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Abstract

We establish a complete classification theorem for the topology and for the null

generators of compact non-degenerate Cauchy horizons of time orientable smooth

vacuum 3+1-spacetimes. We show that, either: (i) all generators are closed, or (ii)

only two generators are closed and any other densely fills a two-torus, or (iii) every

generator densely fills a two-torus, or (iv) every generator densely fills the horizon.

We then show that, respectively to (i)-(iv), the horizon’s manifold is either: (i’) a

Seifert manifold, or (ii’) a lens space, or (iii’) a two-torus bundle over a circle, or,

(iv’) a three-torus. All the four possibilities are known to arise in examples. In the

last case, (iv), (iv’), we show in addition that the spacetime is indeed flat Kasner,

thus settling a problem posed by Isenberg and Moncrief for ergodic horizons. The

results of this article open the door for a full parameterization of the metrics of all

vacuum spacetimes with a compact Cauchy horizon. The method of proof permits

direct generalizations to higher dimensions.

1 Introduction

The occurrence of Cauchy horizons in cosmological spacetimes beyond which predictabil-

ity (from the initial data) fails, is one of the most intriguing features of the General

Theory of Relativity closely related to the Strong Cosmic Censorship conjecture. In

this regard, along the past decades there have been significant efforts to find necessary

conditions under which they form and to provide a clear picture of their nature when

they do. Motivated by these questions, in this paper we take advantage of recent results

by the authors in [15], by Petersen in [13] and by Petersen-Rácz in [14], to establish

a stringent list of the topologies and of the orbital type of the generators that non-

degenerate Cauchy horizons can have. As a byproduct we prove that non-degenerate

ergodic Cauchy horizons, that is, those having a dense generator, are just a quotient

of the flat Kasner spacetime. This answer a question posed by Isenberg and Moncrief

in [11]. We move now to describe in detail the setup and state the main results. We

comment also on previous results in the literature.

We let (M, g) be a smooth, connected time-oriented 3+1-dimensional vacuum space-

time having a compact Cauchy horizon C. We assume that the horizon C dividesM into
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two connected disjoint regions I and H , i.e. M \C = I ∪H , where H is a maximal glob-

ally hyperbolic spacetime with a compact and boundaryless Cauchy surface Σ. In this

context C is a smooth [6], [8], [9], and totally geodesic null hypersurface, hence ruled by

inextensible null geodesics called the null generators. We say that C is non-degenerate if

there is at least one future or past incomplete generator (i.e. its affine length is finite).

Under this setup, the following is the main result.

Theorem 1.1. Let C be a non-degenerate compact Cauchy horizon inside a smooth,

time-orientable vacuum spacetime. Then, one of the following holds,

(i) all generators are closed,

(ii) only two generators are closed and every other generator densely fills a two-torus,

(iii) every generator densely fills a two-torus,

(iv) every generator densely fills the horizon.

A direct consequence will be the following topological classification of Cauchy hori-

zons.

Corollary 1.2. Let C be a non-degenerate compact Cauchy horizon inside a smooth,

time-orientable vacuum spacetime. Then, respectively to the cases (i)-(iv) in Theorem

1.1, we have,

(i’) if (i) holds, then C is a Seifert manifold,

(ii’) if (ii) holds, then C is a lens space,

(iii’) if (iii) holds, then C is a T
2-bundle over S

1,

(iv’) if (iv) holds, then C is a three-torus T
3.

All four possibilities in the theorem and the corollary are well known to arise in

examples. For example, the Taub-NUT spacetime (see [10]) is an instance of (i) and

Gowdy Cauchy horizons are instances of (ii) and (iii) (see [3] and references therein).

An elaborated discussion of possibilities can be found in the comprehensive article of

Chrusciel and Rendall [2]. Finally, suitable quotients of the flat Kasner spacetime,

g = −dt2 + t2dx2 + dy2 + dz2, (t, x, y, z) ∈ (0,∞)t × R
3
x,y,z, (1)

by a three-dimensional lattice in the x, y and z directions are instances of (iv). Of

course in this case the quotient must be in such a way that for every given t0, y0, z0 the

projection of the line x→ (t0, x, y0, z0) is dense inside the Cauchy surface {t = t0}. We

do not know at the moment if every Seifert manifold, every lens space, and every T
2-

bundle over S1 is indeed the Cauchy horizon of a vacuum spacetime, (the complicated

case seems (i)).

