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Abstract Providing Assured-Quality Services over data networks has been
a key objective for the past few decades. Research and commercial activities
have been focused on several aspects related to this main objective, such as
implementing services over heterogeneous networks, providing scalable solu-
tions and verifying network performance. However, less attention has been
devoted to the interaction of these technical aspects with the business plane.
Although several quality-based pricing schemes have been proposed, reim-
bursement proposals, while quite common in other scenarios as health, hotel
reservation or airlines, are still rare in the field of Internet Economics. In this
work, we propose a simple pricing scheme and study it in detail, in order to use
Quality of Service monitoring information as feedback to the business plane,
with the ultimate objective of improving the seller’s revenue. In our frame-
work, Assured-Quality Services are sold through first-price auctions, and in
case of failure, a percentage of the price paid for the service is given back to
the buyers. We derive the expression for the willingness to pay and we model
the reimbursement problem through a zero-sum Stackelberg game. We show
that the Nash equilibrium of such game implies reimbursing 100% in case of
failures.
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1 Introduction

An expansion in service types and quality levels is expected in the near future
[3]. Tele-presence, tele-medicine, multi-player network games and smart-grid
services are a few examples of future enhanced services. In order to provide
these services, in addition to intrinsic networking requirements such as scala-
bility, confidentiality and technical aspects, market implications and end users’
behaviour must be taken into account. Therefore, holistic and interdisciplinary
approaches are needed. Such approaches have enriched the Networking and In-
ternet Economics research fields over the past few decades, as recent research
results show. The proposals range from interdomain Quality of Service (QoS)
path composition and Service Level Agreement negotiations, such as in [9,32],
to higher layers issues, such as modelling user reactions to changes in Internet
pricing [30] or issues related to the net-neutrality debate, see for instance [7,
14,17,29]. The enlargement of the service offer also aims to create new market
opportunities and target different kinds of user profiles. The real space for this
new market has been identified as an issue to be studied, along with how users
are expected to react to it. In this regard, quality of experience (QoE) and
its influence on willingness to pay has gained importance and has put the end
user back in stage [35,38].

In this context, traditional flat rates, where clients pay a single fee for Inter-
net access regardless of usage, have to be revisited, not in order to eliminate
them, but rather to identify enhanced services where special pricing (per-
service, per-amount-of-bandwidth, per-level-of-quality, etc.) could be needed.
Moreover, the mere existence of services with enhanced quality presupposes
differentiated pricing, since otherwise every buyer would choose the highest
level of quality, which is sustainable from neither a technical nor an economic
point of view. In this regard, several pricing schemes for enhanced network
services have been proposed (see [15] for a survey), including some based on
QoS [33,47].

The justification of new pricing schemes for enhanced services is quite
unquestionable from the point of view of the network service providers, as ex-
plained in the paragraph above. But would buyers accept differentiated pric-
ing? Our intuition is that they would be ready to pay more for services that are
assured without question to be delivered in high quality. The studies carried
out throughout this paper show that this intuition, in the analysed context
and with our model assumptions, is verified.

On the other hand, in today’s networks, failures, while less and less fre-
quent, still do occur, producing a negative effect on buyers’ willingness to pay.
Moreover, several studies have shown experimentally that user satisfaction has
a positive effect on willingness to pay (e.g. [20]). A failure in this context could
account for a QoS threshold violation, such as a bound on the delay, a jitter
value, or even a service interruption. Intuition also says that, while potential
failures have a negative impact on willingness to pay, reimbursement should
have a positive one. These statements are intuitively true both in the case of
end users and in the case of big customers or brokers, which would need to rely
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on a good quality service in order to, in turn, deliver properly their services
to the final user.

It is in this context that we propose a pricing scheme for assured-quality
service selling where buyers can make bids to obtain a quality-assured bit pipe,
henceforth referred to as the service, and can be reimbursed if ultimately the
service fails. We shall show that this reimbursement scheme, under the main
assumption of symmetric buyers with private values, incentivizes buyers not
to decrease their willingness to pay due to possible failures, which in the end
results in an increase in the expected seller’s revenue. Moreover, we show that
reimbursing 100% overcomes problems like the market for lemons and moral
hazard, which we show would arise when rational buyers are uncertain about
service performance.

In particular, a first-price sealed auction mechanism is proposed to sell the
services. Auctions make it possible both to find the market price of services
that are not yet widely deployed, since services’ market price is revealed as
part of the mechanism, and to have guidelines to model the willingness to pay.
Most bandwidth auctions in the literature propose the use of second-price auc-
tions, or mechanism seeking to reveal the true valuation that buyers attach
to the service. The motivation behind this is to be able to allocate the good
in sale to those who value it the most, property usually referred to as incen-
tive compatibility. In our scenario, the objective is rather to maximize seller’s
revenue, thus we estimate that the complexity that second-price auctions ap-
plied to networks imply, as we shall comment on the following section, is not
justified.

The use of an auction mechanism rather than a fixed price presents several
advantages compared to the later. While using a fixed price would provide the
advantage, from the buyers’ point of view, of not adding uncertainty about
the price of the service, a fixed price would not incentive the adequate use of
the scarce resources, which in our context is translated into the fact that QoS
is more complex to provide, since there is no control access provided by the
pricing mechanism. On the other hand, under an auction mechanism, while
uncertainty about the price the buyer is going to pay is added, the buyer
never pays a price higher than that one he is willing to pay for the service.
In addition, auctions make it possible to provide QoS guarantees, acting as a
fundamental building block for access control, and in our particular case they
assign the scarce resources to those buyers who value it the most. Moreover,
our reimbursement proposal reassures the buyer in the sense that if the quality
is not attained, the money paid for the service will be given back to him. Is
it based on these facts that we claim that the proposed mechanism achieves
an adequate trade-off between prices uncertainties, guarantees to obtain the
service with the correct quality and an efficient resource allocation.

In our framework, the seller could be, for example, an alliance of domains
who sells a pipe for transit traffic with guaranteed quality. This is the case, for
instance, in the solution that is being proposed by the ETICS project [1]. Such
multidomain alliances are envisaged to provide a service catalogue where end-
to-end pipes with quality guarantees are sold through differentiated pricing.
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Buyers could be, for instance, other domains which need to buy transit, or
content providers who need bandwidth with quality guarantees in order to
properly deliver their enhanced services. Hereafter, we shall simply refer to
sellers and buyers. We focus on one single alliance, and the competition that
could arise among several alliance is considered out of the scope of the paper.

