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Abstract: Disentangling the effects of climate change on nature is one of the main challenges facing
ecologists nowadays. Warmer climates forces strong effects on lake biota for fish, leading to a
reduction in size, changes in diet, more frequent reproduction, and stronger cascading effects. Space-
for-time substitution studies (SFTS) are often used to unravel climate effects on lakes biota; however,
results from continental lakes are potentially confounded by biogeographical and evolutionary
differences, also leading to an overall higher fish species richness in warm lakes. Such differences
may not be found in lakes on remote islands, where natural fish free lakes have been subjected to
stocking only during the past few hundred years. We studied 20 species-poor lakes located in two
remote island groups with contrasting climates, but similar seasonality: the Faroe Islands (cold;
6.5 ± 2.8 ◦C annual average (SD) and the Azores Islands (warm; 17.3 ± 2.9 ◦C)). As for mainland
lakes, mean body size of fish in the warmer lakes were smaller overall, and phytoplankton per unit
of phosphorus higher. The δ13C carbon range for basal organisms, and for the whole food web,
appeared wider in colder lakes. In contrast to previous works in continental fresh waters, Layman
metrics of the fish food web were similar between the two climatic regions. Our results from insular
systems provide further evidence that ambient temperatures, at least partially, drive the changes in
fish size structure and the cascading effects found along latitude gradients in lakes.

Keywords: stable isotopes; climate change; islands; space-for-time substitution

1. Introduction

Unraveling the effects of climate change and its impact on natural systems has been
a central goal in ecological studies, being particularly important in the context of global
change [1,2]. Numerous approaches have been used to study the effects of climate change
in shallow lakes [3], including warming experiments [4–6], mathematical models [7],
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paleolimnological records [8], time series [9], and space-for-time substitution (SFTS) [10]. In
particular, SFTS has provided major empirical evidence of climate change effects in lakes,
including shallow lake systems [3,10]. In this approach, comparisons were conducted
between systems in contrasting climates where the organisms had enough time to evolve
and adapt to the local climate. However, apparent climate effects determined by SFTS
may in part reflect differences on biogeography, and may be influenced by co-variates
of temperature and the latitudinal variation in other climate-related variables, such as
seasonality and the length of the growing season. Similar studies focusing on species-poor
areas, such as remote islands located in contrasting climates with a recent fish introduction,
may be useful to somewhat separate the effect of confounding factors occurring at a large,
latitudinal scale in the mainland [3].

Studies conducted along climate gradients suggest strong effects of increases in am-
bient temperatures on lake fish community structures and dynamics, as reviewed in [3].
Reduced abundance of cold stenothermal fish species and enhanced abundance of euryther-
mal fish species, even in deep, stratified lakes, are expected with decreasing latitude [11].
Moreover, fish in warmer climates have higher specific metabolic and excretion rates, as
well as earlier reproduction and prolonged spawning [12–14]. Moreover, a decrease in
mean fish body size [15–20] is evident with decreasing latitude and have been attributed
particularly to a significant switch in life history [19], and sometimes to intra-species
density depended changes [21]. Moreover an increase in taxonomic and functional rich-
ness [16–18,22] as well as changes in functional composition with increased proportion
of omnivorous and herbivorous fish species [23,24], have been observed with decreasing
latitude.

Due to reduced mean size, among other expected changes in fish community structure
and function at warmer regions, a higher zooplanktivory is expected [25–27]. The higher
fish predation pressure on zooplankton reduces the grazing pressure on phytoplankton [10]
and the maintenance of clear water at the ecosystem level is consequently less frequent in
warm than in cold climates [28].

The described differences at community level can affect various food web metrics,
including the trophic web length (TWL), commonly measured as range in δ15N (NR). TWL
has been one of the most studied metrics of trophic webs and several hypotheses and
mechanisms have been proposed to explain its variations. One is the energetic limitation
hypothesis (ELH) [29–31]; and references therein, according to which energy losses be-
tween trophic levels limit the maximum food web length, is susceptible to temperature
changes. A negative correlation between the maximum trophic position and environ-
mental temperature is theoretically expected [32], a pattern already revealed in empirical
studies [33–35].

The width of the food web, represented as δ13C range (hereafter CR), depends largely
on the stable isotope signature of primary producers [36], but as their signal is highly
variable among ecosystems, primary consumer’s signatures have been proposed to better
integrate the natural variability in space and time of the basal resources (producers) [36].
The carbon signal (δ13C) was thought to be transmitted with little change from the primary
producers to the consumers; consequently, the consumer signals depend directly on the
signals of their diets [37]. However, a large variability in trophic fractionations has been
reported for aquatic consumers [38]. In contrast to nitrogen, the theoretical framework
developed for carbon is patchier, particularly in connection with climate and temperature
in particular [39]. In low productivity lakes, the carbon sources for photosynthesis usually
derive from mineralization in the benthic and littoral zones, which are typically depleted
in δ13C compared to atmospheric carbon signature [40]. In productive lakes, however, en-
dogenous carbon may not suffice to maintain pelagic photosynthesis and pelagic producers
therefore have to exploit a higher proportion of atmospheric inorganic carbon, enriched in
δ13C [40,41]. An enriched δ13C signal, due to input of atmospheric carbon in the pelagic
zone in the warmer (and consequently, often more productive) lakes is thus expected,
which may reduce the range of δ13C of producers in warmer systems.
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Biotic interactions could also lead to differences in CR as fish predation may affect the
abundance, composition, size structure, and/or the diet behavior of macroinvertebrates [42–44],
and consequently reduce their use of resources. Accordingly, lake food webs with stronger
fish predation, namely warm low latitude systems, would potentially exhibit a narrower
CR; this has previously been observed in streams [45].

To reduce some of the weakness of SFTS performed in continental lakes, often posi-
tioned in distant regions with different seasonality, biogeography, and evolutionary time [3],
we studied two sets of species-poor lakes located in two remote groups of islands in the
North Atlantic Ocean with contrasting climates, but comparable seasonality, namely the
Azores (warm) and the Faroe (cold) Islands. Since both island groups are located in the
North Atlantic Ocean, the studied lakes are subject to the same seasonality (Figure 1).
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Figure 1. Average air temperature as full lines (average daily temperature per month) and maximum
and minimum temperatures as dotted lines (average daily temperature per month) for Azores (red)
and Faroe Islands (blue) during the period 1961–1990. Source: https://en.climate-data.org/europe/
(accessed on 13 May 2021).