Topological constraints compatible with those of Corollary 1.2 were first obtained in

the interesting work of Alan Rendall [16] where it was shown the rather strong property

that Cauchy horizons can be collapsed in volume with finite curvature and diameter (for

a detailed account on such constraints see [4]). More recently, and regarding the orbital
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structure of the generators, Isenberg and Moncrief [11] have shown that, for analytic

spacetimes at least, there is a trichotomy as follows: either, (i) all the generators are

closed, or (ii) a dense set of generators are dense in two-tori, or, (iii) there is at least

one dense generator in C. Theorem 1.1 and Corollary 1.2, enclose and refine all the

conclusions in these works.

The proofs of Theorem 1.1 and Corollary 1.2 combine four pieces of information.

First, they use that the temperature of every compact non-degenerate Cauchy horizon

can be normalized to a non-zero constant. This is a new result proved by the authors

in [15], and means that there is a nowhere zero vector field V on C tangent to the null

generators such that ∇V V = −V . Note that, as V is nowhere zero, the orbits of V

are the orbits of the null generators. Second, they use an important observation due to

Oliver Petersen, stating that the Riemannian metric on C given by σ = h + ω ⊗ ω has

V as a Killing field, where here h is the degenerate metric on C inherited from g, and

ω is the one-form on C defined by ∇XV =: ω(X)V , (see [11]). This follows from the

well known fact that LV h = 0 (holding for any vector field V ) plus the invariance of ω

under the flow of V , namely that LV ω = 0. We provide a simple computation of this

last invariance in Proposition 3.1. The Riemannian metric σ is fundamental to describe

the orbital types of V , hence of the null generators, by means of standard results on

isometric actions of Lie groups. So the last pieces of information have to do with that

and are the following. The first is a nice observation in Riemannian geometry, recalled

by Isenberg and Moncrief in [5] (Proposition 1), and stating that the closure of the

Abelian group of isometries generated by V is a compact connected Abelian Lie group

G, hence isomorphic to a torus Tn, with n ≥ 1. We review such argument for the sake

of completion. The second and fourth piece of information is a result about isometric

actions by Lie groups, describing the orbital structure in terms of the so called principal

orbits. We take this result from [1] and apply it in Theorem 2.4 in the next section. The

main Theorem 1.1 and the main Corollary 1.2 then follow directly applying Theorem

2.4 to the isometric action of G ∼ T
n on (C, σ). Theorem 1.1 and Corollary 1.2 are

proved in the third, and last, section.

The results in this paper have also consequences on the number of Tn-symmetries

that the spacetime (M, g) has. Indeed, a recent important result by Petersen and Rácz

has shown that the field V on C (shown to exist in [15]) can be extended to a spacetime

Killing field inside the globally hyperbolic region (altogether these two results answered

a conjecture by Isenberg and Moncrief, see [15]). If the spacetime falls into the class (i),

then it is easy to see that there is a T
1 = S

1 spacetime symmetry. On the other hand,

for spacetimes falling into the cases (ii) and (iii), there is instead a T
2-symmetry as was

shown in Corollary 1.1 in [14]. We will show here that in the last case (iv) there is a T
3

symmetry and, furthermore, that the spacetime is a quotient of the Kasner spacetime

as described earlier. As already mentioned, this answers a question of Isenberg and

Moncrief for the so called ergodic Cauchy horizons (see Sec. D in [11]). The result can

be generalised to higher dimensions without difficulty, so we state and prove it in n+1.

Corollary 1.3. Let C be an ergodic, compact and non-degenerate Cauchy horizon inside

a time-oriented, n+1-dimensional vacuum spacetime (M, g). Then, (M, g) is a quotient
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of the flat Kasner spacetime (1).

The proof of this corollary is given in the last section.

Acknowledgements. The second author is greatly indebted to Oliver Petersen for

letting him know about the important Riemannian metric σ on C invariant under the

flow of the vector field V normalizing the surface gravity to a constant.

