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The design of structures submitted to aerodynamic loads usually requires the development of 
specific computational models considering fluid-structure interactions. Models using structural 
frame elements are developed in several relevant applications such as, the design of advanced 
aircraft wings, wind turbine blades or power transmission lines. In the case of flexible frame 
structures submitted to fluid flows, the computation of inertial and aerodynamic forces for large 
displacements and rotations is a challenging task. In this article, we present a novel formulation 
for the efficient computation of aerodynamic forces in frame structures, coupling the co-rotational 
framework with the quasi-steady theory. A numerical procedure is provided considering a tangent 
matrix for the aerodynamic forces. This formulation is implemented in the open-source library 
ONSAS, allowing users to reproduce the results or solve other frame nonlinear dynamic problems. 
The proposed formulation and its implementation are validated through the resolution of four 
numerical examples. The formulation and the numerical procedure proposed efficiently provide 
accurate solutions for these challenging problems with large displacements and rotations.

1. Introduction

Nonlinear structural dynamic problems are formulated in a vast and diverse set of applications such as: developing new wind 
turbines systems [2,39], designing suspended bridges or aircraft wings [47,6], predicting failures in power transmission lines [41], 
reducing fruit production losses [8] or even studying the movement of aquatic plants [20]. In all of these applications, structures can 
be modeled using frame elements, and are also submitted to loads caused by the interaction with fluid flows. The development of an 
efficient and accurate numerical method for the resolution of this type of problems is the main motivation of this article.

Structural design standards have a limited range of application, and are not applicable to most of problems mentioned above 
[14,38]. Given this limitation, alternative approaches are mainly based on experimental tests [8] or numerical simulations [42]. 
Experimental tests might be expensive and/or challenging to design, therefore, new numerical methods for accurate structural 
dynamics simulations are actively developed [17].

The Finite Element Method (FEM) [48] has become the gold-standard for computational modeling in structural analysis in 
numerous disciplines. For frame structures, the co-rotational approach has shown several advantages, including a more versatile and 
less intricate mathematical formulation [10]. This approach is based on splitting the element deformation in: one rigid movement 
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and one local deformation [5]. Different co-rotational formulations were developed for solving static [31], stability [4] or dynamic 
[25] structural analysis problems. In [30] a co-rotational formulation using a projector matrix is presented and applied to nonlinear 
solid analysis. A consistent formulation for three-dimensional nonlinear dynamic analysis of frame structures was presented [26], 
allowing to accurately simulate deformations with large displacements and rotations using a reduced number of elements. In [44] it 
is shown that, for structures submitted to large rotations, the consistent formulation is considerably more accurate and efficient than 
the lumped mass approach.

In the last decades different frame analysis formulations were used for the mentioned applications of interest. In [13], a 
three-dimensional nonlinear three-node isoparametric element is used for modeling the movement of overhead transmission lines, 
considering a consistent mass matrix for linear inertial terms. With the same purpose, in [40] a three-dimensional linear frame ele-

ment was used to simulate cable elements. In [28], a formulation considering nonlinear internal forces with a lumped mass matrix 
for linear inertial terms was used for modeling wind turbine blades. In [39] a vorticity wind turbine was modeled using the discrete 
element method concluding that, large displacements must be considered to emulate states of maximum output power. Regarding 
the nonlinear geometric analysis of wind turbine blades, the linearized equations of motion were solved in [16], obtaining a good 
level of agreement between the exact beam theory and formulations using shell elements. In [11,29], static co-rotational formulations 
were used to simulate morphing or highly flexible wings, highlighting the computational efficiency to validate experimental results. 
However, the performance of a formulation considering consistent inertial terms and aerodynamic forces using the co-rotational 
framework, has not been reported.

Regarding the availability of software for the numerical resolution of these problems, three specific tools can be mentioned: 
RIFLEX, FAST and HAWC2. RIFLEX is a proprietary software developed for fluid-structure interaction problems. It uses a co-rotational 
approach for modeling frame elements, a linear consistent mass matrix, a Rayleigh damping matrix and allows to compute mass, 
shear and elastic centers [9,12]. FAST is a modular open-source framework for fluid structure numerical simulations. This software 
uses beam elements based on the exact beam theory and a Timoshenko mass matrix [45,32]. HAWC2 is a proprietary software for 
aeroelastic simulation of wind turbines, developed using linear anisotropic Timoshenko beam elements [24].

In [19] and [21], Euler-Bernoulli and Kirchhoff nonlinear beam formulations were used to simulate the deformation of flexible 
structures submitted to drag and lift forces. The deformation of thin elastic blades was studied in [27], concluding that inertial effects 
have a significant impact on the numerical results of the model. Furthermore, in [33] a nonlinear aeroelastic study of wings was 
conducted concluding that deformation is the dominant nonlinearity for long slender wings.

In [35] the quasi-steady theory and an equivalent beam model with a lumped mass matrix were employed to analyze galloping 
effects on buildings. In [18] the co-rotational framework is introduced for the computation of aerodynamic forces, neglecting the 
pitch torsional moment, and a linear lumped mass matrix approach is used for the inertial effects. The tangent matrices of the 
aerodynamic forces vector were also neglected in the iterative numerical scheme applied. Therefore, there is still a research gap in 
quantifying the benefits of using a consistent inertial formulation and the pitch moment.

In this work, we present a novel unified formulation for consistent co-rotational analysis of frame structures submitted to nonlinear 
aerodynamic forces. For the first time, the fluid interaction effect is included by considering the quasi-steady theory, a consistent co-

rotational formulation and the Principle of Virtual Work. In particular, in contrast with [18], in the proposed formulation the 
aerodynamic pitch moment is not neglected. In addition, our results showed that considering the aerodynamic stiffness tangent 
matrix, which is not usually computed in the literature, improves the accuracy of the solution in static analysis problems.

The proposed formulation is implemented in the open-source structural analysis solver ONSAS [34], providing a new tool for the 
scientific community. We perform numerical analyses for different flow conditions, cross-sections and magnitudes of displacements 
and rotations, studying changes in mesh sizes and number of Gauss numerical integration points. The formulation and its implemen-

tation are tested through the resolution of four numerical examples. In the first example the implementation is validated using the 
open-source tool from [19]. All the scripts used in the numerical examples, are publicly available allowing any user to automatically 
reproduce the results presented.

This article is organized as follows. In Section 2 the basic concepts of the co-rotational framework are described. In Section 3, 
the proposed formulation is presented, with a corresponding numerical procedure for the resolution of the balance equations. In 
Section 4 the numerical results obtained are presented, and in Section 5, the conclusions obtained are described.