Records of freshwater fish communities in both sets of islands trace back to the 17th
and 18th centuries [46,47]. Fish were first introduced by humans in the Azores Islands
in 1792 [47], while the fish species at the Faroe Island are indigenous, but have been
transplanted internally [46,48]. Most of the fish species in the Azores Islands were stocked
for the first time one to two hundred years ago. The first introduced species in 1792 was
crucian carp Carassius auratus Linnaeus 1758. Most of the exotic species were introduced
during the 19th century; ruivaca Achondrostoma oligolepis (Robalo, Doadrio, Almada and
Kottelat 2005) was introduced in 1879; brown trout Salmo trutta Linnaeus 1758 in 1880;
common carp Cyprinus carpio Linnaeus 1758 in 1890; roach Rutilus rutilus (Linnaeus 1758) in
1895; largemouth black bass Micropterus salmoides (Lacepède 1802) in 1898 and perch Perca
fluviatilis Linnaeus 1758 in 1898. Three species have been more recently stocked, rainbow
trout Oncorhynchus mykiss (Walbaum 1792) in 1941, pike Esox Lucius Linnaeus 1758 in 1979
and finally pikeperch Sander lucioperca (Linnaeus 1758) in 1980.

We used a stable isotope approach to test the hypothesis that ambient temperature
differences between the two island groups play a key role in shaping food webs. Based on
evidence from mainland lakes, we expected to find: (1) a fish size structure dominated by
small individuals in the warmer lakes (Azores Island); (2) a stronger top-down effect of
fish in the warmer lakes than in the colder ones (Faroe Island); (3) shorter food webs in the
warmer lakes; and (4) a wider (CR) food web in the colder lakes.

https://en.climate-data.org/europe/
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2. Materials and Methods
2.1. Study Sites

The Azores Islands are a group of nine volcanic islands located 1500 km west off the
coast of Portugal and 850 km northwest from the island of Madeira in the North Atlantic
Ocean (between 37◦44′ and 37◦44′ N and between 25◦08′ and 25◦51′ W). The Faroe Islands
are a treeless archipelago also volcanic origin composed of 18 islands located in the North
Atlantic Ocean (between 61◦20′ and 62◦24′ N and between 6◦15′ and 7◦41′ W), their nearest
neighbors being the Shetland Islands (345 km), Iceland (430 km), and Norway (575 km)
(Figure 2). Annual mean air temperatures are higher in the Azores (17.3 ± 2.9 ◦C) than
in the Faroe Islands (6.5 ± 2.8 ◦C) (t1,22 = 9.37, p < 0.001). Moreover, the temperature
difference between regions is relatively constant along the year, ranging from 9.5 to 12.8 ◦C
(Figure 2). The lowest temperatures are recorded between January and February (11 ◦C
in the Azores and 1.5 ◦C in the Faroe Islands) and maximum temperatures occur around
August (25.6 ◦C in the Azores and 12.8 ◦C in the Faroe Islands; source: https://en.climate-
data.org/europe/) (accessed on 13 May 2021). The lake area (ha) of the studied lake was
estimated using a geo-referenced satellite image using the free software Quantum-GIS 2.6.1.
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Miguel Island (C).

2.2. Sampling

We sampled 9 lakes in the Azores and 11 in the Faroe Islands during summer 2006 and
2000, respectively. Depth-integrated water samples were taken at the deepest point of each
lake (see Table 1) and preserved for subsequent laboratory determination of nutrient and
phytoplankton chlorophyll-a concentration (Chl-a). Profiles of lake water temperature and
dissolved oxygen (when the lakes were stratified), pH, and conductivity were recorded
using an Hydrolab, Surveyor 4 (Hach Environmental, Loveland, CO, USA) and Secchi
depth was measured. Additionally, a depth-integrated sample for zooplankton (~20 L) was
taken with a Schindler-Patalas Plankton Trap at the deepest point of the lake (integrating

https://en.climate-data.org/europe/
https://en.climate-data.org/europe/
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several samples from surface to bottom), and the water filtered through a 20-µm mesh net,
back washed into filtered water and fixed with 4% Lugol’s solution. The deepest point of
each lake was determined using a portable echo sounder (Hondex ps-7, Toyohashi, Japan).
In the laboratory, the zooplankton individuals were identified to species level and counted
using an inverted light microscope (Leitz Labovert FS, Ernst LeitzLtd., Midland, ON,
Canada)). A subsample of 20–30 randomly selected individuals per species was measured
(to 0.01 mm) using an ocular scale and biomass was calculated using density of organisms
and published length–weight relationships [49].

Table 1. Morphometric, basic physical, chemical, and biological characteristics of the study lakes ordered by increasing
mean fish size.

Island ID Lake Name A Zmax S pH TN TP Chl-a Zoo Zoo Fish Size

(ha) (m) (m) (µg L−1) (µg L−1) (µg L−1) (µg L−1) (ind. L−1) (cm)

Azores Islands A1 Empadadas N. 1.8 6 0.72 - 710 33 75.7 177.8 135.3 6.9
Azores Islands A2 Canario 1.8 2.3 1.8 7.3 440 13 6.7 7.5 5.1 7.9
Azores Islands A3 Congro 5.1 18.9 2.4 7.1 530 20 5.6 85.2 61.2 9.6
Azores Islands A4 Empadadas S. 1.5 3.0 - 7.3 350 11 3.8 1.7 1.3 10.1
Azores Islands A5 Verde 86.3 24.0 2.7 8.1 330 29 6.5 123.5 68.1 12.0
Azores Islands A6 Azul 361 28.5 2 6.9 900 23 5.7 52.6 23.1 13.6
Azores Islands A7 Santiago 25.4 28.8 5.2 8.6 260 13 3.6 40.0 13.7 17.3
Azores Islands A8 Fogo 153.0 31.6 2.7 6.6 190 13 3.8 22.8 11.7 17.6
Azores Islands A9 Rasa SC 3.9 4.5 - 7.2 190 4 2.0 16.0 1.5 17.6