The proposed pricing scheme assumes the existence of a monitoring in-
frastructure, which would be the one triggering the reimbursement process.
The research and industry community has somehow agreed that for QoS pro-
visioning a monitoring infrastructure is essential. Examples of this are found
in recent projects (e.g. [1]), in recent standardisation activities (e.g. [2]), and
a wide variety of conducted research, for instance [11,39]. In this sense, our
pricing scheme proposes using the existence of the monitoring infrastructure
at the business plane, providing an economic justification for monitoring.

The remainder of this paper is organized as follows. In Section 2 we review
the related literature and comment on the main contributions of the present
work. In Section 3 we clearly state the model, assumptions and definitions
required. In Section 4 we study buyers’ willingness to pay in the context of first-
price auctions, which is given by so-called best bidding strategies. In Section
5, we study the problem from the seller’s standpoint in order to derive the
best percentage of reimbursement. In particular we present the pricing game
modelled through a Stackelberg game. Finally, concluding remarks and future
work are presented in Section 6.

2 Related Work and Main Contributions

As aforementioned, though other allocation mechanisms could be used, in this
work we focus on an auction mechanism, since we consider it is a flexible
mechanism to determine the willingness to pay for services that are quite new
in the market. In particular, we consider first-price auctions, since our ultimate
objective is to provide an optimal mechanism, that is a mechanism maximizing
the seller’s revenue, and with low implementation complexity. Although in
the present paper we focus on a single type of service, that is all services
fail with the same probability, provide the same bandwidth and are delivered
through the same single path, the implementation complexity becomes an
important issue when extended to a multi-path and multi-service scenario, as is
our will in future work. Thus, the work we shall now review focuses on auctions
mechanisms and reimbursement policies. We shall not attempt, however, to
provide an exhaustive review of allocation mechanisms nor reimbursement
policies, which are quite abundant in fields other than the networking one.

Auctions have been used in diverse forms in the networking field, mainly
for allocating scarce network resources when QoS is needed. A first proposal
appeared in an unpublished paper by Mac Kie-Mason [23], where second-price
auctions are used at packet level in order to allocate resources in a multiservice
network. More recent work includes [16,24,34], where second-price auctions
are used as well. The main reason why such an auction mechanism is used
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is that it incentivizes buyers to reveal their true valuation. However, second-
price auctions are rather hard to implement in the networking scenario in
a distributed manner, as shown in [25]. On the contrary, and when seller’s
revenue maximization is sought, optimal mechanisms are preferred to efficient
ones. In this case, first price auctions become a viable, attractive option, as
proposed in [12] and used in [8], while revenue equivalence principles between
first-price and second-price auctions can be proven (see [21] for more details).

In particular, in this work we model bidders’ behaviour when a mechanism
based on first-price auctions and reimbursement is in place. For such pur-
pose economic literature provides a vast yet fertile field. Equilibrium or best
bidding strategies have been studied under different assumptions. The basic
bidding model was introduced in [43], where results for equilibrium bidding
strategies with independent private values were shown for valuations drawn
from a uniform distribution. More detail was later provided in [37]. Further
results relaxing some assumptions were derived in [22,36] and instructive and
complete summaries can be found in [28] and [21]. While none of these results
consider either failures or reimbursements, in the present work we consider
both.

Independently of the allocation mechanism, reimbursement policies pro-
posals, while quite common in the revenue management literature, are rather
limited in the networking field. Perhaps the closest work is that proposed by
Tuffin et al. in [42]. In such work, a simple pricing model for communication
networks is presented in which reimbursement occurs if a certain delay thresh-
old is exceeded. Prices are fixed by the seller such that for a given amount
of reimbursement, his or her own revenue is maximized. The authors model
demand such that it is proportional to the probability that the utility exceeds
a given cost. This cost is a function of the price paid, the cost of waiting and
the negative cost in case the delay threshold is exceeded, which corresponds
to a reimbursement. A certain shape for the utility’s probability distribution
function is assumed in order to draw conclusions and perform numerical exper-
iments. The authors show through such studies that this mechanism increases
the seller’s revenue compared to the case with no reimbursement. The idea
behind this method is the same as ours, though buyers’ side is modelled in a
very different way, since in that work the price is fixed by the seller, while in
our work the price is determined through the auction mechanism.

Yet another approach is proposed in [13], where second-price auctions are
used for buying one unit of a computing resource. Winning buyers pay and
with a certain probability will indeed need the service. If winners do not use
the service, they receive a refund of a percentage of the payment. The authors
propose numerical studies to determine the best refund strategy, and define a
correlation between the valuation of the object and the probability of not using
it. They conclude that different correlations result in different percentages of
optimal reimbursement. The scenario is quite different to ours, but the logic
behind the mechanism is very similar to our proposal. However, in the present
work we focus on analytical results, both for computing the dependency of
the willingness to pay on the probability of failure and reimbursement, and
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to compute the seller’s revenue and optimal percentage of reimbursement. In
addition, we focus on first-price auctions.

Other reimbursement schemes have also been studied in another, non-
networking context. A particular case refers to services that have the pecu-
liarity that they can be returned afterwards and will still possess some value
for the seller (see for instance [26]). This is not the case in the networking
scenario, in which the service no longer has any value to the seller once it has
been used.

Once we model willingness to pay, we shall focus on the seller’s problem.
We shall assess the seller’s expected revenue and find the optimal percentage
of reimbursement, that is, the percentage of reimbursement that maximizes
the seller’s expected revenue. We shall split the analysis into two different
cases, namely when buyers perform some level of service monitoring or have
some knowledge about service performance, which we shall refer to as the
complete information case, and when they do not. The latter is an asymmetric
information situation, where the seller has more knowledge about the service
than buyers have. We model the reimbursement problem in this asymmetric
case through a Stackelberg game [44], where the seller initially announces a
percentage of reimbursement and buyers bid according to it. In a Stackelberg
game, there is a leader that plays first and the followers that play afterwards,
knowing the leader’s move, to reach a Nash Equilibrium. Stackelberg games
are very suitable for modelling pricing situations, where the network or the
seller typically acts as leader and the users or buyers act as followers. This kind
of game has been widely used in the literature to design revenue-maximizing
network policies. For example, [10,40] where an Internet packet-pricing scheme
is proposed for monopolistic service providers and large numbers of users,
or [6], where a pricing scheme for differentiated services is proposed, or yet
[41], where a user loyalty model to Internet service providers is proposed and
applied in a game-theoretical framework in order to derive optimal Internet
access pricing strategies. In addition, this kind of hierarchical game has also
been studied for pricing along with power control in wireless networks, see for
instance [5,18,46] and for spectrum sharing in such networks [45].