2. Preliminaries

In this section, the fundamental concepts of the co-rotational frame analysis approach are described. The main kinematic identities 
and the internal and inertial forces are briefly presented considering [4,26].

2.1. Co-rotational kinematics

The main concepts behind the co-rotational approach are the use of different systems of coordinates and the application of the 
Principle of Virtual Work. Given a two-node frame element and two systems of coordinates (global and local), a vector of generalized 
nodal displacements 𝐝 can be represented in the global system of coordinates as 𝐝𝑔 , and in the local system as 𝐝𝓁 . The virtual work 
of a set of nodal forces 𝐟 is the same in the local or the global system of coordinates, as it is presented in Equation (1):

(𝛿𝐝𝓁)𝑇 𝐟𝓁 = (𝛿𝐝𝑔)𝑇 𝐟𝑔 , (1)
2

for any vector of virtual displacements 𝛿𝐝.
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Fig. 1. Diagram of the co-rotational framework: reference configuration (dashed line), rigid-rotation configuration (gray solid line) and total-deformed configuration 
(black solid curve).

Fig. 2. Local displacements from rigid-rotation to total-deformed configuration.

In the co-rotational approach three configurations are defined as shown in Fig. 1: a reference configuration, a rigid-rotation 
configuration and the total-deformation configuration. As it is shown, four systems of coordinates are defined: 

{
𝐜𝑖
}

, 
{
𝐞𝑖
}

, 
{
𝐫𝑖
}

and {
𝐭𝑖
}

, corresponding to the canonical, reference, rigid-rotation and total-deformed configurations, respectively. Orthogonal matrices 
𝐑0, 𝐑𝑔 , 𝐑𝑟 and 𝐑 can also be defined as shown in Fig. 1, to rotate the base vectors of these systems of coordinates.

The column vector of nodal displacements written in the canonical system 
{
𝐜𝑖
}

is denoted as 𝐝𝑔 =
[
(𝐮1)𝑇 , (𝐰1)𝑇 , (𝐮2)𝑇 , (𝐰2)𝑇

]𝑇
, 

where 𝐮𝑖 and 𝐰𝑖 are the column vectors of linear displacements and rotations, respectively, of node 𝑖. In the co-rotational approach, 
the displacements of the element are also written considering the system of coordinates 

{
𝐫𝑖
}

, where the local extension and the nodal 

rotations are grouped as 𝐝𝓁 =
[
𝑢, (𝜽

1
)𝑇 , (𝜽

2
)𝑇

]𝑇
. The extension is given by 𝑢 = 𝑙𝑛 − 𝑙0 where 𝑙𝑛 and 𝑙0 are the deformed and reference 

lengths of the element, and the local rotations are given by the vectors 𝜽
𝑖

as it is shown in Fig. 2.

In order to apply the Principle of Virtual Work, the vectors of variations of the generalized displacements 𝛿𝐝 need to be written 
in the same system of coordinates. The variation of the local extension verifies Equation (2):

𝛿𝑢 = 𝐫 𝛿𝐝𝑔 , 𝐫 = [−𝐫𝑇1 𝟎1×3 𝐫𝑇1 𝟎1×3], (2)

and for the vectors of rotations Equation (3):[
𝛿𝜽

1

𝛿𝜽
2

]
= 𝐏𝐄𝑇 𝛿𝐝𝑔, 𝐏 =

[
𝟎3×3 𝐈 𝟎3×3 𝟎3×3
𝟎3×3 𝟎3×3 𝟎3×3 𝐈

]
−
[
𝐆
𝐆

]
, (3)

where 𝟎𝑖×𝑗 represents a matrix of zeros with 𝑖 rows and 𝑗 columns (the sub-indexes are omitted for the 3 ×3 case), 𝐄 is a matrix given 
3

by Equation (4):
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𝐄 =

⎡⎢⎢⎢⎢⎣
𝐑𝐫 𝟎 𝟎 𝟎
𝟎 𝐑𝐫 𝟎 𝟎
𝟎 𝟎 𝐑𝐫 𝟎
𝟎 𝟎 𝟎 𝐑𝐫

⎤⎥⎥⎥⎥⎦
, (4)

and 𝐆 is a matrix given by Equation (5):

𝐆 =
⎡⎢⎢⎢⎣
0 0 𝑝1

𝑝2𝑙𝑛

𝑝12
2𝑝2

− 𝑝11
2𝑝2

0 0 0 −1∕𝑙𝑛 0 0 0

0 0 1∕𝑙𝑛 0 0 0 0 0 − 𝑝1
𝑝2𝑙𝑛

𝑝2
2𝑝2

− 𝑝21
2𝑝2

0

0 −1∕𝑙𝑛 0 0 0 0 0 1∕𝑙𝑛 0 0 0 0

⎤⎥⎥⎥⎦, (5)

with 𝑝𝑖𝑗 being the 𝑗-th entry of the vector 𝐩𝑖 is defined in Equation (6):

𝐩𝑖 =𝐑𝑖
𝑔𝐑0[0,1,0]𝑇 𝑖 = 1,2, (6)

and 𝑝𝑗 being the 𝑗-th entry of the vector 𝐩 defined by 𝐩 = 1
2 (𝐩1 + 𝐩2).

For a cross-section located at the position 𝑥, as shown in Fig. 2, with centroid 𝐺 and deformed base 
{
𝐭𝐺
𝑖

}
, the variations of the 

displacements and rotations can also be written in local and global systems, using Equations (7) a) and b):

a)

⎡⎢⎢⎢⎣
0
�̄�𝐺2
�̄�𝐺3

⎤⎥⎥⎥⎦ = 𝐏𝟏

[
𝜽
1

𝜽
2

]
, b) 𝐏𝟏 =

⎡⎢⎢⎣
0 0 0 0 0 0
0 0 𝑁3 0 0 𝑁4
0 −𝑁3 0 0 −𝑁4 0

⎤⎥⎥⎦, (7)

and Equations (8) a) and b):

a)

⎡⎢⎢⎢⎣
�̄�𝐺1
�̄�𝐺2
�̄�𝐺3

⎤⎥⎥⎥⎦ = 𝐏𝟐

[
𝜽
1

𝜽
2

]
, b) 𝐏𝟐 =

⎡⎢⎢⎣
𝑁1 0 0 𝑁2 0 0
0 𝑁5 0 0 𝑁6 0
0 0 𝑁5 0 0 𝑁6

⎤⎥⎥⎦, (8)

where 𝑁1 and 𝑁2 are the linear interpolation functions (for axial displacement) and 𝑁3, 𝑁4, 𝑁5 and 𝑁6 are Hermite interpolation 
functions (for bending).