Faroe Islands F1 Sørvágsvatn 356.0 52.0 12.5 6.9 318 5 0.7 23.9 5.2 13.4
Faroe Islands F2 Vatnsnes 14.7 9.5 1.7 6.6 780 76 25.2 174.0 42.5 17.4
Faroe Islands F3 Leynavatn 18.0 32.5 10 6.9 168 3 1.2 32.9 21.7 17.2
Faroe Islands F4 Toftavatn 52.2 17.5 5.8 6.8 220 11 1.0 126.5 25.6 18.4
Faroe Islands F5 Fjallavatn 101.9 46.6 14 6.6 100 3 0.5 40.4 4.8 18.7
Faroe Islands F6 Mjáuvøtn 3.1 5.7 4.3 6.8 252 15 1.8 874.7 175.5 19.8
Faroe Islands F7 Gróthúsvatn 13.4 0.7 0.7 8.8 500 35 1.0 154.3 22.8 23.4
Faroe Islands F8 Mjávavatn 0.6 0.8 0.8 7.0 250 19 1.8 - - 25.2
Faroe Islands F9 Saksunarvatn 8.1 16 8.8 8.0 116 6 1.1 476.1 53.2 25.4
Faroe Islands F10 Sandsvatn 79.7 2.4 2.4 7.7 310 43 1.1 357.7 85.6 27.1
Faroe Islands F11 Bessavatn 5.4 2.0 2.0 6.8 250 30 2.0 371.5 54.0 28.7

A = lake area; Zmax = maximum depth; S = Secchi depth; TN = total nitrogen; TP = total phosphorus; Chl-a = chlorophyll-a concentration;
zoo, crustacean zooplankton, fish size, total length of fish.

Chl-a concentration was used as a proxy of phytoplankton biomass. For the analysis,
100–1000 mL water, depending on the concentration, were filtered in the field through
Whatman GF⁄C filters (47 mm in diameter), kept dark and frozen within few hours, fol-
lowed by spectrophotometric analysis after ethanol extraction in the laboratory [50]. Total
phosphorus (TP) was determined as molybdate reactive phosphorus [51], following per-
sulfate digestion [52] and total nitrogen (TN) was determined as nitrite after potassium
persulfate digestion [53].

Fish were captured using Lundgren gillnets with 14 mesh sizes ranging from 6.25 to
75.0 mm from knot-to-knot, as well as by fyke nets to supplement the capture of species
that were not easily caught in gillnets (e.g., eel, Anguilla spp.). The fyke nets [54] used had
a central leader 8 m long, and a height of 0.6 m, two internal valves (0.55 m); nets were
made throughout of 8 mm mesh (knot-to-knot), except the end of the funnel was 4 mm;
no bait was placed in the nets. The number of gillnets used depended on lake size and
ranged from 2 to 6 nets per lake. The gillnets were placed overnight in the littoral and
pelagic zone. If shallow (mean depth < 3 m) only benthic nets were used and half of the
nets were set in each zone; if mean depth was >3 m 1/3 of the nets were set as for shallow
lakes and an additional 1/3 of the nets were pelagic nets positioned in the middle of the
epilimnion. Moreover, one fyke net was placed near the shore. Fish density was calculated
as CPUE (capture per unit effort, number of fish net−1 h−1) and BPUE (biomass per unit
effort, grams of fish net−1 h−1) [55]. All fish were weighed (TW, 0.01 g) and total length
was measured (TL, 0.1 cm), and a representative subsample of the capture and sizes of each
species was used for stable isotope analyses. Fish muscle samples were taken and frozen
(−18 ◦C) immediately until analysis in laboratory.

For stable isotope analysis, we further collected samples of: (1) each macrophyte
species present (collected by hand); (2) three littoral periphyton samples (collected by
scraping rocks from the shore using a brush); (3) three benthic periphyton samples (as
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the top 0.5 cm slice of sediment cores collected using a Kajak corer in three regions of the
lake); (4) three seston samples (i.e., matter retained on a 11 µm-mesh net after pre-filtration
through a 80 µm-mesh net to remove zooplankton of lake water collected in three different
zones of each lakes); (5) three zooplankton samples (using vertical nets with two mesh sizes,
140 µm and 500 µm, to include organisms of different sizes); (6) littoral macroinvertebrates
(using a kick-net in the littoral zone); and (7) macroinvertebrates from the deep zone (using
a benthic sledge). In lakes where macrophytes were abundant, also macroinvertebrates in
the macrophyte beds were collected with a sweep net. When possible, we collected three
replicates of each item, the samples were frozen immediately (−18 ◦C) until analysis in
laboratory.

Samples for stable isotope analyses were processed separately in the laboratory to
avoid contamination. The samples were freeze dried and ground into a fine powder
that was kept in glass vials and then weighed to 0.01 mg precision using an analytical
scale (Sartorius ME235S Genius, Sartorius, Göttingen, Germany). The samples were then
loaded into tin capsules and forwarded to UC Davis Stable Isotope Facility (University of
California, Davis, CA, USA) for carbon and nitrogen stable isotopes analysis. Lipids were
not chemically extracted because the protocols used to remove lipids may affect nitrogen
isotope integrity [56,57], whereas at the same time, when the C:N ratio of samples was low
(C:N < 3.5 for aquatic animals) extraction or normalization has insignificant influence on
the d13C values [56]. Since in most fish individuals analyzed here (~80%) the C:N was <3.5,
lipid concentrations should be uniformly low; and consequently, we used the raw isotopic
data. The trophic position (based on δ15N values, hereafter TPos), and δ13C values for all
available organisms were plotted to reconstruct the food web structure of each lake [58].
The trophic position of each individual was determined according to [59]:

Trophic position of consumers = [(δ15Nconsumers − δ15Nbase)/2.98] + 2 (1)

where δ15Nconsumers is the isotopic signature of each individual analyzed and δ15Nbasal cor-
responds to the herbivorous invertebrates with the lowest δ15N value, 2.98 is the expected
δ15N fractionation per trophic level [60], and 2 is the theoretical trophic level of the basal
organisms.

