(x, 0) = u0(x) , (1)

where the initial volume u0 results form the preprocessing described in the pre-
vious section. After a few iterations of this evolution, the inner colonic wall will
be extracted as a suitable iso-level surface of the resulting 3D image u(x, T ).

We recall that the Level Set Method [3] states that if u(x, t) evolves according
to (1), then its iso-levels (level sets) satisfy ∂S

∂t = βN , where S is any iso-level
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surface and N its unit normal. This geometric view enables to design β to fulfill
a set of requirements we will impose to the surface evolution. In particular, we
are interested in motions driven by the principal curvatures κmax and κmin.

With the mean curvature motion (β = H), and the affine motion ((K+)1/4),
the polyps are flattened too fast [2]. As an alternative, a motion that seems to be
well suited for our problem is the motion by minimal curvature. Indeed, polyps
have a curve of inflection points all around it, separating its upper and lower
sections. Along this curve, the minimal curvature is κmin = 0, and therefore this
part of the polyp does not move (or moves very slowly), so intuitively under
this motion the polyps should persist longer. This PDE already yields very good
results in terms of both surface smoothing and polyp enhancement.

We further derive two modifications that lead us to the proposed PDE. The
first one is inspired by the exponent 1/4 of the affine motions in dimension 3:
∂S
∂t = κ

1/4
minN . Figure 4 shows the result after a few iterations, and Figure 5 ev-

idences the difference between the motions by κmin and κ
1/4
min (gray and orange

respectively) with a comparative image. On the polyp protrusion, the orange
surface is above the gray one, while the opposite is observed in the surround-

ing area, showing that the evolution by κ
1/4
min leads to better polyp enhancement.

Fig. 4. Evolution by κ
1/4
min: original surface and result after 2, 8, 15, 30 and 50 iterations

Fig. 5. Comparison between evo-
lutions. Motion by kmin in light
gray vs. motion by k

1/4
min in dark

gray. Both surfaces are overlaid,
so sections that are not visible are
hidden below the other surface.

The second modification is based on the idea of preserving the polyps qualities
that we later use to identify them. A measure of the local shape of a surface is
the so-called shape index SI, and the complementary curvedness C [4]:

SI := − 2

π
arctan

(
κmax + κmin

κmax − κmin

)
, C :=

2

π
ln

√
κ2
max + κ2

min

2
.

While the value of SI is scale-invariant and measures the local shape of the
surface, the value of C indicates how pronounced it is. We now include this
information in order to make potential polyps evolve differently than the rest
of the colon surface. We define a function of the shape index that acts as a

multiplying factor to the term κ
1/4
min, making the surface evolve slower at the

interest points. These function should assign low values to shape index near −1,
and values close to unity to other points. A smooth function g(SI) verifying
these constraints is g(SI) = 1

π arctan ((SI − 0.75) · 10) + 1
2 .
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The final evolution keeps all the advantages of the motion by κ
1/4
min and in

addition, polyps are flattened slower:

∂S
∂t

= g(SI)κ
1/4
minN . (2)

The number of iterations can be set by experimentally choosing the value that
maximizes the overall performance of the system, measured in terms of the free-
response ROC curve (FROC). Alternatively, we can consider a sphere of the size
of the CT resolution and compute analytically the number of iterations needed
to make it vanish (see [2]). These two approaches led to the same result, namely
15 iterations, and therefore this is the chosen value for the experiments.

At this point we have a smoothed volume u(x, T ) indicating the volume inside
of the colon. We then extract the surface of the colon as the iso-value surface
of level α ∈ [0, 1]. The choice of the value α can be made by maximizing some
criteria, in order to obtain the most contrasted surface in a given sense.

3 Polyp Delineation, Feature Extraction and
Classification

All the polyp detection methods reported try to classify polyps from properties
defined only within the candidate region. However, it is important to analyze the
spatial context in which the candidate patch is located, not only because different
sections of the colon present different characteristics, but also because polyps can
be situated over different structures such as folds or plain colonic wall. In this
regard, most of the features here described take into account the information of
the area surrounding the candidate patch. This makes the features more robust
to the local phenomena. The normal tissue of different cases may vary, so absolute
thresholds lack meaning; while texture patterns differ from study to study, what
does not vary is the fact that polyps have different properties than normal tissue.

Candidate Detection and Geometrical Features
Consider the shape index as a function SI : S → [−1, 1], and recall that the
polyps’ SI are close to −1. Therefore, a region of the surface corresponding to
a polyp has at least one local minimum of SI. Detection of candidate patches
follows an adaptive-scale search: for each local minimum x0 ∈ S of the function
SI, several level sets of SI (P1 . . .Pn) around x0 are tested, and the level set
Pi that maximizes the distances between the histograms described below, is the
considered candidate patch, denoted by P (Fig. 6). A total of n = 7 level sets
are tested, corresponding to SI values from −0.8 to −0.5 with a 0.05 step. The
following description is given for the final chosen patch P , but the computations
are made for all the level sets Pi in order to select the most appropriate one.

Given a candidate patch P , a ring R around P is computed, in order to
consider geometrical measurements with respect to the area surrounding the
patch. The ring is calculated by dilating the patch P a certain geodesic distance,
such that the areas of P and R are equal, see Figure 7.
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Fig. 6. P1 . . .Pn: different sizes are tested in order to select the most appropriate patch

Fig. 7. Ring, in
blue, surrounding
a candidate polyp
(actually a true
polyp), in orange

Histograms of the shape index values are then computed for the patch P and
the ring R, and two different distances between them are computed: the L1 dis-
tance and the symmetric Kullback-Leibler divergence. If the patch corresponds
to a polyp-like shape then the values of the P histogram will be concentrated
around −1. The histogram of R will be concentrated near 1 in case of a polyp on
a normal colon wall (concave), or around −0.5 if the polyp is on a fold. These two
features give a measure of the geometric local variation of the candidate patch
P . Although these two distances are the most discriminative features, we also
consider the following ones since they help discriminating typical false positives:

– The mean value of the shape index over the patch P .
– The area of the patch.