In this work we provide insight into a pricing mechanism based on first-price
bandwidth auctions with reimbursement, which to the best of our knowledge,
has not been proposed before. The main contribution is twofold. We determine
the best bidding strategy under a first-price auction for services that are prone
to failures and with money-back guarantees; and we compute the optimal
reimbursement value when bidders are aware of the reimbursement policy.

Regarding the best bidding strategy, we derive its mathematical expres-
sion for symmetric bidders with private values and show that it follows some
intuition. Indeed, for values of reimbursement lower than 100%, the higher the
probability of failure, the lower the bid, while the higher the percentage of
reimbursement, the higher the bid.

With respect to the optimal percentage of reimbursement, we show that
when there are no information asymmetries, that is, when both seller and
buyers are sure about the performance of the service, the expected seller’s



Title Suppressed Due to Excessive Length 7

revenue is not sensitive to the percentage of reimbursement. On the other
hand, when there is asymmetric information, that is when buyers are uncertain
about the performance of the service they plan to buy, and assuming they act
rationally, setting the percentage of reimbursement equal to 100% maximizes
the seller’s revenue. In addition, in the latter case, we show that if percentage of
reimbursement is to be set to a value smaller than 100%, themarket for lemons
phenomenon appears, where the bids decrease until market disappearance.
Conversely, if the percentage of reimbursement is set to a value greater than
100%, the so-called moral hazard behaviour is observed, where buyers take the
risk of assuming a very good performance, since in case of failure the seller
would bear the costs. In both cases the seller’s expected revenue diminishes.
Setting the reimbursement equal to 100% overcomes these problems, and the
resulting outcomes for seller and buyers are the same as when there is complete
information.

3 The model

Let us begin by describing our working scenario and introducing the notations,
definitions and assumptions needed to model it. We are studying a situation
where quality-assured services are sold over an interdomain network. Such ser-
vices could be, for instance, video on demand, a VPN service interconnecting
two remote sites or a network game. In all cases, the service can be abstracted
to a certain amount of bandwidth guaranteed between two sites through an
overlay network, and with certain quality parameters associated with it. We
shall call this abstraction an object. The quality parameters associated with
the object could be given, for instance, by values of the delay, the jitter, the
percentage of packet failures, the percentage of service availability, etc.

Objects are sold via a first-price sealed auction mechanism. The following
common assumptions are made regarding this mechanism. We first assume a
single-object case, that is, M bidders or buyers compete to buy one object.
We then move to the case of multi-object, single-unit demand. In other words,
M bidders compete to buy K identical objects, and each bidder is interested
in buying one single unit of such objects. Each bidder i assigns a valuation Xi

to the object and we assume that the Xis are independently and identically
distributed according to a common distribution function F , which is known by
all buyers. This is the so-called symmetric model, since all bidders’ valuations
are distributed according to the same distribution function. At the moment of
bidding, bidder i knows the realization xi of his or her valuation but does not
know the valuation attached to the object by other bidders, and this knowledge
would not affect his or her own valuation, which is the so-called private values
model. Valuations in the private values model are as well usually referred to
as types.

Conversely, we assume that the service has no value to the bidder if it fails.
Please note that actually bidders could attach a negative value to the service
when it fails, rather than a null one. This would be the case, for instance, if the
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failure causes losses to the buyer’s business. This could be easily modelled by
considering a negative deterministic valuation in case of failure. For clarity’s
sake, we shall not consider this artefact in the model, though doing so would
not change the methodology applied to address the problem.

Bidders are assumed to be risk-neutral, as they seek to maximize their
utilities, which we shall model through their expected payoff introduced in the
following section. Bidder i’s bid is denoted by bi and it is obtained according
to a bidding strategy called βi. That is to say, bidder i’s bid is determined as
bi = βi(xi). Finally, we assume a discriminatory payment rule, which means
that the winning bidder pays his bid. We shall generally simplify notation and
refer to x as the realization of the valuation of any given bidder.

The service has an associated probability of failure, denoted by θ in our
framework. If indeed the service fails, money is given back. The amount of
money returned is proportional to what has been paid for the object and the
coefficient of proportionality is represented by q ≥ 0, which could a priori be
greater than one. We shall as well refer to q as a percentage of reimbursement.

The percentage of reimbursement associated with the object is always an-
nounced to the bidders before they announce their bids, and it is the same
value for all bidders. Bidders have their own estimations regarding the proba-
bility of failure of a service, which will have an impact on the value of the bid
they submit. This estimation could, a priori, be based on service performance
perception. Buyers could even perform their own measurements on historical
observations in order to estimate the probability of failure, or they could infer
it from the percentage of reimbursement announced. But we shall address this
issue later on. For the moment let us denote the probability of failure assumed
by the bidders at the moment of placing their bid as θ̂, which is not necessarily
equal to θ.

For simplicity in the presentation we shall focus on a one-shot auction,
in which, as usually, services are allocated to the K highest bids. However,
when considering multi-period allocations some considerations are worth not-
ing. Since we are selling QoS services we shall not allow ongoing services,
allocated in a previous period, to be interrupted in order to accept new higher
bids in a subsequent period. Different proposals can be found in the literature
that address the multi-period case and that could be adopted in our scenario.
Examples of this are, for instance, allowing ongoing services to resubmit a bid
[34], allocating services during their whole duration [12] and considering future
bids assuming some statistical characterizations, or even allocating at each pe-
riod the available capacity. Any of these approaches could be considered in the
multi-period case.

4 The Optimal Bidding Strategy

In order to determine how the willingness to pay for a service is affected by
the probability of failure θ̂ and the percentage of reimbursement q, we study
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the optimal bidding strategy under such conditions, under the assumptions of
Section 3, first for a single object on sale and then for multiple objects.

First-price sealed auctions can be modelled as Bayesian games, which are
strategic games with imperfect information (see for instance [31]). Indeed,
buyers compete among them for getting the service and they all posses some
private information (their types or valuations) which is not known for the
rest of the buyers. This means that buyers do not know the realization of
other buyers’ valuations. A pure strategy for them is a function that maps a
valuation into a bid. Thus, when we refer to an optimal bidding strategy, we are
referring to the Bayesian Nash-equilibrium of the game defined by the auction
mechanism. Throughout this section, references to the term equilibrium should
be interpreted in that sense. In the following subsections this is formalized and
the equilibrium strategies are derived.

4.1 The Single-Object Case

The single-object case models the situation in which the total available capac-
ity, along with quality guarantees, is to be allocated to one single client, i.e. to
the winning bidder. We shall show that in this case and under the assumptions
of Section 3, a symmetric equilibrium exists, that is, an equilibrium where all
bidders adopt the same best strategy. Theorem (1) formally states this along
with the mathematical expression for the best bidding strategy. An outline of
the proof is provided below, while the detailed proof can be found in Appendix
A.