2.3. Data Analysis

The physical and chemical parameters and morphometric characteristics of the lakes
from the two climatic regions were compared using the Mann–Whitney U-test. The
potential maximum colonization depth (Cmax) of submerged macrophytes was calculated
using [Log(Cmax) = 0.32 − 0.23 × log(TP) − 0.15 × log(Chl-a)] based on [61], as a potential
indicator of benthic and littoral heterogeneity provided by macrophytes.

To test the hypothesis regarding the size structure of fish in the two climatic regions,
the mean total length frequency in each size class (cm) was calculated and plotted for each
region. In addition, the mean size of fish in each lake was compared between the two
climatic regions using parametric T-tests. As all the fish species in the Azores Islands have
been stocked and therefore by chance might have a smaller size than those present in the
lakes in the Faroe Islands, we also compared the size of fish relative to the maximum size for
the species reported in the Fishbase [62]. For anadromous species we used the maximum
size reported for freshwater resident forms (see Table S3 in Supporting Information), since
marine forms are typically larger, and all the studied lakes had only resident populations.
To mitigate additional potentially confounding factors, we also compared the size of the
fish caught excluding juveniles, determined from maturity sizes reported in the literature
(Table S5). Since O. mykiss is stocked every year by the Azorean Forest Department (José
Manuel Neto Azevedo, pers. comm.), it was excluded from the size analysis.

To test the hypothesis of stronger top-down effect of fish in the warmer lakes, we
calculated several indicators of potential fish predation pressure and top-down effects
on plankton communities, i.e., fish:zooplankton biomass ratio, zooplankton mean size
(mm), cladoceran mean size (mm), total zooplankton biomass (µg L−1), total zooplankton:
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phytoplankton biomass ratio, Chl-a: total phosphorus ratio, and Chl-a: total nitrogen
ratio [63]. All of these indicators, as well as macroinvertebrate composition, were compared
using parametric T-tests. We calculated the percentage of small fish (<10 cm TL) in each lake
(hereafter %SF) and performed linear regressions between %SF and potential predation
pressure indicators. ANCOVA was used to test for differences in Chl-a concentrations
between both regions, using TP as co-variable. Statistical significance was established at
the 0.05 level, and all the analyses were performed using the aov function in R.

To test the hypotheses regarding the food web metrics, the trophic structure of the
basal organisms, fish community, and the whole food web were described using the
community-wide metrics of [36], applying the package SIBER in R [64]. These metrics
include the total area (TA) calculated as the convex hull of the food web, and represents
trophic diversity; the nitrogen range (NR) that represents trophic height, and the carbon
range (CR) that represents the width of the food web. The latter two were calculated as the
difference between the maximum and minimum values. Since consumer CR and NR can be
affected by basal CR and NR lake variability due to intrinsic factors [65], we also calculated
the CR of fish standardized by the CR of the baseline organisms and trophic position, in
order to compare between region differences. The centroid distance (CD) is calculated as
the average Euclidean distance of each element to the centroid, and represents the average
trophic diversity. Finally, the mean nearest neighbor distance (MNND) and standard
deviation of the nearest neighbor distance (SDNND) are related to trophic redundancy. The
Layman metrics were calculated separately for basal organisms (using littoral and benthic
invertebrates and pelagic crustaceans), and for fish, applying a balanced randomly selected
number of individuals (i.e., for rare spp. with n < 15, we used all individuals, and for the
more abundant ones, we randomly picked 15 individuals per species), as some of these
metrics are sensitive to the number of samples [66]. Layman metrics were also calculated
for the entire food web (combining basal organisms, other consumers, and fishes). Since the
total area (TA) metric is affected by extreme values and, therefore, increases with sample
size, we also calculated the standard ellipses areas with and without correction for sample
size (SEAc) and (SEA) [64], respectively, to compare the food webs between regions.

All of the trophic metrics were compared using the Mann–Whitney test, while the
trophic position was compared using T-test. The relationship between the trophic position
of the fish and basal organisms was analyzed using linear regression models. To analyze
the shape of the lake food web in each region, we calculated the difference between CR
at the base and top of the food web, and were compared between regions using T-test.
The potential causes of the differences in the CR of basal organisms between regions
were analyzed using linear regression models, with environmental variables (lake area,
maximum depth, Secchi depth, Secchi depth:maximum depth ratio, total phosphorus, total
nitrogen, Chl-a, potential maximum colonization depth of submerged macrophytes (Cmax),
pH, conductivity, δ13C signal of pelagic zone, CR of primary producers), and predator
indicators (total zooplankton:phytoplankton biomass ratio, fish:zooplankton biomass ratio,
% small fish (<10 cm TL), CPUE small fish) as explanatory variables. All of the variables
were analyzed using parametric tests when the assumptions were met, otherwise non-
parametric tests were used.

3. Results
3.1. Environmental Characteristics

The two sets of lakes were selected in order to include a wide and similar range
of environmental variables (Table 1). Accordingly, no statistically significant differences
in morphometric variables were detected between the regions (Table 2). However, mor-
phometric characteristics varied considerably among the lakes, with lake area ranging
from 0.6 to 356 ha in the Faroe Islands and from 1.8 to 392 ha in the Azores, and max-
imum depth from 0.7 to 52 m in Faroese and between 2.5 and 32.3 m in Azorean lakes
(Table 1). Moreover, nutrient concentrations varied across lakes, but no statistically sig-
nificant differences were detected between regions, except for mean Chl-a concentration,
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being higher in the Azorean than in Faroese lakes (Table 2), even after removing differ-
ences in TP concentrations (ANCOVA F(1–17) = 10.9, p < 0.05). There were no significant
differences in mean water transparency (with Secchi depth ranging from 0.7 to 12.5 m
in the Faroese lakes and from 0.7 to 5.2 m in the Azorean lakes). However, the Secchi
depth: maximum lake depth ratio was significantly higher in Faroese lakes, in agreement
with the Chl-a data (Table 2). Chl-a was positively correlated with TP concentrations in
Azores (y = 1.16x − 0.58; R2 = 0.52; p < 0.05) and Faroe Islands (y = 0.64x − 0.55; R2 = 0.45;
p < 0.05) (Figure 3A). Chl-a was also positively correlated with TN concentrations in both
climatic regions, but the regression was only significant in Azorean lakes (y = 1.46x − 3.18;
R2 = 0.50; p < 0.05) (Figure 3B).