2 Classification of the orbits of a Killing field

Let (M, g) be a d-dimensional smooth compact Riemannian manifold and suppose V is

a Killing vector field. Let ϕ : M ×R →M be the smooth flow defined by V , that is, the

solution to the ODE, dϕ(p, z)/dz = V (ϕ(p, z)), ϕ(p, 0) = p, where z is the parameter

of the integral curves of V . For any z ∈ R, let ϕz : M → M be the diffeomorphism

given by ϕz(p) := ϕ(p, z). Since V is a Killing field and ϕs+z = ϕz ◦ ϕs = ϕs ◦ϕz , then

{ϕz : z ∈ R} is an Abelian subgroup of the group of isometries I(M) of (M, g).

In the arguments below we will use a few times the following well known facts. First,

by the Myers-Steenrod theorem, the isometry group of a smooth compact Riemannian

manifold is a compact Lie group [12]. Second, by Cartan’s theorem, a closed subgroup

of a compact Lie group is a Lie group, (see Theorem 20.12 in [7]). Third, by the

classification theorem for Abelian Lie groups, an Abelian connected and compact Lie

group is isomorphic to a torus, (see, Theorem 1.41 in [1]). Finally, and fourth, the orbit

of a point by the action of a compact Lie group on a complete manifold, is always an

embedded submanifold [1].

We denote by cl(A) the closure of a subset A of a manifold.

Proposition 2.1 (From [5]). Let H be an Abelian connected subgroup of a compact

Lie group G. Then cl(H) is an Abelian, connected, compact Lie subgroup of G, hence

isomorphic to T
n, for some n ≥ 1.

Proof. Since the closure of a connected set is connected, then cl(H) is connected. As

G is compact and cl(H) is closed then cl(H) is compact. Let g = limi→∞ gi and

h = limi→∞ hi with gi ∈ H , and hi ∈ H . Then, since the group is Abelian and

multiplication is continuous we have hg = gh = limi→∞ gihi ∈ cl(H). Hence cl(H) is

an Abelian subgroup of G. Thus cl(H) is a compact, connected Abelian subgroup of G,

hence a Lie group and thus isomorphic to T
n.

If H is a group acting over a Riemannian manifold (M, g), then the H-orbit of a

point p ∈ M , {h.p : h ∈ H}, will be denoted by OH(p). Its isotropy group at p,

{h ∈ H : h.p = p}, will be denoted by Hp.

The following proposition is well known but we include the proof for the sake of

completeness.

Proposition 2.2. Suppose that H is a compact connected abelian subgroup of I(M)

acting on (M, g) transitively. Then, (M, g) is a flat torus1.

1That is, the quotient of Rn by a lattice.

4



Proof. First note thatHp = Hq for any p and q inM . Indeed, if h.p = p and q = g.p then

h.q = h.(g.p) = (h.g).p = (g.h).p = g.(h.p) = g.p = q so h ∈ Hq. Thus Hp ⊂ Hq, and

reversing the role of p and q, we get Hp = Hq. Hence H/Hp acts freely and transitively

by isometries on (M, g). Now, H/Hp is a compact, connected and Abelian Lie group,

hence isomorphic to T
n for some n ≥ 1. We can then say that Tn = S

1
θ1
× . . .×S

1
θn

acts

freely and transitively on (M, g) by isometries. Denote Θ := (θ1, . . . , θn). Fixed Θ, the

map p → Θ.p is an isometry, therefore the vector fields Xi, i = 1, . . . , n, on M , given

by,

Xi(p) =
d

dθi
Θ.p

∣

∣

∣

∣

Θ=0

, (2)

are Killing fields. Slightly abusing notation, we compute,

d

dθi
Θ.p = Xi(Θ.p) = dpΘ(Xi(p)). (3)

In particular, if Xi(p) = 0 at some p, then Xi is identically zero on M by the last

equality. In such case, the map θi → θi.p is constant by the first equality, i.e. θi.p = p

for all θi, contradicting that the action is free. Now, the result of moving p by Xi an

amount θi, and then by Xj an amount θj , is θjθi.p, whereas the result of moving p first

by Xj and then by Xi is θiθj .p. Since T
n is abelian we conclude that the Killing fields

Xi andXj commute, for all i, j. Using (3) again, it is deduced that the X1(p), . . . , Xn(p)

are linearly independent at all p. They define thus local Euclidean coordinates systems,

proving that (M, g) is flat. Finally, the map T
n → M , given by Θ → Θ.p is bijective

and non-singular, showing that M is diffeomorphic to T
n.