The position of 𝐺 in canonical coordinates can be written as:

𝑶𝑮 =𝑁1(𝐱1 + 𝐮1) +𝑁2(𝐱2 + 𝐮2) +𝐑𝑟𝐮𝓁 , (9)

where 𝐮𝓁 are the local transverse displacements. Considering Equation (9), the variations of the displacement and rotation of the 
point 𝐺 can be written as:

a) 𝛿𝐮 =𝐑𝑟𝐇1𝐄𝑇 𝛿𝐝𝑔 , and b) 𝛿𝐰 =𝐑𝑟𝐇2𝐄𝑇 𝛿𝐝𝑔 , (10)

respectively, where 𝐇2 = 𝐏2𝐏 +𝐆𝑇 and 𝐇1 =𝐍 + 𝐏1𝐏 − 𝐮𝓁𝐆𝑇 , with 𝐮𝓁 being the skew operator associated with the vector 𝐮𝓁 .

Finally, velocities and accelerations can be obtained using Equation (11):

�̇� =𝐑𝑟𝐇1𝐄𝑇 𝐝𝑔 , �̈� =𝐑𝑟𝐇1𝐄𝑇 𝐝𝑔 +𝐑𝑟𝐂1𝐄𝑇 𝐝𝑔,

�̇� =𝐑𝑟𝐇2𝐄𝑇 𝐝𝑔, �̈� =𝐑𝑟𝐇2𝐄𝑇 𝐝𝑔 +𝐑𝑟𝐂2𝐄𝑇 𝐝𝑔,
(11)

where 𝐂𝑖 =𝐰𝑒
𝑟𝐇𝑖 + �̇�𝑖 −𝐇𝑖𝐄𝑡 and 𝐰𝑒

𝑟 =𝐆𝐄𝑇 𝐝𝑔 .

2.2. Internal and inertial forces

The expressions of the elemental internal and inertial forces in global coordinates can be obtained using the Principle of Virtual 
Work. Considering Equation (1) for the internal forces, and substituting the relations presented in Equations (2) and (3), we obtain 
Equation (12):

𝛿𝐝𝑇𝑔 𝐟
𝑖𝑛𝑡
𝑔 = 𝛿𝐝𝑇𝑔

[
𝐫𝑇 𝐄𝐏𝑇

]
𝐟 𝑖𝑛𝑡𝓁 . (12)

This identity is valid for any virtual displacement 𝛿𝐝𝑔 , thus we obtain the Equation (13):

𝐟 𝑖𝑛𝑡𝑔 =
[
𝐫𝑇 𝐄𝐏𝑇

]
𝐟 𝑖𝑛𝑡𝓁 , (13)

where 𝐟 𝑖𝑛𝑡𝓁 is the known vector of internal forces 𝐟 𝑖𝑛𝑡𝓁 =
[
𝑓𝑎𝓁 (𝐦1

𝓁)
𝑇 (𝐦2

𝓁)
𝑇
]
, with normal force and bending moments, given by a linear 

constitutive behavior.

For the inertial term, the kinematic energy 𝐾 of the element is written as:

K = 1
𝜌�̇�𝑇 𝐴�̇�+ 𝜌�̇�𝑇 𝐈�̇� 𝑑𝑙0, (14)
4

2 ∫
𝑙0
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Fig. 3. Co-rotational framework on fluid loads. Reference and initial configurations (dashed line), rigid-rotation configuration (gray solid line) and total-deformed 
configuration (black solid curve).

where 𝐴 is the area of the cross-section, 𝜌 is the density of the material and 𝐈 is the geometric inertia tensor. Considering the variation 
in both members of Equation (14) it can be obtained Equation (15):

𝛿K = −∫
𝑙0

𝛿𝐮𝑇 𝜌𝐴�̈�+ 𝛿𝐰𝑇 [𝜌𝐈�̈�+ ̃̇𝐰𝜌𝐈�̈�]𝑑𝑙0. (15)

The inertial force vector of the element in global coordinates 𝐟 𝑖𝑛𝑒𝑔 is then defined consistently by Equation (16):

𝛿𝐾 = −(𝐟 𝑖𝑛𝑒𝑔 )𝑇 𝛿𝐝𝑔, with 𝐟 𝑖𝑛𝑒𝑔 = ∫
𝑙0

{
𝐇𝑇

1 𝐑
𝑇
𝑟 𝜌𝐴�̈�+𝐇𝑇

2 𝐑
𝑇
𝑟 [𝜌𝐈�̈�+ ̃̇𝐰𝜌𝐈�̇�]

}
𝑑𝑙0. (16)

3. Methodology

In this section we present the proposed formulation for the computation of the aerodynamic forces, and describe a numerical 
procedure for the resolution of the governing equations.

3.1. Co-rotational quasi-steady aerodynamic forces

Let us consider a frame element, with uniform cross-section, submitted to a fluid flow as shown in Fig. 3. For a section located 
at 𝐱0 with centroid 𝐺, the deformed position at time 𝑡 is given by 𝐱 = 𝜒𝑡(𝐱0). The element is submitted to forces induced by a fluid 
with absolute velocities given by the field 𝐯𝑎(𝐱, 𝑡) ∶ℝ3 ×ℝ →ℝ3. The velocity of the centroid is �̇�(𝐱0, 𝑡) and the relative velocity in the 
deformed position is defined by:

𝐯𝑟(𝜒𝑡(𝐱0), 𝑡) = 𝐯𝑎(𝜒𝑡(𝐱0), 𝑡) − �̇�(𝐱0, 𝑡). (17)

In this definition a fundamental assumption was considered: the movement of the structure does not affect the absolute velocities of 
the fluid [7].

The interaction between the fluid flow and the frame element produces normal and shear stresses, that are represented by 
moments and forces (generalized forces) applied at the deformed position of the centroid. These forces are assumed to be uniquely 
defined in terms of the instantaneous position and velocity of the deformed section [18]. In particular, in this formulation, the forces 
are assumed to depend only on 𝐯𝑝𝑟 (the projection of the relative velocity onto the plane Π23 defined by 𝐭2 and 𝐭3) as it is shown in 
Fig. 3. It is assumed that the density of the fluid is considerably lower than the density of the structure, therefore the added-mass 
5

effect is neglected.
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Fig. 4. Fluid loads on a generic deformed cross-section.