Table 2. Statistical comparison of the main lake characteristics between the two regions, indicating
mean ± SE and results of statistical tests (Mann–Whitney tests).

Azores Islands Faroe Islands Z p

Area (ha) 71 ± 40 55 ± 38 −0.38 0.69
Maximum depth (m) 16 ± 4 14 ± 6 −0.46 0.66

pH 7.4 ± 0.7 7.2 ± 0.7 −1.12 0.26
Total Nitrogen (µg L−1) 433 ± 81 316 ± 63 −1.60 0.11

Total Phosphorus (µg L−1) 18 ± 3 24 ± 8 −0.08 0.94
Secchi depth (m) 3 ± 1 5 ± 1 −0.91 0.36

Secchi depth:maximum depth 0.2 ± 0.1 0.6 ± 0.1 −2.77 0.003
Chlorophyll a (µg L−1) 13 ± 8 4 ± 3 −3.12 0.001

δ13C signal of pelagic zone −23.1 ± 2.6 −27.9 ± 2.8 −2.78 0.003
Total zooplankton density (ind L−1) 36 ± 15 49 ± 18 −0.46 0.65

Statistically significant regressions given in bold.
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Figure 3. Phytoplankton biomass (as log Chl-a) versus total phosphorus concentration (as log TP) (A), and total nitrogen
concentration (as log TN) (B); oxygen depletion (∆O2 %sat) versus log TP in the subset of stratified lakes (C) and log TN
(D); total zooplankton:phytoplankton biomass ratio (zoo:phytobiomass) against log TP (E) and log TN (F). Red: Azorean
lakes, blue: Faroese lakes.

In the Azores Islands, 5 of 9 lakes were stratified and had oxygen depletion in the
deeper part (7.7 ± 14.6% saturation), while the surface layers were close to saturation
(93.8 ± 9.1% saturation). The bottom oxygen concentration in the stratified Faroese lakes
(4 of 11), in contrast, was never critical for the biota (86.4± 16.2% saturation). The difference
between surface and bottom oxygen, calculated as saturation %, was higher in the Azorean
lakes (Figure 3C,D). When analyzing only the stratified lakes in Azores (n = 5) and Faroe
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Islands (n = 4), we found higher TP concentration in the warmer (19.6 ± 6.8 µg TP L−1)
than in the colder lakes (6.4 ± 3.2 µg TP L−1), (Z = −2.3; p < 0.05).

3.2. Biota and Size Structure

The fish communities showed low taxonomic richness in both groups of islands, with
a maximum of four species in a single lake. In the Faroese lakes, the fish community
was composed by brown trout Salmo trutta Linnaeus 1758, arctic char Salvelinus alpinus
Linnaeus 1758, Atlantic salmon Salmo salar Linnaeus 1758, three-spined stickleback Gasteros-
teus aculeatus Linnaeus 1758, eel Anguilla anguilla Linnaeus 1758 and flounder Platichthys
flesus Linnaeus 1758. In the Azorean lake, the fish community consisted of perch, roach,
largemouth black bass, carp, ruivaca, rainbow trout, and pike. The CPUE of the different
species is shown in Table S1 and Table S2 in Supplementary Materials.

The size distribution of the sampled fish community, including adults and juveniles,
differed between regions (Figure 4A), with a higher frequency of small bodied fish in the
warmer Azorean lakes. The median individual size captured in this region was 11.8 cm TL,
while it was 18.5 cm TL in the Faroese lakes (Figure 4A). Accordingly, the mean size
was significantly higher in the Faroese (21.3 ± 1.5 TL, SE) than in the Azorean lakes
(12.5 ± 1.4 TL, SE), (t(1,18) = 4.3, p < 0.001), When we compared the size of fish relative
to the maximum size of resident forms reported in the literature, statistically significant
differences remained between regions (t(1,18) = 2.9, p < 0.05). Additionally in order to reduce
potential confounding factors, such as differences in juveniles habitat use or a particularly
strong recruitment year, we compared the size distribution of the sampled fish community
including only adults. The mean size of the captured fish community, excluding juveniles
from the analysis, was significantly higher in the Faroese (28.2 ± 1.4 cm TL, SE) than in the
Azorean lakes (20.8 ± 1.7 cm TL, SE), (t(1,18) = 3.4, p < 0.001), (Figure 4B). This difference
was even higher when comparing the size of the sampled fish community including only
adults relative to the maximum size of resident forms reported in the literature (t(1–18) = 7.4;
p < 0.001).

Total macro-invertebrate taxonomic richness was similar between regions, with 6 ± 2
and 8 ± 3 taxa in the Azores and in the Faroe Islands, respectively (t(1,15) = 1.6, p = 0.13).
There were no differences in the littoral zone (t(1,15) = 0.6, p = 0.55), however, richness of
macroinvertebrates in the benthic–pelagic zone was higher in the Faroese (4 ± 1 taxa) than
in the Azorean lakes (3 ± 1 taxa), (t(1,13) = 2.3, p = 0.04). Moreover, macroinvertebrate
CR from the benthic–pelagic zone was higher in the Faroese lakes (9.4 ± 6.1) than in the
Azorean lakes (2.2 ± 1.7), (t(1,14) = 2.3, p = 0.04), while the CR of littoral macroinvertebrates
did not differ significantly (t(1,14) = 1.4, p = 0.18).