Let Y
(1)
M−1 be a random variable defined as the maximum over M − 1 i.i.d.

random values from distribution F and D = {θ̂ ∈ [0, 1), q ≥ 0 : qθ̂ < 1}.

Theorem 1 The Symmetric Equilibrium, Single Object Case. Given a set of
M symmetric bidders whose valuations Xi, i = 1 . . .M are identically and
independently distributed (i.i.d.) from a probability distribution F (x), the bid-
ding strategy that maximizes each bidder’s payoff in a first-price sealed auction
mechanism for a single object which is assumed to fail with probability θ̂ and
for which a percentage q of the amount paid is given back if it actually fails,
is the same for all bidders and is given by:

β(x) =
1− θ̂

1− qθ̂
E[Y

(1)
M−1|Y

(1)
M−1 ≤ x], (θ̂, q) ∈ D. (1)

Proof Let us first assume that a symmetric equilibrium exists, meaning that
all bidders follow the same strategy, βi = β ∀i ∈ M . Any bidder’s payoff p can
thus be expressed as a function of bid b as in Equation (2), where β(x) = b
and 1e is equal to 1 if event e occurs, and 0 otherwise.

p = 1win(x1not failure − b(1− q1failure)), (2)

Now let G be the cumulative distribution function of the maximum valu-
ation over M − 1 valuations i.i.d. according to F , which we have denoted as
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Y
(1)
M−1. The notation in Y

(1)
M−1 means that we are selecting the highest value,

indicated by superscript 1, among a sample of size M − 1, indicated by sub-

script (M −1). Please note that Y
(1)
M−1 is then the (M −1)− th order statistics

of a sample of (M − 1) i.i.d. values according to F .
The expectation of a bidder i’s payoff can be expressed as:

P̃ = E{p|Xi = xi} = G(β−1(bi))(xi(1− θ̂)− bi(1− qθ̂)). (3)

In Equation (3) we have used the fact that the probability of winning the
auction is

P(bi > max
j 6=i

bj) = P(β(xi) > max
j 6=i

β(Xj)

= P(xi > max
j 6=i

Xj) = G(xi), (4)

where symmetric equilibrium is assumed, and in the last equality, the assump-
tion is made that β is a strictly increasing function of x. Please note that in
the reasoning above we have used θ̂ and not θ, since we are looking at the
problem from the buyer’s point of view. Since the previous reasoning is valid
for any bidder, in what follows subscript notation is avoided.

Two different cases need to be addressed. When qθ̂ ≥ 1 the expected
payoff does not present a maximum, but rather it continues to grow when the
bid increases. It is easy to verify that such a situation is not an equilibrium.
Consequently, we are not interested in this case. In the following we focus on
the second case, i.e. qθ̂ < 1.

Finding the bidding strategy β that maximizes Equation (3) reduces to
setting its derivative with respect to b equal to zero and imposing b = β(x).
The derivative of the expected payoff with respect to b is shown in Equation
(5), where we have introduced the notation g(x) = G′(x).

xg(x)(1 − θ̂)− [g(x)β(x) +G(x)β′(x)](1 − qθ̂) = 0 (5)

Equation (5) is a first order differential equation, whose solution, derived
in Appendix A, is:

β(x) =
1− θ̂

1− qθ̂

1

G(x)

∫ x

0

vg(v)dv, ∀ (θ̂, q) ∈ D. (6)

Directly applying the definition of conditional expectation Equation (6),

for (θ̂, q) ∈ D can be written as

β(x) = E[Y
(1)
M−1|Y

(1)
M−1 ≤ x]

1− θ̂

1− qθ̂
. (7)

Equation (7) possesses a closed form expression for several distributions,
as we shall see in an example of later on.

Finally, it remains to be shown that the assumption of symmetric equilib-
rium holds. We again refer to Appendix A for the complete proof. Without
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loss of generality, consider that all bidders but bidder 1 use the same strat-
egy given by Equation (6). It must be checked whether in that case it is also
optimal for bidder 1 to follow such a strategy.

Let bidder 1’s expected payoff P̃ be expressed as a function of his valuation
and his bid. If bidder 1 bids β(z), when the value he attaches to the service is
actually x, his payoff is:

P̃ (β(z), x) = G(z)[x(1 − θ̂)− β(z)(1 − qθ̂)]. (8)

Hence, the difference with his expected payoff if he were to bid β(x) is:

P̃ (β(z), x)− P̃ (β(x), x) =

G(z)[x(1− θ̂)− β(z)(1 − qθ̂)]

−G(x)[x(1 − θ̂)− β(x)(1 − qθ̂)]

= (1 − θ̂)

[

G(z)(x− z) +

∫ z

x

G(v)dv

]

, (9)

where the last equality comes from applying integration by parts, as detailed
in Appendix A.

It remains to be determined if Equation (9) is negative for any value of z.
If it were to be negative, then bidder 1’s expected payoff by bidding something
different from β(x) would not be greater than the payoff obtained if he were
to bid β(x).

We graphically show that indeed, Equation (9) is strictly negative ∀z 6= x.
Consider Fig. 1, where two different cases are distinguished. When z < x, as
illustrated in Fig. 1a, the shaded area corresponds to −

∫ z

x
G(v)dv and the

dotted area corresponds to G(z)(x − z). The shaded area is greater than the
dotted area for any G (we recall that G is a distribution function, thus it is
always non-decreasing). Hence, Equation (9) is negative for any z < x.

Likewise, when z > x, which corresponds to the situation in Fig. 1b, the
dotted area corresponds to the term

∫ z

x
G(v)dv and the shaded area to the

opposite of G(z)(x − z). The shaded area is always greater than the dotted
one, thus Equation (9) is again strictly negative. All together, we obtain that
Equation (9) is negative for any value of z 6= x, which means that there is no
other bid leading to a greater payoff than bidding β(x). We conclude that the

assumption of symmetric equilibrium holds for the case (θ̂, q) ∈ D.
Finally, it is easy to check from Equation (7) that β is an increasing function

of x. ⊓⊔

4.2 Multi-Object, Single-Demand Case

The multi-object scenario corresponds to the case where the available capac-
ity is split into several identical bandwidth chunks, each with certain quality
guarantees, and each to be assigned to a different client. Single-demand means
that each client is interested in exactly one of these chunks or services. Let us
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(a) z < x (b) z > x

Fig. 1: Illustration of the components of Equation (9).

assume that the auction mechanism is launched for sellingK objects. The only
thing that changes with respect to the single-object case is the probability of
winning the auction, which in this case corresponds to the probability of being
among the K highest bids.