Proposition 2.3. Let (M, g) be a smooth compact Riemannian manifold. Let H be a

subgroup of I(M), and let p be a point in M . Then,

Ocl(H)(p) = cl(OH(p)). (4)

Furthermore, if H is connected and Abelian, then for any p ∈ M , Ocl(H)(p) is either

a point or an embedded flat torus. Finally, for any q ∈ Ocl(H)(p), the orbit OH(q) is

dense in Ocl(H)(p).

Proof. Ocl(H)(p) is closed because cl(H) is compact and group multiplication is contin-

uous. Then, as OH(p) ⊂ Ocl(H)(p) it follows that cl(OH(p)) ⊂ cl(Ocl(H)) = Ocl(H)(p).

To prove the other inclusion, fix q ∈ Ocl(H)(p). Let σ ∈ cl(H) such that σ(p) = q and

let σi ∈ H such that limi→∞ σi = σ. Since the action of I(M) on M is continuous then

σi.p→ σ.p = q. Therefore q ∈ cl(OH(p)).

If H is connected and Abelian then cl(H) is compact, connected and Abelian and

therefore isomorphic to a torus Tn. Now, for any p, cl(H) acts on Ocl(H)(p) by isometries

and transitively and by Proposition 2.2, Ocl(H)(p) is either a point or a flat embedded

torus.

Finally, if q ∈ Ocl(H)(p) then there is σi ∈ H such that σi.p → q, so we have

σ−1
i .q → p. Therefore p ∈ cl(OH(q)) = Ocl(H)(q) and thus Ocl(H)(p) ⊂ Ocl(H)(q) ⊂

Ocl(H)(p).

We recall now from [1] the relevant notion of principal orbits and their properties. Let

H be a Lie subgroup of I(M) and p a point in M . Let TpOH(p) be the tangent space to
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OH(p) at p and let Np be the perpendicular complement, so that TpM = TpOH(p)⊕Np.

Now, given h ∈ H , the map p → h.p is an isometry of (M, g). If h ∈ Hp then h.p = p

and so dh. : TpM → TpM is a linear isometry. As TpOH(p) is invariant, then so is Np.

This induces an action Hp × Np → Np called the slice representation. If this action

is trivial then the orbit OH(p) is said to be principal (see Definition 3.73 and exercise

3.77 in [1]). Principal orbits exist, have maximal dimension among the orbits of H

and the set M0 defined as the union of such orbits is open and dense in M . Moreover,

M0/H ⊂ M/H is a connected manifold. This is the Principal Orbit Theorem and a

proof of it can be found in Theorem 3.82 of [1]. An orbit that is not principal but

has the same dimension as principal orbits is said exceptional. A non-exceptional and

non-principal orbit is said to be singular.

We are now ready to prove the main theorem of this section.

Theorem 2.4. Let (M, g) be a smooth, 3-dimensional, compact and connected Rie-

mannian manifold. Suppose that V is a nowhere vanishing Killing vector field. Then,

either,

(I) every orbit is closed, or,

(II) there are only two closed orbits, and every other orbit densely fills an embedded

two-torus, or,

(III) every orbit densely fills an embedded two-torus, or,

(IV) every orbit is dense in M .

Proof. Let H be connected Abelian group generated by V . Let cl(H) =: G that we

know is isomorphic to T
n, for some n ≥ 1. Observe that as V has no zeros then every

G-orbit has dimension at least one.

If the dimension of the principal G-orbits is one, then all the G-orbits have dimension

one and are diffeomorphic to S
1. Hence the H-orbits are closed and we are in case (I).

If the dimension of the principal G-orbits is two, then M0/G is a connected one-

manifold, therefore diffeomorphic to either (0, 1) or S
1, and dense in M/G. Also, by

Proposition 2.3 the principal fibers are two-tori. If M0/G is diffeomoprhic to S
1 then

every G-orbit is principal, therefore every H-orbit is dense in a two-tori, and we are in

case (III).