3.3. Potential Predation Pressure on Zooplankton and Cascading Effects

Since fish were significantly smaller in the Azorean than in the Faroese lakes (with
and without standardization and with and without juveniles) (Figures 4A,B and 5A,B); and
%SF × PUE was higher in the Azorean lakes (t(1,18) = 4.1, p < 0.001) (Figure 6); we would
expect a higher fish predation pressure on zooplankton in the Azorean lakes than in the
Faroese lakes. This seems to be confirmed. Firstly, zooplankton biomass, mean body size of
cladocerans, and of all crustacean zooplankton were larger in the Faroese lakes (Table 3 and
Figure 6). Secondly, the total zooplankton:phytoplankton biomass ratio were significantly
higher in the Faroese lakes, with no relationship with nutrient concentrations (Figure 3E,F).
Thirdly, the log transformed Chl-a:nutrient ratios were higher in the Azorean lakes (Table 3
and Figure 6).
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Figure 4. Size frequency (cm) of the fish assemblages in each lake from the Azores (red) and the Faroe
Islands (blue), in each region, including both adults and juveniles (A), and including only adults (B),
dotted lines represent the median, deviation bars represent SE.
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Figure 5. Size structure of the fish assemblages (mean total length cm) in lakes in the Azorean (red) and Faroe Islands (blue),
including both adults and juveniles (A), and including only adults (B). Lakes are ordered from high to low average fish size.
Lake ID according to Table 1, deviation bars represent SE and dotted lines represent the mean.
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Figure 6. Fish community characteristics: mean size (cm) (A), mean size standardized by the
maximum size reported in literature for each species (TL:Max TL) (B), and % of small fish × CPUE
(%SF × CPUE) (C), and fish predation pressure indicators: chlorophyll-a:total phosphorus ratio
(Chl-a:TP) (D), total zooplankton:phytoplankton biomass ratio (zoo:phytobiomass) (E), and mean
size of cladocerans (Mean clad size) (F). In the Azores (red) and the Faroe Islands (blue); * p < 0.05
and ** p < 0.001, according to t-tests, deviation bars represent SE.

Table 3. Fish potential predation pressure indicators, showing mean ± SE values in the two climatic
regions and the results of statistical tests (in this case Student t-tests).

Azores Islands Faroe Islands t p

Total zooplankton mean size (mm) 0.65 ± 0.05 0.82 ± 0.03 2.9 <0.05
Cladoceran mean size (mm) 0.58 ± 0.04 0.76 ± 0.02 4.1 <0.001

Total zooplankton biomass (µgL−1) 59 ± 20 263 ± 84 2.2 <0.001
Total zooplankton:phytoplankton biomass ratio 0.12 ± 0.10 2.8 ± 2.6 3.1 <0.05

Log Chl-a:Log TP 0.64 ± 0.07 0.06 ± 0.10 4.2 <0.001
Log Chl-a:Log TN 0.29 ± 0.05 0.06 ± 0.05 3.4 <0.05

Chl-a, chlorophyll-a; TP, total phosphorus; TN, total nitrogen.

3.4. Food Web Metrics

Using the mean position for macro-invertebrates, zooplankton, and fish community in
each lake for the two regions, we found a more triangular-shaped food web in the Faroese
lakes than in the Azorean lakes (Figure 7). The same trend was detected when analyzing
each lake individually, evidenced by the difference between CR invertebrates and fish (base
minus top of the food web), which was higher in Faroe Islands than in Azores (t(1–16) = 4.7;
p < 0.001). The food web metrics for the fish community were similar between regions
(Table 4). The food web metrics of the basal organisms calculated for each lake were
significantly higher in the Faroe Islands, with the exception of TA and SDNNM for which
no statistically significant differences were detected (Table 4). In the case of the entire food
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web (including fish and basal organisms), the food web metrics had higher values in the
Faroese lakes, with the exception of food web length (NR) and centroid distance (CD) and
TA, which did not differ significantly (Table 4). Additionally, a significantly lower δ13C
signal (t(1–18) = 3.5, p = 0.002), i.e., depleted values were detected in the pelagic zone of the
Faroese (−27.9 ± 2.7) than in the Azorean (−23.4 ± 3.0) lakes.
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Table 4. Comparison of food web metrics at the different trophic levels and for the entire food web in the two regions. The
number of lakes used in each analysis is given in brackets. For basal organisms, two lakes were excluded in the Azores
Islands due to absence of invertebrates.

Fish
Basal All Food

Organisms Web

Faroe Azores

F1–18

Faroe Azores

F1–16

Faroe Azores

F1–16Islands Islands p Islands Islands p Islands Islands p

(11) (9) (11) (7) (11) (7)

NR 0.8 ± 0.44 0.7 ± 0.29 0.4 0.53 1.8 ± 0.72 1.1 ± 0.37 4.5 0.05 2.9 ± 0.68 2.2 ± 0.6 2.9 0.11

CR 3.4 ± 2.02 2.9 ± 1.4 0.3 0.59 9.0 ± 3.57 4.7 ± 2.61 7.5 0.01 9.1 ± 3.75 5.1 ± 2.5 4.4 0.05

CD 1.0 ± 0.57 0.9 ± 0.37 0.2 0.64 2.7 ± 1.04 1.3 ± 0.68 9.8 0.01 2.0 ± 0.66 1.4 ± 0.6 1.57 0.23

MNND 0.4 ± 0.12 0.2 ± 0.08 6.1 0.02 1.7 ± 1.12 0.6 ± 0.18 7 0.02 0.8 ± 0.21 0.4 ± 0.1 21.8 <0.001

SDNNM 0.3 ± 0.15 0.5 ± 0.11 2.7 0.12 1.3 ± 1.2 0.5 ± 0.22 3.1 0.10 0.3 ± 0.45 0.3 ± 0.1 7.5 0.02

TA 1.9 ± 2.06 1.1 ± 0.63 1.2 0.28 7.2 ± 5.79 3.2 ± 2.03 3.1 0.10 14.9 ± 9.77 6.9 ± 4.2 2.8 0.11

SEA 1.5 ± 1.2 1.0 ± 0.5 1.1 0.32 7.6 ± 3.8 2.9 ± 1.6 9.1 0.01 7.9 ± 3.7 3.9 ± 2.0 4.8 0.04

SEAc 1.5 ± 1.2 1.1 ± 0.5 1.1 0.3 8.4 ± 4.1 3.2 ± 1.7 10.2 0.01 8.2 ± 3.8 4.0 ± 2.0 5 0.04

NR = nitrogen range; CR = carbon range; CD = centroid distance; MNND = mean nearest neighbor distance; SDNND = standard deviation
of the nearest neighbor distance; TA = total area; SEA = standard ellipse area; SEAc = standard ellipse area size corrected, SEAc. F = statistic
of ANOVA test, and p represents the significant level. Statistically significant highlighted in bold.