The quasi-steady aerodynamic distributed forces for drag, lift and torsional moment are given by the expressions:

⎧⎪⎪⎨⎪⎪⎩
𝐟𝑑 = 1

2𝜌𝑓 𝑑𝑐𝑐𝑑 (𝑅𝑒, 𝛽)‖𝐯𝑝𝑟‖2𝐭𝑑 ,
𝐟𝑙 = 1

2𝜌𝑓 𝑑𝑐𝑐𝑙(𝑅𝑒, 𝛽)‖𝐯𝑝𝑟‖2𝐭𝑙 ,
𝐦𝑝 = 1

2𝜌𝑓 𝑑𝑐𝑐𝑚(𝑅𝑒, 𝛽)‖𝐯𝑝𝑟‖2𝐭𝑚,
(18)

respectively, where 𝜌𝑓 is the density of the fluid, 𝑑𝑐 is the given characteristic dimension of the cross-section and 𝑐𝑑 , 𝑐𝑙 and 𝑐𝑚 are 
the drag, lift and moment coefficients, determined by wind tunnel tests for different Reynolds numbers 𝑅𝑒 and angles of incidence 
𝛽. The angle 𝛽 is defined by 𝐯𝑝𝑟 and the unitary chord vector of the section 𝐭𝑐 , as shown in Fig. 4. It is remarked that drag and lift 
force vectors are included in the plane Π23.

The vector 𝐯𝑝𝑟 written in the total-deformed system of coordinates is denoted as (𝐯𝑝𝑟)𝐭 . In the same manner, the notation (∙)𝐭 is 
used for any vector in this system and this sub-index is omitted for vectors in the canonical system. The expression of (𝐯𝑝𝑟)𝐭 is given 
by Equation (19):

(𝐯𝑝𝑟)𝐭 = (𝐯𝑎 − �̇�)𝐭 −
(
(𝐯𝑎 − �̇�)𝐭 ⋅ (𝐭1)𝐭

)
(𝐭1)𝐭 (19)

where (𝐭1)𝐭 = [1, 0, 0]𝑇 . Using the rotation matrices of the co-rotational framework as change of basis operators: 𝐑𝑟 =𝐜 (𝐈)𝐫 , 𝐑 =𝐫 (𝐈)𝐭 , 
we can write:

(𝐯𝑎 − �̇�)𝐭 =
(
𝐑𝑟𝐑

)𝑇
(𝐯𝑎 − �̇�). (20)

Substituting Equation (20) in (19) and defining a projection operator 𝐋2 we obtain Equation (21):

(𝐯𝑝𝑟)𝐭 = 𝐋2

(
𝐑𝑟𝐑

)𝑇
(𝐯𝑎 − �̇�). (21)

Using this we can define the unitary vectors (𝐭𝑑 )𝐭 , (𝐭𝑙)𝐭 and (𝐭𝑚)𝐭 in Equations (22), (23) and (24):

(𝐭𝑑 )𝐭 =
(𝐯𝑝𝑟)𝐭||(𝐯𝑝𝑟)𝐭 || , (22)

(𝐭𝑙)𝐭 = 𝐋3(𝐭𝑑 )𝐭 , (23)

(𝐭𝑚)𝐭 = (𝐭1)𝐭 , (24)

with 𝐋3 = exp([𝜋∕2, 0, 0]𝑇 ). The angle of incidence 𝛽 verifies Equation (25):

(𝐭𝑑 )𝐭 ⋅ (𝐭𝑐 )𝐭 = ‖(𝐭𝑑 )𝐭‖‖(𝐭𝑐)𝐭‖ cos(𝛽), (25)

and considering that 𝐭𝑑 and 𝐭𝑐 are unitary we obtain the expression:

𝛽 = sign
[(
(𝐭𝑑 )𝐭 ∧ (𝐭𝑐 )𝐭

)
⋅ (𝐭1)𝐭

]
. arccos((𝐭𝑑 )𝐭 .(𝐭𝑐)𝐭 ), (26)

where a convention was considered as shown in Fig. 4. Using Equation (26) the angle of incidence 𝛽 can be determined for any 
deformed configuration.

Substituting the identities obtained above in Equation (18) we obtain:

⎧⎪⎪⎨⎪
(𝐟𝑑 )𝐭 = 1

2𝜌𝑓 𝑑𝑐𝑐𝑑 ||𝐋2

(
𝐑𝑟𝐑

)𝑇
(𝐯𝑎 − �̇�)||𝐋2

(
𝐑𝑟𝐑

)𝑇
(𝐯𝑎 − �̇�),

(𝐟𝑙)𝐭 = 1
2𝜌𝑓 𝑑𝑐𝑐𝑙||𝐋2

(
𝐑𝑟𝐑

)𝑇
(𝐯𝑎 − �̇�)||𝐋3𝐋2

(
𝐑𝑟𝐑

)𝑇
(𝐯𝑎 − �̇�),( )𝑇

(27)
6

⎪⎩ (𝐦𝑝)𝐭 = 1
2𝜌𝑓 𝑑𝑐𝑐𝑚||𝐋2 𝐑𝑟𝐑 (𝐯𝑎 − �̇�)||2.(𝐭1)𝐭 .
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The virtual work corresponding to the aerodynamic forces of the element is given by Equation (28):

𝛿𝑊𝑓 = ∫
𝑙0

{
𝛿𝐮𝑇𝐑𝑟𝐑(𝐟𝑑+𝑙)𝐭 + 𝛿𝐰𝑇𝐑𝑟𝐑(𝐦𝑝)𝐭

}
𝑑𝑙0, (28)

where 𝐟𝑑+𝑙 is the sum of 𝐟𝑑 and 𝐟𝑙 . Considering the vector of nodal aerodynamic generalized forces in global coordinates 𝐟𝑓𝑙𝑢𝑔 , the 
virtual work can also be written as:

𝛿𝑊𝑓 = (𝛿𝐝𝑔)𝑇 . 𝐟𝑓𝑙𝑢𝑔 , (29)

and substituting Equations (10) a) and b) in (28) and using Equation (29) we obtain Equation (30):

(𝛿𝐝𝑔)𝑇 𝐟𝑓𝑙𝑢𝑔 = ∫
𝑙0

{
𝛿𝐝𝑇𝑔 𝐄𝐇

𝑇
1 𝐑

𝑇
𝑟 𝐑𝑟𝐑(𝐟𝑑+𝑙)𝐭 + 𝛿𝐝𝑇𝑔 𝐄𝐇

𝑇
2 𝐑

𝑇
𝑟 𝐑𝑟𝐑(𝐦𝑝)𝐭

}
𝑑𝑙0. (30)