Let us assume that M0/G is diffeomorphic to (0, 1). We claim that in this case

every non-principal orbit must be diffeomorphic to S
1 (hence singular) and there must

be only two of them. Suppose that OG(p) is a non-principal G-orbit of dimension two

(i.e. a regular orbit). By Proposition 2.3, OG(p) is an embedded two-torus. Let ǫ > 0

be small enough that the set of points at a distance ǫ from OG(p) are two embedded

tori, Tǫ and T−ǫ, at both sides of OG(p). Assume that, in addition, ǫ is chosen such that

one of the tori contains a point q whose G-orbit is principal (recall M0 is dense). Then,

such orbit must be either Tǫ or T−ǫ because Tǫ ∪ T−ǫ is preserved under the action of

the isometries of G. Assume then that Tǫ is principal. Let γ be a length minimizing

geodesic between OG(p) and Tǫ, starting at a point r ∈ OG(p) and ending at a point

sǫ ∈ Tǫ. If OG(p) is non-principal then there must exist g ∈ G sending γ′(0) to −γ′(0),
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hence sending sǫ to a point s−ǫ in T−ǫ. Therefore Tǫ itself is not a G-orbit, reaching a

contradiction. Thus, every non-principal orbit is diffeomorphic to S
1. Let us see that

there must be only two of them. Let OG(p) be an orbit diffeomorphic to S
1. Let ǫ0 > 0

be small enough that for any ǫ ∈ (0, ǫ0] the set of points at a distance ǫ from OG(p) is

an embedded two-torus Tǫ. Say ǫ0 is chosen such that Tǫ0 is principal. Then, for any

0 < δ < ǫ0 let γ be a length minimizing geodesic between Tǫ0 and Tǫ=ǫ0−δ, starting at

r ∈ Tǫ0 and ending at s ∈ Tǫ. As the point r orbits all over Tǫ0 under the action of G,

the point s orbits all over Tǫ. Thus, the orbit of s is two-dimensional, hence principal.

It follows that near OG(p) every orbit is principal. In particular, the G-quotient of the

ǫ0-tubular neighbourhood of OG(p) is naturally diffeomorphic to [0, ǫ0). We conclude

that M/G must be diffeomorphic to [0, 1] and that there are only two singular orbits,

one over {0} and the other over {1}. We are thus in case (II).

If the dimension of the principal orbits is three then there is only one principal

orbit equal to M itself and must be a flat three-torus by Proposition 2.3. Also by this

proposition, every H-orbit is dense in M .

As a consequence of the arguments shown in the proof, the topology of such spaces

can be classified. For the definition of Seifert manifold, lens space, and torus bundle see

[17].

Corollary 2.5. Under the hypothesis and notation of Theorem 2.4, we obtain the fol-

lowing topological classification.

(I’) If (I) holds, then M is a Seifert manifold.

(II’) If (II) holds, then M is a lens space,

(III’) If (III) holds, then M is a T
2-bundle over S

1,

(IV’) If (IV) holds, M is a three-torus T
3.

Proof. Cases (I), (III), and (IV) are immediate. Also, if (II) holds, then M results after

gluing the two solid tori π−1([0, 1/2]) and π−1([1/2, 1]) along their boundaries and is

therefore a lens space.

3 Proofs of the main results

As earlier let C be a Cauchy horizon inside a smooth, vacuum, time-oriented n + 1-

dimensional spacetime (M, g). Assume that C is compact and non-degenerate. Let h

denote the degenerate metric on C inherited from g.

Let us mention a few well known facts about null vector fields Z, tangent to C. First,

since C is totally geodesic, then given any such nowhere zero Z we have,

g(∇XZ, Y ) = 0, (5)

for any X,Y ∈ TC. This permits the definition of a smooth one-form ωZ by,

∇XZ =: ωZ(X)Z, (6)
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for every X in TC. A crucial property of the forms ωZ is that they are null closed,

meaning that,

dωZ(Z, ·) = 0. (7)

(see for instance [11] and references therein). Second, for any such nowhere zero Z it is,

LZh = 0, (8)

which follows after,

LZh(X,Y ) = g(ωZ(X)Z, Y ) + g(ωZ(Y ), X) = 0, (9)

for any X and Y tangent to C.