The maximum trophic position of fish did not differ between the two groups of islands
(t(1–18) = 1.47; p = 0.16), and neither did the mean trophic position of basal organisms
(t(1–18) = 0.93; p = 0.36). The trophic position of fish was positively correlated with the
trophic position of basal organisms. This relationship differed between the regions, having
a steeper slope in the Faroese (4.1) than in the Azorean lakes (1.3) (F(1–16) = 11.25; p < 0.05)
(Figure 8).

Since fish CR can be directly affected by basal CR variability due to intrinsic factors [65],
we used the CR of fishes standardized by the CR of the baseline. This ratio represents the
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proportion of the CR of basal organisms used by the fish community and was significantly
higher in the Azorean lakes (Z = −1.96; p < 0.05).
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Figure 8. Relationship between the trophic position of fish and the trophic position of basal organisms
in lakes in the Azores (red) (y = 1.34x + 1.15; R2 = 0.69; p < 0.05) and the Faroe Islands (blue)
(y = 4.10x − 6.35; R2 = 0.74; p < 0.05).

The CR of basal organisms was positively correlated with the morphometric variables
area, maximum depth, and Secchi depth in the Faroese lakes, whereas no significant
correlations were found for the Azorean lakes (Table 5). Moreover, in the Faroese lakes, the
CR of basal organisms was positively correlated with the fish:zooplankton biomass ratio (a
measure of fish predation pressure), while no relationship was recorded in the Azorean
lakes. Finally, the CR of basal organisms was positively correlated with the CR of primary
producers in Faroese lakes, but again no correlation was revealed in the Azorean lakes
(Table 6).

Table 5. Linear correlation analysis between the environmental variables and CR of basal organisms
(log transformed) for the two islands. The number of lakes used in each analysis is given in brackets.
For basal organisms, two lakes were excluded in the Azores Islands due to absence of invertebrates.

CR of Basal Organisms

Faroe Islands (11) Azores Islands (7)

r p r p

A (ha) 0.72 0.01 0.22 0.63
Zmax (m) 0.70 0.02 0.24 0.60

S (m) 0.71 0.02 0.64 0.25
S:Zmax −0.52 0.10 0.27 0.66

TN (µgL−1) −0.20 0.55 0.09 0.85
TP (µgL−1) −0.46 0.16 −0.08 0.87

Chla (µgL−1) −0.24 0.47 −0.59 0.16
Cmax (m) 0.46 0.16 0.31 0.51

pH −0.07 0.85 0.27 0.61
Cond −0.05 0.88 0.14 0.79

δ13C signal of pelagic zone −0.32 0.37 −0.07 0.89
CR primary producers 0.63 0.07 0.04 0.94

See Table 1 for the abbreviations reference. Statistically significant regressions given in bold.
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Table 6. Linear correlation analysis between the predator pressure indicators (relative abundance of
small fish (<10 cm TL) and CR of basal organisms (log transformed) for the two islands. The number
of lakes used in each analysis is given in brackets. For basal organisms, two lakes were excluded in
the Azores Islands due to absence of invertebrates.

CR of Basal Organisms

FaroeIslands (11) Azores Islands (7)

r p r p

Total zooplankton:phytoplancton biomass ratio −0.48 0.16 −0.02 0.89
Fish:zooplankton biomass ratio 0.66 0.04 −0.58 0.15

% small fish (<10 cm TL) 0.14 0.71 0.01 0.71
CPUE small fish −0.05 0.88 −0.13 0.91

Statistically significant regressions given in bold.

4. Discussion

As predicted, we found smaller mean body size and a higher frequency of small-
bodied fish in the warmer Azorean region than in the colder Faroese lakes. A random
collection of introduced species or random events, for example, a particularly strong
recruitment year or differences in life history and habitat use of the juveniles [19] could,
potentially, produce such patterns. Additionally, the composition of fish communities
differed between regions (i.e., Faroese lakes being dominated by salmonids), life history,
and habitat use may vary as well. A larger mean fish size could, potentially, be due to
lack of sufficient habitats where juveniles may occur (e.g., streams where the salmonids
spawn [19], though likely not the case for the Faroe Islands lakes as they are well connected
to streams [46]. However, fish in the warmer Azorean lakes were smaller, even when the
size of each fish species was standardized by the maximum body size of resident forms
within their continental distribution and when the analysis was performed, excluding
juveniles (determined from maturity sizes reported in the literature). The differences in the
size structure of the fish communities between the two climatic regions thus followed the
pattern obtained along climate gradients or pair-comparisons in continental lakes [16,17,67],
as well as within lakes subjected to climate warming [11,68].

Many ectothermic animals experience faster growth at higher temperatures and,
consequently, have a smaller body size at the same age than animals subject to lower
temperatures (the temperature-size rule, [69,70]. High temperatures often extend beyond
the reproduction season of a particular species and enhance fry survival, increasing the
abundance of small, young individuals, thus leading to a reduction in the mean size of the
fish assemblage [12,15]. This may have contributed likely the smaller-sized fish community
structure in the Azores Islands. Other mechanisms, more indirectly linked with higher
water temperatures, could contribute to the observed patterns. Small fish usually cope
better with low oxygen than their bigger counterparts [71] and particularly a reduced
growth under low oxygen levels has been described for salmonids [72]. Consequently,
high-temperature driven hypoxia may act as a filter, affecting especially large piscivorous
fish, and contributing to the dominance of smaller omnivorous individuals.