Let Y
(K)
M−1 be a random variable defined as the K-th highest value among

(M−1) i.i.d. values according to F , and whereD = {θ̂ ∈ [0, 1), q ≥ 0 : qθ̂ < 1}.

Theorem 2 The Symmetric Equilibrium, Multiple-Object Single-Demand Case.
Consider a multi-unit single-demand first-price sealed auction mechanism to
sell K objects among a set of M symmetric bidders whose valuations Xi,
i = 1 . . .M are i.i.d. from a probability distribution F (x).

Consider buyers assume services fail with a probability θ̂. If the service
ultimately fails, winning buyers receive back a percentage q of the money paid
for the service.

In such conditions, the bidding strategy that maximizes each bidder’s payoff
is the same for all the bidders and is given by:

β(x) = E[Y
(K)
M−1|Y

(K)
M−1 ≤ x]

1− θ̂

1− qθ̂
, θ̂, q ∈ D. (10)

Proof Since β is assumed to be an increasing function of xi, and we assume
a symmetric equilibrium, i.e. bi = β(xi)∀ i, the probability of winning for
bidder i is equal to the probability that his valuation xi is among the K
highest valuations.

Considering this probability of winning the auction the proof is analogous
to the single object case. Hence, the symmetric equilibrium for the optimal
bidding strategy is readily generalized to the multi-object scenario and is given
by Equation (10). ⊓⊔
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Fig. 2: Contour Lines of function α, the multiplying factor of the best bid-
ding strategy, for different assumed probabilities of failure θ̂ and percentage
of reimbursement q.

4.3 Bidding Behaviour Remarks

The best bidding strategy deserves a closer look. First, it is interesting to note
that it follows the intuitions stated above in Section 1. Indeed, according to
Theorem (1) and Theorem (2), β increases when the percentage of reimburse-
ment does so, and when the percentage of reimbursement is less than 100%,
β decreases when the probability of failure increases. This means that buyers
decrease their bids when they assume that services fail frequently unless the
percentage of reimbursement is greater than or equal to 100%, which is quite
intuitive. It means as well that for the same level of failures, the higher the
percentage of reimbursement, the higher the bid, which is also consistent with
intuition.

This behaviour is shown in Fig. 2 for different values of (θ̂, q) ∈ D, where

α, defined as α = 1−θ̂

1−qθ̂
, is the multiplying factor on the best bidding strategy.

Let us finalize this section with an illustrative example. Consider a situation
where valuations are uniformly distributed on [0, 1] and there is a single service
for sale. In this case F (x) = x, G(x) = xM−1 and the optimal bidding strategy

is given by Equation (11), which is valid for (θ̂, q) ∈ D.

β(x) =
1− θ̂

1− qθ̂

M − 1

M
x. (11)

It is worth noting that for different values of q and θ̂, bidders either shade
their valuations, announce their true valuation, or overbid. We say that they
shade their valuations when the bid is smaller than the valuation, as occurs
in the case with no reimbursements and no failures. Conversely, we say that
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bidders overbid when their bids are greater than their valuations. In contrast,
in cases with no failures, bidders always shade their bids.

5 Expected Seller’s Revenue

We shall now study the problem from the seller’s standpoint, with the ultimate
objective of finding the optimal value of the percentage of reimbursement q.
For these purposes, we shall study the seller’s outcome. Since there are some
uncertainties at each transaction, namely whether the service will fail or not,
as well as the intrinsic uncertainty of the selling price due to the auction
mechanism in place, we shall model the seller’s outcome through his or her
expected revenue. We recall that there are K units of the same object for sale.
There are M ≥ K bidders, who participate in a first-price auction to obtain
one object. Let us order their bids as:

b(1) ≥ b(2) ≥ · · · ≥ b(M), (12)

which are obtained as b(i) = β(x(i)), where x(i) represents the ordered bidders’
valuation and β is given by Theorem (2).

The services are allocated to the K highest bids; thus the seller’s revenue
can be expressed as a function of K and the valuations x = (x(1), . . . , x(M))
as:

I(K,x) =
K
∑

i=1

b(i) =
K
∑

i=1

β(x(i))

=

K
∑

i=1

E[Y
(K)
M−1|Y

(K)
M−1 ≤ x(i)]

1− θ̂

1− qθ̂
. (13)

In order to simplify the notations henceforth let us introduce function
u(K,x) defined as:

u(K,x) =
K
∑

i=1

E[Y
(K)
M−1|Y

(K)
M−1 ≤ x(i)]. (14)

According to our proposed pricing scheme, if failures take place the seller
will give money back. We shall thus compute the net seller’s revenue, that
is, the revenue earned from selling the services minus the money that is given
back. For brevity, we shall from now on simply refer to it as revenue. Let us as-
sume that failures occur for all services at the same time. This model accounts
for failures given by an equipment failure or congestion for example. Then the
seller’s revenue given that the bidders’ valuations are x = (x(1), . . . , x(M)), is:

R(K,x)

=I(K,x)1no failure + (1− q)I(K,x)1failure (15)
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Since valuations and failure events are independent, the mean seller’s rev-
enue given the bidders’ valuations x is:

R̄(K,x)

=I(K,x)(1− qθ) = u(K,x)
1− θ̂

1− qθ̂
(1 − qθ). (16)

Please note that if we were to assume that failures do not occur for all
objects at the same time, it is easy to check that we would also obtain Equation
(16) for the expected seller’s revenue.

Finally, the ex ante expected seller’s revenue, that is the seller’s expected
revenue taking into account the randomness of valuation’s vector X , is ob-
tained as

E{R̄(K,X)} = E{u(K,X)}
1− θ̂

1− qθ̂
(1− qθ), (17)

where the expectation is over the valuations Xi, and X = (X(1) . . . X(M))
is the vector of valuations Xi, i ∈ {1, . . . ,M} sorted in non-increasing order.

Hence, the seller’s expected revenue can be tuned through the value of q.
However, the value of θ̂, which also influences the seller’s expected revenue, is
determined by the buyers. We shall divide the following study into three parts,
each of which makes different assumptions about the buyers’ behaviour.