Operating we obtain Equation (31):

𝐟𝑓𝑙𝑢𝑔 = 𝐄
⎡⎢⎢⎢⎣∫𝑙0

{
𝐇𝑇

1 𝐑(𝐟𝑙+𝑑 )𝐭 +𝐇𝑇
2 𝐑(𝐦𝑝)𝐭

}
𝑑𝑙0

⎤⎥⎥⎥⎦ , (31)

and substituting Equation (27) the complete expression of the aerodynamic forces vector is obtained in Equation (32):

𝐟𝑓𝑙𝑢𝑔 = 1
2
𝜌𝑓 𝑑𝑐𝐄

⎛⎜⎜⎜⎝∫𝑙0
{
𝐇𝑇

1 𝐑||𝐋2

(
𝐑𝑟𝐑

)𝑇
(𝐯𝑎 − �̇�)|| [ (𝑐𝑑𝐈+ 𝑐𝑙𝐋3)

]
𝐋2

(
𝐑𝑟𝐑

)𝑇
(𝐯𝑎 − �̇�)

}
𝑑𝑙0 …

…+ ∫
𝑙0

{
𝐇𝑇

2 𝐑𝑐𝑚||𝐋2

(
𝐑𝑟𝐑

)𝑇
(𝐯𝑎 − �̇�)||2(𝐭1)𝐭}𝑑𝑙0

⎞⎟⎟⎟⎠ (32)

It is important to highlight that, in contrast with [18], in the proposed formulation the pitch moment is not neglected.

3.2. Balance equations and numerical resolution procedure

The governing equations are obtained by considering the virtual work for all the elements of the structure for the forces in 
Equations (13), (16) and (32). Additionally a vector with external forces not induced by the fluid interaction 𝐟𝑒𝑥𝑡𝑔 can be added. The 
nonlinear system of governing equations is written in Equation (33):

𝐟𝑒𝑥𝑡𝑔 (𝑡) + 𝐟𝑓𝑙𝑢𝑔 (𝐝𝑔 , �̇�𝑔 ,𝐯𝑎) − 𝐟 𝑖𝑛𝑡𝑔 (𝐝𝑔) − 𝐟 𝑖𝑛𝑒𝑔 (𝐝𝑔 , �̇�𝑔 , �̈�𝑔) = 𝟎 (33)

where the arguments of the residual forces 𝐟 𝑟𝑒𝑠 were omitted.

The numerical resolution procedure proposed consists in solving the system of nonlinear governing equations using iterative 
methods. For the static analysis cases the Newton-Raphson method is used, while for dynamic analysis cases the Newmark method 
with 𝛼𝑁 = 1∕4 and 𝛿𝑁 = 1∕2 [3], and the 𝛼-HHT method with 𝛼𝐻 = −0.05 [26] are used. The computation of the aerodynamic and 
inertial force vectors is done using numerical integration.

Three different formulations are considered and used to generate the numerical results:

F1: In this formulation a lumped mass approach is considered for the inertial terms and the aerodynamic forces are computed using 
the equations presented in Section 3.1, with 𝑐𝑚 = 0 (neglecting torsional moment). Also, the tangent matrices of the aerodynamic 
force vector are neglected. This formulation is considered to be equivalent to the one presented in [18].

F2: In this formulation the consistent approach [26] is considered for the inertial terms, and the aerodynamic force vector is 
computed using the equations presented in Section 3.1 (without neglecting the torsional moment). The tangent matrices of the 
aerodynamic force vector are neglected.

F3: In this formulation the forces are computed as in F2, however for the tangent matrix the contribution of the aerodynamic forces 
is added. The aerodynamic stiffness matrix is computed for each frame element using a finite difference approach given by 
Equation (34):

𝐊𝑓𝑙𝑢

𝑇 ,𝑖
=

𝐟𝑓𝑙𝑢𝑔 (𝐝𝑔 + ℎ𝐞𝑖, �̇�𝑔 ,𝐯𝑎) − 𝐟𝑓𝑙𝑢𝑔 (𝐝𝑔 , �̇�𝑔 ,𝐯𝑎)
ℎ

𝑖 = 1...12 (34)
7

where 𝐊𝑓𝑙𝑢
𝑇 ,𝑖

is the 𝑖-th column of the aerodynamic stiffness matrix, ℎ = 1 × 10−10 m and 𝐞𝑖 is a canonical vector.
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Fig. 5. Example 1: Diagram of cantilever beam with boundary conditions and fluid flow.

4. Numerical results

In this section the numerical results obtained for four problems are presented. Unless it is specified the fluid considered is air 
with density 𝜌𝑓 = 1.225 kg/m3, kinematic viscosity 𝜈𝑓 = 1.5 × 10−5 m2/s, at 20 ◦C and atmospheric pressure. Regarding the elastic 
properties, Poisson’s ratio 𝜈 = 0.3 is considered for the first four examples. For all the problems, homogeneous initial conditions are 
considered.

All the numerical results presented can be reproduced by running scripts publicly available.1

The results shown were produced using a computer with a Linux OS, a 64-bit architecture, an Intel i7-11370H CPU and 16 Gb of 
RAM, running the implementation of the formulations in ONSAS on GNU-Octave [15]. The visualization is done using Paraview [1]

and GNU-Octave.

The stopping criteria considered in all the examples are given by Equation (35):

‖Δ𝐝𝑘𝑔,𝑠‖‖𝐝𝑘𝑔,𝑠‖ ⩽ 𝑡𝑜𝑙𝑢 and ‖Δ𝐟 𝑟𝑒𝑠,𝑘‖ ⩽ 𝑡𝑜𝑙𝑟, (35)

where 𝑘 is the number of iteration and 𝑡𝑜𝑙𝑢, 𝑡𝑜𝑙𝑟 are scalars to be defined.

4.1. Example 1: drag reconfiguration of a cylindrical cantilever beam

In this example a cantilever beam submitted to a flow producing drag forces is considered. The main goal is to obtain results 
about the performance of the three formulations described in Section 3.2, for a problem with large displacements. The example is 
based on one of the problems considered in [19], where a reference solution is presented and validated with experimental data. 
Finally, a brief numerical study on the variation of the results for different numbers of Gauss integration points is presented.