Whatever the mechanism, the smaller size of fish in warmer lakes typically leads
to a higher predation pressure on zooplankton as showed by [10,25–27]. Supporting our
second hypothesis, about stronger cascading effects of fish on zooplankton and phyto-
plankton in warm lakes, we found a smaller mean size of cladocerans and lower zoo-
plankton:phytoplankton biomass ratio in the Azorean lakes, suggesting the occurrence
of lower grazing pressure on phytoplankton compared to the Faroese lakes. This may
explain the higher Chl-a per unit of TP and TN in the Azores Islands. Other mechanisms,
indirectly related to higher temperatures, could also enhance phytoplankton biomass.
The near-bottom depletion of oxygen may have promoted phosphorus release from the
sediments [73] in the warm, stratified lakes (TP concentration were higher here); whereas,
temperature increases as well as reduced body size could lead to an increase in nutrient
cycling by the fish community [74,75].



Water 2021, 13, 1380 15 of 20

As expected, we found a wider CR for basal organisms in the Faroese lakes. However,
contrary to our expectations, the CR of the basal organisms in the Azorean lakes was not
related to the proportion of small fish or the fish predation indicators as in the Faroese
lakes. Morphometric variables (i.e., area and depth) and transparency (Secchi depth) were
positively correlated with the CR of basal organisms in the Faroese lakes. Similarly, lake
area and trophic state have been observed to affect the δ13C signature in the pelagic zone of
a wide range of lake areas [41]. This indicates that a combination of biotic and abiotic factors
influenced the CR of basal organisms in the colder Faroese lakes. As the Faroese lakes were
relatively (i.e., considering water depth) more transparent than the Azorean lakes, a higher
benthic production could supposedly be sustained [76,77] in the former. This is supported
by the positive relationships between the CR of basal organisms and Secchi disk depth. No
such relationships were detected in the Azorean lakes, indicating that in this region other
factors may be important in determining the CR of basal organisms. Low dissolved oxygen
concentrations at the bottom can negatively affect benthic macroinvertebrates [78,79], often
leading to the dominance of a few hypoxic-tolerant species, such as oligochaetes and
chironomids [80], with likely lower trophic diversity. Supporting this view, we found
a smaller CR and reduced richness of macroinvertebrates in the benthic samples of the
Azorean lakes compared to the Faroese lakes.

The δ13C signal in the pelagic zone is expected to be higher (enriched) in produc-
tive [41] and hydrologically stable systems [81], both characteristics stimulated by higher
temperatures [82,83]. The potentially higher productivity of the warmer systems may indi-
rectly narrow CR by increasing the pelagic δ13C signal. Moreover, the CO2 flux between
a lake and the atmosphere may be affected by the food web structure [84,85]. A higher
phytoplankton biomass due to diminished zooplankton biomass as a consequence of, for
example, high fish predation, may enhance the influx of CO2 from the atmosphere and
thus enrich the δ13C signal of the pelagic biota [84].

Despite the differences in CR at the consumer level, no differences were found in
fish community CR between the two climatic regions. However, the Azorean fishes
showed higher CR when standardized relative to the basal organisms, indicating a greater
diversification and a higher efficiency in the use of the resources.

According to the energetic limitation hypothesis (ELH) [29–32], we should expect
lower trophic web lengths (TPos and NR) in the warmer regions, but this was not the case
in our study. Additionally, a higher proportion of herbivorous fish species is expected
in warm lakes [23,24]. Accordingly, the Azorean fish communities were dominated by
potentially omnivorous and herbivorous species (up to 50% of abundance the total capture):
roach [86] (19%), ruivaca [87] (18%), and common carp [88] (13%). It is accepted that
fractionation of nitrogen vary between carnivorous and herbivorous fish, depending on
the diet quality (in terms of C:N ratio) and food processing mechanisms [89]. Typically,
herbivorous fish exhibit higher per-trophic-level isotope enrichment of nitrogen [90], and
consequently, may increase their trophic position more than expected for carnivorous fish.
This perhaps explains why we did not find a shorter total food web length in the Azorean
lakes. Supporting this view, the fish in the Azorean lakes showed a higher CR relative to
the CR of basal organisms, likely reflecting that fish in warmer regions include additional
items to the diet such as vegetal material. We cannot, however, fully rule out that the
difference in initial fish stock compositions and successions might have affected the food
web structure and, thus, the reliability of the comparison of the food web metrics between
the two sets of islands.

The space-for-time substitution approach can be criticized as it does not account for
biogeographical factors (often leading to high fish species richness at low latitudes) and
seasonality differences, thus potentially confounding the effects of climate variability and
climate change. The insular lakes used in our study are exposed to the same seasonality
in temperature and inhabited by few fish species (some capable of reaching large body
sizes) that were introduced from different climatic regions after the 18th century, as in
the case of the Azorean lakes. Our data confirmed the dominance of small-sized fishes
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in the Azorean lakes, which allows us to cautiously suggest that, in insular lakes, fish
assemblages under warm conditions reach smaller sizes. Consequently, we conclude that
climate differences, and particularly differences in ambient temperature, have played a
key role in the divergence in body size of fish between the two groups of islands leading
to different cascading effects among climatic regions. Our results further strengthen the
argument that biography is not of key importance for the functional changes occurring in
lakes along a temperature gradient. Moreover, our findings suggest that changes in trophic
web dynamics and functioning, such as the width at the base of the food web, but not
necessarily in the trophic web length, can be expected under current and future warmer
climates.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w13101380/s1, Table S1: Capture per unit of effort CPUE, refer to average number caught per
net per hour of the fish fauna from the nine studied lakes in Azores Islands, Table S2: Capture per
unit of effort CPUE refers to the average number of fish caught per net per hour in the 11 studied
Faroese lakes. * individuals being caught in fyke nets, Table S3: Total length (cm) measured during
this work expressed as mean and SD and maximum (TLMax) and maximum reported in literature
(TLMaxL) for each species in each region, Table S4: Date of first introduction of each species in
Azorean lakes and the origin of the introduction, Table S5: Size of maturation reported in literature
for each species in each region used to exclude the juveniles from the analysis. Table S6: Composition
of the zooplankton community sampled in Faroese and Azorean lakes.
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