Now, it was recently shown in [15] that one can always find a smooth, nowhere

vanishing null vector field V in C such that,

∇V V = −V. (10)

This implies that ωV (V ) = −1, and therefore that ωV is nowhere vanishing. The

Petersen’s metric σ (see (5) in [13]) is the Riemannian metric over C defined by,

σ(X,Y ) = h(X,Y ) + ωV (X)ωV (Y ). (11)

The crucial fact proved by Petersen is that V is a Killing field for σ. A shorter proof

of this fact than the one presented in Theorem 1.14 of [13] can be given using Cartan’s

formula as shown in the next Proposition.

Proposition 3.1 (Petersen [13]). The vector field V is a Killing vector field of (C, σ).

Proof. Applying Cartan’s formula, for any pair of vector fields X,Y ∈ TC we find,

LV σ(X,Y ) = LV h(X,Y ) + LV (ωV ωV )(X,Y )

= LV (ωV )ωV (X,Y ) + ωV LV ωV (X,Y )

=
[(

(ιV ◦ d)ωV + (d ◦ ιV )ωV

)

ωV + ωV

(

(ιV ◦ d)ωV + (d ◦ ιV )ωV

)]

(X,Y )

=
[

dωV (V,X) + d(ωV (V ))(X)
]

ωV (Y ) + ωV (X)
[

dωV (V, Y ) + d(ωV (V ))(Y )
]

= 0, (12)

where the second equality follows from (9) and the last equality follows from the prop-

erties of the one-form ωV previously discussed.

The proof of the Theorem 1.1 and of Corollary 1.2 is now straightforward from

Proposition 3.1 and from the Riemannian results previously obtained.

Proof of Theorem 1.1 and Corollary 1.2. Theorem 1.1 follows by applying Theorem 2.4

to (C, σ) and to the Killing vector field V . Corollary 1.2 now also follows immediately

from 2.5, without any further changes.

Finally, we prove Corollary 1.3.
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Proof of Corollary 1.3. We use Theorem 1.2 in [14] to extend the vector field V to a

Killing vector field for g in the globally hyperbolic region H of M \ C, (we denote the

extension still with the letter V ). Let Z be the only past directed null vector field on C

perpendicular to the kernel of ω at every point p ∈ C, and such that g(Z, V ) = 1. The

field Z points into H . As LV V = 0, LV ω = 0 and LV g = 0 it follows that LV Z = 0.

Given p ∈ C let γp(s) be the null geodesic starting at p with velocity Z(p). For

τ small, let ψτ : C → M be defined by ψτ (p) = γp(τ). If τ0 is small enough then

Σ := ψτ0(C) is an embedded hypersurface in H and ψτ0 : C → Σ is a diffeomorphism.

As V is a spacetime Killing field and Z is invariant under the flow of V , it follows that

dψτ0(V (p)) = V (ψτ0(p)), (recall that, as V is a Killing field, it takes geodesics into

geodesics). In particular V is tangent to Σ. Hence, if the orbits of V on C are dense, so

are the orbits of V on Σ. As V is spacelike near C in H (see, [14]), it follows directly

that Σ (for τ0 small enough) is a spacelike hypersurface. Since V is a spacetime Killing

field and leaves Σ invariant, then it is also a Killing field of the (Riemannian) metric

h that g induces on Σ. Thus, by Proposition 2.2, we conclude that Tn acts freely and

isometrically on (Σ;h), and that (Σ, h) is a flat n-torus. Since the T
n- isometries come

from the spacetimes symmetries induced by V , it follows that the second fundamental

form K of Σ is also invariant under the action of Tn.

Now, any T
n-invariant vacuum initial data (Σ ∼ T

n;h,K) gives rise to a Kasner

spacetime but the only Kasner spacetime with a Cauchy horizon is the flat Kasner. The

Corollary follows.
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a compact Cauchy horizon of constant non-zero surface gravity. arXiv:1809.02580,

2018.

[15] Mart́ın Reiris and Ignacio Bustamante. On the existence of Killing fields in smooth

spacetimes with a compact Cauchy horizon. arXiv:2006.08934, 2020.

[16] Alan D. Rendall. Compact null hypersurfaces and collapsing Riemannian mani-

folds. eprint arXiv:dg-ga/951000, pages dg–ga/9510002, October 1995.

[17] Peter Scott. The geometries of 3-manifolds. Bull. London Math. Soc., 15(5):401–

487, 1983.

10


	1 Introduction
	2 Classification of the orbits of a Killing field
	3 Proofs of the main results