4.1.1. Problem definition

The problem consists in a cantilever beam submitted to a fluid flow with uniform velocity 𝐯𝑎(𝐱, 𝑡) = 𝑣𝑎(𝑡)𝐜2, as shown in Fig. 5. 
The beam is clamped on the boundary at 𝑥 = 0 m, and the span length is 𝐿 = 1 m. The cross-section of the beam is circular with 
diameter 𝑑 = 1 cm, and the chord length used to compute the aerodynamic forces is 𝑑𝑐 = 𝑑. For the material of the beam a linear 
elastic isotropic model is considered, with Young modulus 𝐸 = 30 MPa and density 𝜌 = 7000 kg/m3.

The fluid considered is water with density 𝜌𝑓 = 1020 kg/m3 and kinematic viscosity 𝜈𝑓 = 10−6 m2/s. The values of the aerodynamic 
coefficients are considered from [37] as: 𝑐𝑑 = 1.2 and 𝑐𝑙 = 𝑐𝑚 = 0.

4.1.2. Numerical results: static case

The goal of this analysis case is to study the results obtained with formulations F1, F2 and F3 for fluid velocities 𝑣𝑎 ∈
{0.005, 0.012, 0.029, 0.072, 0.176, 0.432, 1.057, 2.588, 6.336, 15.512} all in m/s.

This is a static analysis case, thus the velocity of any point of the beam is �̇� = 0. Substituting this in Equation (17) we obtain 
𝐯𝑟(𝑥, 𝑡) = 𝐯𝑎(𝑥, 𝑡). In Fig. 6 the absolute velocity of the fluid and its relative projected transversal component are shown, and for this 
analysis case, we obtain the identity:‖‖‖𝐯𝑝𝑟(𝑥)‖‖‖ = ‖‖𝐯𝑎(𝑥)‖‖ . |||cos(𝜃𝑧(𝑥))||| . (36)
8

1 https://github .com /mvanzulli /SourceCode _Manuscript _2204 .10545.

https://github.com/mvanzulli/SourceCode_Manuscript_2204.10545
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Fig. 6. Example 1: Absolute and projected transversal velocities for the static case.

Fig. 7. Example 1: Drag reconfiguration validation against [19].

Equation (36) indicates that once the beam is deformed, the norm of the projected velocity decreases, and therefore the drag 
force decreases. This geometric nonlinearity effect is called reconfiguration. Due to this reconfiguration mechanism the drag load 
does not increase with the square of the fluid velocity [19]. The problem can be studied through the dimensionless Equation (37):

𝑐𝑦 =
𝜌𝑓𝐿

3𝑣2𝑎
16𝐸𝐼𝑧𝑧

,  = 𝐹
1
2𝜌𝑓𝐿𝑑𝑐𝑑𝑣

2
𝑎

(37)

where 𝐹 is the global drag force towards 𝐜2, 𝑐𝑦 is the Cauchy number that describes the ratio between the stiffness of the beam and 
the flow load and the reconfiguration number  reflects the geometric nonlinear effect by dividing the drag of the flexible beam to 
that of a rigid one of the same geometry.

For each velocity 𝑣𝑎, the numerical formulations are used to obtain the solution and the drag force 𝐹 is computed. The N-R 
method is used with only force stopping criteria considering 𝑡𝑜𝑙𝑟 = 10−8. The results obtained for  (using 2 and 20 elements) are 
shown in Fig. 7a, and a reference solution is also obtained using the source code2 developed for [19].

It is observed that the three formulations match the reference solution for 𝑣𝑎 ⩽ 0.072 m/s. Moreover, when the aerodynamic load 
exhibits high geometrical nonlinearities (𝑣𝑎 > 0.072 m/s) F3 converges while F2 and F1 do not. This demonstrates that in this case, 
the stiffness aerodynamic matrix is necessary to accurately reproduce the reference results. Furthermore, a larger number of elements 
is required to verify the reference solution accurately in cases with 𝑣𝑎 ⩾ 1.057 m/s.

It is reported that, for 𝑣𝑎 = 0.072 m/s and using 20 elements, the formulation F3 requires 6 times the execution time required by 
F1 or F2 formulations.

4.1.3. Numerical results: dynamic case

In this case a nonlinear dynamic analysis is performed and the flow velocity 𝑣𝑎 is given by Equation (38):

𝑣𝑎(𝑥, 𝑡) =
⎧⎪⎨⎪⎩
𝑣𝑎

𝑡

𝑡𝑐
𝑡 ∈ [0, 𝑡𝑐],

𝑣𝑎 𝑡 ∈ (𝑡𝑐 ,+∞),
(38)
9

2 https://github .com /lm2 -poly /Reconfiguration -Beam.

https://github.com/lm2-poly/Reconfiguration-Beam
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Fig. 8. Example 1: Evolution of 𝑢𝑦 displacement of node A.

Fig. 9. Example 1: Relative error 𝛿𝑢 for different numbers of Gauss integration points at 𝑡 = 7 s.

where 𝑡𝑐 = 7 s and two values are considered for 𝑣𝑎: 6.3355 m/s (Case 1), and 1.0568 m/s (Case 2). The trapezoidal Newmark 
numerical method is used, with time step Δ𝑡 = 0.05 s and the stopping criteria are 𝑡𝑜𝑙𝑢 = 1 × 10−10 and 𝑡𝑜𝑙𝑟 = 1 × 10−4.

The solutions obtained for the displacement 𝑢𝑦 of point A are shown in Fig. 8. The solutions provided by the three formulations 
F1, F2, and F3, using 20 elements for both cases, converge to the reference solution. Moreover the formulation F1, using 4 elements 
in Case 1, does not converge after 𝑡 ≈ 1.5 s.

In order to analyze the numerical behavior of the formulations described, a study considering different number of integration 
Gauss points for the formulation F2 is presented. The displacement functions obtained at time at 𝑡 = 7 s for different number of 
integration points are compared. The difference between the functions is computed considering Equation (39):

𝛿𝑢 =
∫𝓁0 |||𝐮(𝑥0, 𝑡) − 𝐮𝑟𝑒𝑓 (𝑥0, 𝑡)

|||𝑑𝑥0
∫𝓁0 |||𝐮𝑟𝑒𝑓 (𝑥0)|||𝑑𝑥0 , (39)

where the reference solution is obtained using 20 elements and 10 Gauss integration points. The results obtained are shown in Fig. 9.

It is noted that at 𝑡 = 7 s a considerable curvature is present in the displacement field (𝑢𝑦 of node A is ≈ 1 m), thus, a high 
nonlinearity is also present in the aerodynamic forces term. Given the results shown in Fig. 9, 4 Gauss points are considered for 
integrating the aerodynamic forces.