5.1 Complete Information

We shall first assume that buyers have perfect information about the ser-
vices’ performance. The information can be obtained, for instance, through
a monitoring infrastructure available for buyers’ consultation, or from knowl-
edge obtained through previous observations. In our model, this situation is
translated into θ̂ = θ. We shall refer to this scenario as complete information
because it supposes that seller and buyers have the same information regard-
ing the probability of failures. Note that it is an assumption of this scenario
that the monitoring infrastructure has run long enough to provide accurate
information. We shall relax this assumption in the following subsections.

Hence, the expected seller’s revenue becomes, regardless the value of q,
equal to:

E{R̄(K,X)} = E{u(K,X)}(1− θ). (18)

According to Equation (18), the seller has incentives to keep the probability
of failure low, which is quite intuitive.
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5.2 Asymmetric Information with Naive Buyers

We shall now consider the situation where buyers have no means of determining
the probability of failure on their own. We refer to this situation as asymmetric
with respect to the information, since the seller has more knowledge about
service performance than buyers do. In this situation, the seller can announce
the probability of failure, along with the percentage of reimbursement. We shall
assume that buyers will take the value of the probability of failure announced
by the seller as granted. We have called buyers in this situation as naive, risking
to be using a too strong characterization. This should be rather interpreted
as opposed to the rational buyers case, which we shall introduce following in
Subsection 5.3, and the term naive should only be interpreted as buyers being
seller’s announcements takers.

It can be readily derived from the seller’s expected revenue in Equation
(17), that this expected revenue increases with q when θ̂ is greater than θ.

Indeed, let us define Bθ : D → R

+ as:

Bθ(q, θ̂) =
1− θ̂

1− qθ̂
(1− qθ), (19)

where D = {θ̂ ∈ [0, 1), q ≥ 0 : qθ̂ < 1}.
According to Equation (17), the behaviour of the seller’s revenue is driven

by Equation (19), which is shown in Fig. 3, where as an illustrative example we
have plotted Bθ when θ = 10% and for different values of q. The seller could
take advantage of this behaviour by announcing a probability of failure higher
than the real one, and setting reimbursement at a value greater than 100%.
In other words, negative marketing could be used, with a higher probability
of failure being announced than the real one, with the goal of fooling naive
buyers for the seller’s benefit.

However, the negative marketing policy could be disadvantageous for the
seller as well, for at least two reasons. First, if in the end buyers disregard
sellers announcement with respect to the probability of service and assume
some other value convenient for them, seller’s revenue could diminish, to a
value even lower than the revenue obtained when reimbursing 100%. Second,
the seller could be judged by buyers as untrustworthy, which could lead to
losses not captured in our model. More formally, in the former, the buyers
would thus act as rational, which is the case addressed in the following section.
If in addition, reputation effects should be studied, in order to draw conclusions
about the impact on the seller’s revenue when announcing a misleading value
of the probability of failure, a repeated game should be studied and a number
of hypothesis should be established. For instance, hypothesis should be made
with respect to whether buyers and seller have a finite-horizon or a long-term
horizon for maximizing their utilities (see e.g. [19]) or whether the outcomes of
the game are observable for all buyers or not. However, we shall not deepen in
this but rather show in the following subsection that there is a seller’s strategy,
namely q = 1, that renders his expected revenue independent of the buyer’s
assumptions.
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Fig. 3: Variation of the seller’s expected revenue as a function of reimbursement
q for a real probability of failure θ = 0.1 and for different values of probability
of failure assumed by the buyers.

5.3 Asymmetric Information with Rational Buyers

Let us now consider the case where buyers are uncertain about the probability
of failure of the service they wish to buy and where they act rationally, seeking
to maximize their payoffs. The seller’s ultimate objective is still to set the
value of q such that his or her revenue is maximized. We shall show that
these two objectives, namely maximizing seller’s expected revenue and buyers’
expected payoff, are conflicting, thus rather than finding an optimum we shall
formulate the problem as a Stackelberg game and determine the percentage
of reimbursement as the Stackelberg strategy of the seller, i.e. the value of
q at which seller’s revenue is maximized considering the reaction of rational
buyers. Let us formalize this in what follows.

We recall that the dynamics of the proposed pricing mechanism implies
that the seller announces a percentage of reimbursement q for a service which
fails with probability θ. After the announcement, buyers bid to obtain this
service, assuming that the probability of failure is θ̂, a priori not necessarily
equal to θ, and being aware of the value of q. The dynamics of service selling
naturally impose an order: the seller announces a value of q and the buyers
follow. Each side of the market, seller and buyers, take an action seeking to
maximize their own outcome.

This kind of interaction is conveniently modelled by Stackelberg games
[44], introduced by von Stackelberg in 1934. In a two-sided Stackelberg game
there is a leader that plays first, in our case the seller, and the follower, in our
case the buyers, who plays next knowing the leader’s move. We have already
introduced the seller’s utility through Equation (17). Let us now introduce the
utilities of the buyers.
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5.3.1 Bidders’ Expected Payoff

We now derive the buyer’s expected payoff considering their payoff when bid-
ding according to the best bidding strategy, given by Theorem (2). Following
the same reasoning as for deriving the best bidding strategy in Section 4 a
bidder’s payoff is:

P = 1win(x1not failure − β(x)(1 − q1failure)), (20)

where β is expressed in Equation (10) and the failure event refers to the
real event of failure.

Computing expectations over the event of winning or not and the event of
real failures, and replacing β by its definition we obtain the following expression
for the expected payoff of each bidder:

E{P |X = x} = G(x) (21)

·

[

x(1 − θ)− E[Y
(K)
M−1|Y

(K)
M−1 ≤ x]

1− θ̂

1− qθ̂
(1− qθ)

]

.

In Equation (21) we have considered a given realization of X . Let us now
consider the expected payoff prior to having knowledge of this realization, by
computing the so-called ex ante expected payoff as:

E{P} = E{E{P |X = x}} = E{G(X)X} · (1− θ)

− E{

∫ X

0

vg(v)dv}
1− θ̂

1 − qθ̂
(1− qθ), (22)

where the expectation is over the valuations.