– The growth rate at the adaptive-size stage, meaning the ratio between the
area of the chosen patch P = Pi and the area of the immediately smaller
patch Pi−1; this feature measures how fast the shape of the patch is changing.

– And finally the shape factor SF = 4π·Area
Perimeter2 , which measures how efficiently

the perimeter is used in order to gain area. It favors circle-like patches (like
the polyp in Fig. 7), avoiding elongated patches (like false positives in folds).

We then end-up with a total of 6 geometric features.

Texture Features
There is evidence that the gray-level of the CT image and its texture can be
very helpful for detecting polyps. This is particularly useful for flat or small
polyps, where geometric information is limited [5]. Some work has been done on
the inclusion of texture features (inside the candidate polyps only), in order to
reduce false positives [6]. We propose both the use of new texture features and
the inclusion of the information on the candidate’s surrounding area.

First, for each polyp candidate P , a volume V1 is computed, containing the
patch P and a portion of the inner tissue bounded by the patch. Volume V1 is
obtained by dilating P (in 3D) towards the inner colon tissue. A second volume
V2 surrounding V1 is computed dilating V1. The tissue in V2 is intended to be
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normal, to be compared with the polyp candidate tissue. The dilation is chosen
as before: several distances are tested, keeping the most discriminative one.

The chosen texture features are a subset of the classical Haralick fea-
tures, namely, entropy, energy, contrast, sumMean, and homogeneity. Seven co-
occurrence matrices are computed with the voxels of V1, and the five features
are averaged over the seven directions. The analogous computation is made for
V2, and the differences between the two volumes, for each texture feature, are
considered. Additionally, the mean gray levels in both volumes is computed, and
their difference is considered as a feature. In this way, six texture features are
considered.

Classification
Once the the candidates detection has been performed, the number of true polyps
was much lower than the number of non-polyps patches, a relation on the order of
500:1, which is a significant problem for the learning stage of the classifier, since
most classifiers are designed to maximize the accuracy, which is not adequate
for imbalanced problems [7]. For instance, if we classify all candidates as “non-
polyps,” we would get an accuracy of 99.8% but without detecting any polyps.
Three techniques were considered to overcome this problem: MetaCost, Cost
Sensitive Learning (CSL), and Synthetic Minority Over-sampling TEchnique
(SMOTE). The best results were obtained with CSL+SVM.

4 Results

A total of 150 patients of the Walter Reed ArmyMedical Center database [8] were
used to test our CAD algorithm. The database contains 134 polyps detected by
OC, including 12 flat polyps. Among these 134 polyps, 86 are larger than 6mm,
and 48 range from 3mm and 6mm. The evaluation was carried out by splitting
the dataset into halves, training and testing. Under this setting, classification
with CSL+SVM yields the FROCs in Fig. 8, which shows the performance for
different polyps sizes. These values are comparable with state-of-the-art results
[6,9], however our study includes very small polyps. A more precise comparison is
not necessarily meaningful, since in general each work considers its own database.
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Fig. 8. FROC of our method for
different polyps sizes: larger than
6mm (solid), smaller than 6mm
(dashed), and all polyps (dotted)

The FROCs in Figure 9 compare the performance of our system when using
different smoothing schemes (Section 2). The chosen one yields the best results.

The FROCs in Fig. 10 compare the influence of absolute and differential
texture features. The classification was performed using all the geometric fea-
tures, and either absolute (computed just for V1) or differential texture features.
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Fig. 9. FROCs comparing different smoothing methods, classifying large (left) and
small polyps (right). The curve for the proposed evolution is shown in solid line, the
results for the evolution by H and κmin are shown in dotted and dashed lines respec-
tively, and the lower curve is the result when no smoothing is performed.

The results show that differential texture features are more discriminative than
the absolute ones. Finally the FROCs in Fig. 11 compare the results of dif-
ferent classification approaches. CSL, SMOTE, and MetaCost were used as a
pre-processing stage for SVM, and C4.5 trees stabilized with AdaBoost. Param-
eters in all classifiers were optimized via cross validation.

Fig. 10. FROCs (95% con-
fidence intervals), comparing
the performance with dif-
ferential (solid) and abso-
lute (dashed) texture fea-
tures, for polyps larger (left)
and smaller (right) than 6mm
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Fig. 11. FROCs comparing the
performances of different classi-
fication approaches. SVM+CSL
(solid), SVM+SMOTE (dashed),
C4.5+AdaBoost (dotted) and
plain SVM (long-dashed).
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5 Conclusion

We introduced a complete pipeline for a Computer Aided Detection algorithm
that flags candidate polyp regions. The segmentation stage is very simple and
fast, and its main novelty is the smoothing PDE which enhances the polyps,
enabling better detection rates. In addition to the incorporation of the Haralick
texture features, the main yet simple novelties of the proposed features and
classification stages are twofold. First, the surrounding area of candidate polyps
are explicitly taken into account. Indeed, the proposed (so-called differential)
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features are computed by comparing properties in the central and surrounding
regions of the polyps. We show that differential features are more discriminative
than the absolute ones, as they emphasize local deviations of geometry and
texture over the colon. The other novelty is an adaptive-scale strategy that test
regions of different sizes and automatically selects the region that best delineates
each candidate polyp. The obtained quantitative results are very promising.
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