The results obtained let us conclude that the formulations considered can be used to solve the problem. For static cases, including 
the aerodynamic stiffness matrix is necessary to accurately solve problems with large bending deformations. For dynamic cases, 
the three formulations considered are able to provide accurate results when an appropriate discretization is used. Formulation F3 
requires more computational time than F1 and F2, therefore it is recommended only for static analyses of structures, submitted to 
10

large deformations.
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Fig. 10. Example 2: Diagram of a simple propeller.

4.2. Example 2: simple propeller model

In this example a simple propeller submitted to lift forces is considered. This problem is used to validate the results provided by 
the proposed formulation in a dynamic case with large displacements and rotations.

4.2.1. Problem definition

The problem consists in a three-blade propeller submitted to a flow with uniform velocity. Each blade has a length 𝐿 = 3 m and a 
circular cross-section with diameter 𝑑 = 0.1 m, as shown in Fig. 10a. Regarding the stiffness of the blades, two cases are considered: a 
rigid case (with analytic solution) and a flexible case, providing considerably large rotations and bending of the blades. The density 
𝜌 = 6000 kg/m3 is considered. Regarding boundary conditions, the node O has five degrees of freedom fixed: the three displacements 
and rotations 𝜃𝑦 and 𝜃𝑧. The rotation 𝜃𝑥,O is free.

A uniform flow 𝐯𝑎 = 1 𝐜1 m/s is applied with synthetic aerodynamic coefficients 𝑐𝑙 = 0.2 and 𝑐𝑑 = 𝑐𝑚 = 0. Given this, a uniform lift 
distributed force 𝐟𝑙 contained in the plane 𝐜2-𝐜3 is induced, as shown in Fig. 10b. These specific settings allow us to obtain an analytic 
solution for the rigid case.

The 𝛼-HHT numerical integration method is used, with a time step increment set to Δ𝑡 = 1 s.

4.2.2. Numerical results: rigid case

For this case, and using the value selected for 𝐯𝑎, it can be assumed that �̇�≪ 𝐯𝑎, thus 𝐯𝑝𝑟 ≈ 𝐯𝑎. For the considered properties and 
boundary conditions, and for a Young modulus 𝐸 = 210 GPa, the bending deformation of the blades can be neglected, allowing to 
obtain an analytic solution.

Considering 𝜃𝑥,O ≈ 𝜃𝑥,A = 𝜃𝑥, the angular momentum balance equation is written in Equation (40):

1
2
𝜌𝑓 𝑐𝑙𝑑||𝐯𝑎||22𝐿2

2
= 1

3
𝜌𝐿𝜋

𝑑2

4
𝐿2𝜃𝑥, (40)

and using the homogeneous initial conditions, Equation (41) is obtained:

𝜃𝑥(𝑡) =
3𝜌𝑓 𝑐𝑙||𝐯𝑎||22

2𝜌𝐿𝑑𝜋
𝑡2. (41)

For the numerical resolution, the tolerances 𝑡𝑜𝑙𝑟 = 10−6 and 𝑡𝑜𝑙𝑢 = 10−12 are set, and the final simulation time is 𝑡𝑓 = 450 s.

The results obtained for 𝜃𝑥,𝑂 are shown in Fig. 11a, where it can be observed that the analytic solution is verified with the results 
provided by the proposed F2 formulation, even using one element per blade. In contrast, as expected, the formulation F1 requires 
the use of five elements per blade to match the analytic solution. In Fig. 11b the deformed configurations are shown at 𝑡 = 100 s.

4.2.3. Numerical results: flexible case

The goal of this case is to test the proposed formulation for a highly-flexible propeller. To do so, a Young modulus 𝐸 = 2.1 kPa 
is considered. This local flexible behavior plays a key role in applications such as the design of morphing wings [46,43,11], and 
11

represents a challenge for numerical methods.



Heliyon 9 (2023) e19990M.C. Vanzulli and J.M. Pérez Zerpa

Fig. 11. Example 2: Rigid case results.

Fig. 12. Example 2: Flexible case results of 𝜃𝑥,A(𝑡) and 𝜃𝑥,O(𝑡) rotations.

In this case, due to the bending deformation, the rotations of points O and A, shown in Fig. 10a, are considerably different. 
The numerical results obtained for the point O and point A using formulation F2 are presented in Figs. 12a and 12b, respectively. 
Formulation F1, using 5 and 20 elements, was not able to provide a numerical solution, hence the solutions were discarded. The 
deformed configurations obtained using F1 and F2 formulations at 𝑡 = 285 s are shown in Fig. 13.

The results let us conclude that, in this problem, for flexible elements with rotations larger than 2𝜋 and 20 elements per blade, 
formulation F1 is not able to provide a solution and formulation F2 converges for all time steps.

The results obtained let us conclude that the F2 formulation provides accurate results for large rotations and considerable bending 
deformations. We consider that the differences in performance between the formulations are due to the approach used for computing 
the inertial terms. In the following example, a non-zero aerodynamic pitch moment is considered, providing a more complete 
comparison.

4.3. Example 3: simplified cantilever blade

In this example a cantilever beam with an airfoil cross-section is considered. Realistic drag, lift and moment aerodynamic coef-

ficients are used. The goal of this example is to compare the solutions obtained with F1 and F2 formulations, considering realistic 
aerodynamic coefficients.

4.3.1. Problem definition

In this example a cantilever beam submitted to a fluid flow with varying direction, as illustrated in Fig. 14a. The cross-section of 
the beam is given by a NERL S809 wind turbine airfoil, with 𝐿 = 10 m and chord length of 𝑑𝑐 = 1 m [23]. The aerodynamic coefficient 
functions, obtained from [36], are shown in Fig. 15. The geometry of the problem is inspired on an specimen presented in [16] and 
12

for the material properties, equivalent Young modulus 𝐸𝑒𝑞 = 14 GPa and shear modulus 𝐺𝑒𝑞 = 5.6 GPa are adopted.
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Fig. 13. Example 2: Flexible case deformed configurations at time 𝑡 = 285 s.

Fig. 14. Example 3: Diagram and cross-section of the cantilever blade problem.
13

Fig. 15. Example 3: Functions considered for drag (top), lift (middle) and moment (bottom) extracted from [36].
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Fig. 16. Example 3: Reaction bending moments 𝑀𝑦(𝛼), 𝑀𝑧(𝛼) and resultant shear forces 𝐹𝑦(𝛼) and 𝐹𝑧(𝛼) at node O.