5.3.2 The Stackelberg Reimbursement Game

It can be readily noticed from the expected seller’s revenue and buyers’ payoff
in Equations (17) and (22) respectively, which we have reproduced in Table
1 for convenience, that seller’s objective and buyers’ objective comes to re-
spectively maximizing and minimizing Bθ(q, θ̂), respectively. They thus have
opposing objectives. As aforementioned, because of the nature of the process
and since in this subsection buyers are assumed as rational, the situation can
be conveniently modelled through a Stackelberg game. More precisely, in our
Stackelberg reimbursement game, the leader is the seller and the buyers are
followers. The leader’s set of available actions is {q : q ∈ R

+} and the follower’s

set of available actions is the set {θ̂ ∈ [0, 1) : 0 ≤ θ̂ < 1
q
}. Finally, the leader’s

utility is Bθ(q, θ̂) and the follower’s utility is −Bθ(q, θ̂). Therefore, it is a zero-
sum Stackelberg game, and thus the leader’s Stackelberg strategy coincides
with that of the Nash-equilibrium of the zero-sum game (see e.g. [19]).
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Best Bidding
β(x) = E[Y

(K)
M−1|Y

(K)
M−1 ≤ x] 1−θ̂

1−qθ̂Strategy
Seller’s

E{R̄} = E{u(K,X)}Bθ(q, θ̂)Expected Revenue
Buyers’ E{P} = E{G(X)X} · (1− θ)

Expected Payoff −E{
∫X

0 vg(v)dv}Bθ (q, θ̂).

Bθ(q, θ̂) =
1−θ̂

1−qθ̂
(1− qθ), (q, θ̂) ∈ {θ̂ ∈ [0, 1), q ≥ 0 : qθ̂ < 1}

Table 1: Summary of derived expressions.

In the Stackelberg reimbursement game we have assumed that all buyers
would play the same θ̂. This comes directly from the fact that buyers are
symmetric.

We shall solve the game through the so-called backward induction method,
i.e. the maximization is solved first at the follower’s level and this result is in
turn used to solve the problem at the leader’s level. Let us formalize this
solution in the following Theorem.

Theorem 3 The Stackelberg reimbursement game as defined above has as a
solution the set {(q, θ̂) ∈ R× R : q = 1, 0 ≤ θ̂ < 1}.

Proof Note that the Stackelberg reimbursement game can be reformulated as
the following bi-level optimization problem.

max
q

Bθ(q, θ̂)

s.t. q ≥ 0, θ̂ ∈ argmin
θ̂′∈[0,1):qθ̂′<1

Bθ(q, θ̂
′)

In order to solve Problem (23), the backward induction method is applied.
Hence, we first solve the second level optimization. As usual, in order to solve

min
θ̂∈[0,1)

Bθ(q, θ̂) (23)

s.t. 0 ≤ θ̂ < 1/q, q ≥ 0

the minimum is found at the values of θ̂ where the first derivative ofBθ(q, θ̂)

with respect to θ̂ is equal to zero or at the border of Bθ’s domain. The first
derivative of Bθ with respect to θ̂ is

∂Bθ(q, θ̂)

∂θ̂
=

q − 1

(1 − qθ̂)2
(1 − qθ), (24)

and there is no value of θ̂ that renders it equal to zero. Hence, given that
Bθ is a continuous function, the minimum, or infimum, must be reached at
the border of its domain. Three cases must be distinguished, namely:

– 0 ≤ q < 1: The infimum is attained at θ̂ = 1
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Fig. 4: Variation of Bθ as a function of θ̂ for a real probability of failure θ = 0.1
and for different values of reimbursement. Rational buyers select θ̂ such that
it minimizes Bθ.

– q = 1: Function Bθ is constant for all θ̂ ∈ [0, 1)

– 1 < q: The infimum is attained at θ̂ = 0 and it is a minimum

This behaviour is shown in Fig. 4, where Bθ is plotted as a function of θ̂
for different values of q.

Finally, the solution to the second level optimization is incorporated to
Problem (23) obtaining the following equivalent problem

max
q

{Bθ(q, 1− ǫ)1q<1 +Bθ(1, θ̂)1q=1 +Bθ(q, 0)11<q},

which, evaluating Bθ, can be expressed as

max
q

{
ǫ

1− q(1 − ǫ)
(1 − qθ)10≤q<1 + (1− qθ)11≤q} (25)

and where ǫ is an arbitrarily small positive real number. It is easy to see
that the solution to the seller’s problem is attained at q = 1, which concludes
the proof. This is the so-called leader’s Stackelberg strategy. Fig. 5 shows
the behaviour of Bθ for the different cases considered in Problem (25), which
illustrates this result. ⊓⊔

5.3.3 Remarks and Interpretations

Interesting interpretations can be derived from the analytical results obtained
above.

First, let us highlight the intuition behind the obtained results. If the seller
announces a rather small percentage of reimbursement, buyers will, to some
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Fig. 5: Variation of the seller’s expected revenue as a function of reimbursement
q for a real probability of failure θ = 0.1 and a probability of failure estimated
by rational buyer’s θ̂ equal to their best response for each q. The seller selects
q such that it maximizes Bθ.

extent, tend to believe that the service fails a lot, and estimate the probability
of failure θ̂ close to 1. This is the so-called market for lemons phenomenon,
introduced by Akerlof in 1970 [4]. The market for lemons states that when
buyers are uncertain about the quality of the goods to buy, the market for
high quality goods is reduced until it disappears. Indeed, this is what happens
according to the theoretical analysis presented above: buyers assume that qual-
ity is very bad, which causes the value of the bids to approach zero.

Conversely, if the seller announces a high percentage of reimbursement,
greater than 100%, buyers would intuitively assume that failures are not fre-
quent, and thus estimate the probability of failure θ̂ close to 0. We obtain
here the so-called moral hazard behaviour. That is to say, the buyers take a
risk, by considering θ̂ small (theoretically equal to zero), because if a failure
were to occur it would be the seller who would bear the cost, through a high
reimbursement. This behaviour is observed in many contexts where one of
the players taking a decision is not the one bearing the responsibility for this
decision. See, for instance, [27] for details on this phenomenon.

All in all, a reimbursement of 100% overcomes the problems that arise
when there is asymmetric information. In addition, setting q = 1 provides the
following three properties, worth highlighting.

Credibility. When the percentage of reimbursement is 100%, and this value
is announced to the buyers along with a given probability of failure, then
buyers can safely trust the announced probability of failure. Indeed, according
to the expression of the seller’s expected revenue shown in Equation (17) and
illustrated through Fig. 3, when q is set to 1, the seller’s expected revenue is
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constant. The seller thus has no incentives to announce a misleading value for
the probability of failure in order to take advantage of naive buyers.

Insensitivity to the buyers’ network performance assumption. At the set-
ting q = 1, the seller’s expected revenue is insensitive to the probability of
failure assumed by the buyers. This can be directly seen setting q equal to 1
in Equation (17), which thus renders E{R̄} = E{u(K,X)}(1 − θ), which is

constant for any value of θ̂. In particular, the seller’s expected revenue is the
same that he would obtain in the complete information case.

The analogous interpretation from the buyer’s standpoint is translated into
the following statement.