Fig. 17. Example 3: Torsional moment 𝑀𝑥(𝛼) at node O.

The flow velocity is uniform and its expression is given by Equation (42):

𝐯𝑎(𝐱) = 𝑣𝑚
(
cos(𝛼)𝐜2 − sin(𝛼)𝐜3

)
(42)

with 𝑣𝑚 = 30 m/s and 𝛼 ∈ [0◦, 40◦]. The problem is solved considering a static analysis for each value of 𝛼 considered. The change in 
𝛼 can be associated with a slow change in the pitch angle during the operation of a wind turbine.

4.3.2. Numerical results

For the numerical resolution 10 co-rotational frame elements with F1 and F2 were used. The N-R method is used, considering 
𝑡𝑜𝑙𝑟 = 5 × 10−7 and 𝑡𝑜𝑙𝑢 = 10−15. For the computation of the numerical solution, 4 Gauss integration points were considered for 
computing the aerodynamic forces.

The results obtained for the bending moments 𝑀𝑧, 𝑀𝑦, are presented in Fig. 16a. Additionally, the resultant shear forces 𝐹𝑧 and 
𝐹𝑦 at node O, are shown in Fig. 16b. The torsional moments at point 0 (𝑀𝑥(𝛼)), for both formulations, are illustrated in Fig. 17. The 
torsional moment at point 0 provided by F1 with 𝛼 = 40◦ is 0.03 N m, while F2 provided a moment −1819 N m.

It can be observed the formulation F1 largely underestimates the torsional moment at point O. The results obtained let us conclude 
that F1 should not be used for the resolution of problems in which the torsional moment is relevant. On the other hand, formulation 
F2 provided appropriate results.

4.4. Example 4: simplified wind turbine

4.4.1. Problem definition

In this example a flexible frame structure undergoing significantly large rotations is considered. For this, a simplified wind turbine 
model is developed, where the fundamental features of the real problem are present.

The problem consists in an idealized wind turbine as shown in Fig. 18. Each blade has a uniform NERL airfoil with the geometry 
14

and material properties presented in Section 4.3. The aerodynamic coefficients were extended to obtain values between -30◦ and 
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Fig. 18. Example 4: Uniform wind turbine layout.

Fig. 19. Example 4: 𝜃𝑥 angle and velocity rotation.

90◦ based on [22]. A uniform constant wind velocity 𝐯𝑎 = 27 𝐜1 m/s is considered. The initial conditions are homogeneous both for 
displacements and velocities of the blades.

4.4.2. Numerical results

The 𝛼-HHT numerical method is used with a time step Δ𝑡 = 0.01 s and a final time 𝑡𝑓 = 30 s. The residual force and displacement 
tolerances are: 𝑡𝑜𝑙𝑟 = 10−5 and 𝑡𝑜𝑙𝑢 = 10−10. The spatial discretization of each blade is done using 30 aerodynamic co-rotational 
elements. The formulation F1 was not able to provide a numerical solution, while F2 provided the results shown.

The numerical results obtained for the rotation 𝜃𝑥 of point O, are shown in Fig. 19a, and the results of the angular velocity ̇𝜃𝑥(𝑡)
of point O, are shown in Fig. 19b. The horizontal 𝑢𝑦 and vertical 𝑢𝑧 displacements of node A are shown in Fig. 20.

The results let us conclude that formulation F2 is able to provide a numerical solution of the problem. Moreover it can be observed 
that, as expected, the angular velocity does not diverge and a quasi-stationary regime is reached.

5. Conclusions

In this article a new formulation for the numerical analysis of frame structures submitted to aerodynamic forces is presented. 
The methodology extends the application of the co-rotational approach, for computing the quasi-steady aerodynamic forces in the 
deformed configuration for large displacements and rotations. The co-rotational approach is used to compute aerodynamic, internal 
and inertial forces, providing a set of nonlinear governing equations. An aerodynamic stiffness matrix is added to the tangent matrix in 
the numerical procedure using a finite difference approach. Three formulations were considered: F1, which is considered equivalent 
15

to a previous work of the literature, and F2/F3 two variants of the proposed co-rotational formulation.
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Fig. 20. Example 4: Displacements 𝑢𝑦(𝑡) and 𝑢𝑧(𝑡) of node A.

The results obtained using the formulations were presented and compared in four numerical examples. The numerical resolution 
procedures associated with the formulations were implemented in the open-source FEM library ONSAS. All the scripts used to 
generate the results are publicly available.

In Example 1, the reconfiguration of a cantilever beam problem submitted to drag forces was considered. The results obtained 
for the static case let us conclude that, for small deformations the three formulations match the reference solution. On the other 
hand for large deformations, formulation F3 is more robust than F1 and F2. For the dynamic analysis case the three formulations 
provide accurate results and formulation F3 requires more execution time. Finally, a numerical study on the Gauss integration of the 
aerodynamic forces is performed and, 4 Gauss integration points are selected as an adequate number.

In Example 2, a three-blade propeller submitted to a uniform wind flow undergoing large rotations was considered. Two cases 
were defined for the stiffness of the blades (rigid and flexible), and the analytic solution is presented for the rigid case. The results 
obtained let us conclude that, as expected, the proposed formulation F2 provides accurate results and requires a lower number of 
elements than F1. For the flexible case, the formulation F1 is unable to solve the problem, while formulation F2 provides adequate 
results.

In Example 3, a simplified wind turbine blade submitted to a fluid flow with uniform velocity and rotating direction was consid-

ered. Realistic drag, lift and pitch aerodynamic coefficients were considered based on reference literature and a static analysis was 
performed. The results let us conclude that, for this static analysis case, formulation F1 is not able to provide a proper value for the 
torsional moment, while formulation F2 provides adequate results. It can be inferred that formulation F2 would be a preferred option 
for potential use in Engineering design problems.

In Example 4, the dynamic analysis of a realistic wind turbine submitted to a fluid flow with uniform velocity was considered. 
The results obtained let us conclude that, formulation F2 is able to provide the expected behavior, while formulation F1 is not able 
to solve the problem for the parameters considered.

The proposed co-rotational formulation represents a simple yet accurate tool for simulating flexible structures submitted to fluid 
loads.

Several research directions can be considered for future work. The proposed formulation could be validated using results provided 
by other more computationally demanding FSI approaches. Moreover, including eccentric aerodynamic and mass centers could be the 
next step if real world problems are to be solved. Finally, extending the aerodynamic forces model to reproduce unsteady phenomena, 
such as flow-induced vibrations can also be considered.
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