No value of information. At the setting q = 1, knowing the real probability
of failure has no value to the buyer from the point of view of his or her
expected payoff. Each buyer’s expected payoff is the same as when having
complete information. This is readily derived from the buyers’ expected payoff
in Equation (22), which shows that when setting q = 1, the buyer’s expected

payoff is not affected by the assumed probability of failure θ̂. Of course this
knowledge could be valuable for the buyers for further reasons not captured
in the model.

6 Conclusion

We have proposed a pricing scheme where Assured-Quality Services over data
networks are sold via first-price auctions and where in case of failures buyers
are reimbursed a certain percentage of what they have paid to obtain the ser-
vice. The percentage of reimbursement is announced by the seller before the
service is sold. Under these conditions and with certain symmetry assumptions
among buyers, we have analytically derived the best bidding strategy, which
presents an intuitive behaviour. Indeed, for the same level of assumed prob-
ability of failure, the higher the percentage of reimbursement, the higher the
bid. In addition, for any given percentage of reimbursement lower than 100%,
the higher the assumed probability of failure, the lower the bid.

We have addressed the problem of where to set the percentage of reim-
bursement assuming different situations and buyer behaviours. Namely, we
have studied the case of complete information, where buyers perform service
monitoring and the case of asymmetric information, where only the seller has
knowledge about the real probability of failure of the service on sale.

In the asymmetric information scenario with rational buyers, we have mod-
elled the reimbursement problem as a zero-sum Stackelberg game and shown
that the leader’s Stackelberg strategy, i.e. the strategy at which seller’s revenue
is maximized considering the reaction of rational buyers, is given by a reim-
bursement equal to 100%. In such setting, the market for lemons effect and
the moral hazard one are overcome and seller’s and buyers’ expected payoff
are the same as when having complete information.

In particular our results show that, under the same level of failures, reim-
bursing 100% provides more revenue in expectation than no reimbursement at
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all. It must be noted that this output should be compared to the cost of the
monitoring infrastructure in order to conclude if the overall balance is positive.

We are currently studying more complex scenarios such as asymmetric
bidders, which immediately leads to situations where no close forms can be
derived for the best bidding strategies. For such situations, we are studying nu-
merical approaches, in order to draw similar or novel conclusions. We are also
working to relax other assumptions such as the independence among bidders
in order to take into account collusion effects. Future work will also consider
probability of failure as a function of the accepted bandwidth, in order to add
feedback from the accepted traffic into pricing.

A Proof of Theorem 1

Bidder’s payoff is given by

p = 1win(x1not failure − b(1 − q1failure)). (A.1)

Assume first that equilibrium occurs when all bidders use the same bidding function β(x).
The expected payoff of any given bidder is:

P̃ = E{p|X = x} = G(β−1(b))(x(1 − θ̂)− b(1 − qθ̂)). (A.2)

Computing the derivative of Equation (A.2) and making it equal to zero we obtain:

g(β−1(b))

β′(β−1(b))
(x(1 − θ̂)− b(1 − qθ̂))−G(β−1(b))(1 − qθ̂) = 0, (A.3)

where we have applied the well-known formula for the derivative of the inverse function.
Under the assumption of symmetric equilibrium β−1(b) = x holds. Applying this equal-

ity to Equation (A.3) we obtain:

xg(x)(1 − θ̂) − g(x)β(x)(1 − qθ̂)−G(x)β′(x)(1 − qθ̂) = 0 (A.4)

The study must be divided into two cases, namely qθ̂ < 1 and qθ̂ ≥ 1. We assume as
well that β(0) = 0.

qθ̂ < 1. First consider θ̂ 6= 1. In this case Equation (A.4) can be rewritten as:

β′(x) + β(x)
g(x)

G(x)
− x

g(x)

G(x)

1− θ̃

1− qθ̂
= 0 (A.5)

whose solution is

β(x) = −e−S(x)

∫ x

0
eS(z)T (z)dz, (A.6)

where:

S(x) =

∫ x

0

g(z)

G(z)
dz = logG(x) and T (x) = −x

g(x)

G(x)

1− θ̃

1− qθ̂
.

Hence, operating we obtain:

β(x) =
1

G(x)

∫ x

0
zg(z)dz

1− θ̂

1− qθ̂

= E[Y
(1)
M−1|Y

(1)
M−1 ≤ x]

1− θ̂

1− qθ̂
, (A.7)
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where the last equality comes directly from the definition of conditional expectation.
Consider now θ̂ = 1. Equation (A.3) reduces to

g(β−1(b))

β′(β−1(b))
(−b(1 − qθ̂))−G(β−1(b))(1 − qθ̂) = 0, (A.8)

which results in

−g(x)

G(x)
=

β′(x)

β(x)
. (A.9)

Integrating Equation (A.9) on both sides we obtain

β(x) =
κ

G(x)
, (A.10)

where κ is a real constant of integration.
In order to verify whether the assumption of symmetric bidding functions holds, we

suppose, without loss of generality, that all bidders but one bid with the same optimal
bidding function found above. We shall check if it is also optimal for the remaining bidder
to bid according to this function.

Consider first the case of θ̂ 6= 1. Bidder 1’s expected payoff (P̃ ) if he or she bids β(z)
when his or her value is actually x is:

P̃ (β(z), x) = G(z)(x(1 − θ̂)− β(z)(1 − qθ̂)). (A.11)

Hence, the difference with the bidder’s expected payoff if bidding β(x) is:

P̃ (β(z), x)− P̃ (β(x), x) =

G(z)(x(1 − θ̂)− β(z)(1 − qθ̂))−

G(x)(x(1 − θ̂)− β(x)(1 − qθ̂))

= (1− θ̂)x(G(z)−

−G(x)) + (1− θ̂)

∫ x

z

vg(v)dv

= (1− θ̂)x(G(z) −G(x)) + (1− θ̂)

[

G(v)v |xz −

∫ x

z

G(v)dv

]

= (1− θ̂)

[

G(z)(x− z) +

∫ z

x

G(v)dv

]

, (A.12)

where we have applied integration by parts. Equation (A.12) is negative for any value of
z 6= x, as detailed in Section 4.

Consider now the case q < 1 and θ̂ = 1. β is given by Equation (A.10), where κ is such
that β(0) = 0. But since G(0) = 0, it follows that there is no value of κ, either than the
trivial κ = 0, verifying β(0) = 0. We have obtained a contradiction, hence we conclude that
the assumption of a symmetric equilibrium is not possible, and no equilibrium exists for this
case.

qθ̂ ≥ 1. In this case we notice that the expected payoff, given in Equation (A.2), is
always increasing with b, thus there is no equilibrium. ⊓⊔
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