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Abstract. A new method to detect salient pieces of boundaries in an
image is presented. After detecting perceptually meaningful level lines,
periodic binary sequences are built by labeling each point in close curves
as salient or non-salient. We propose a general and automatic method to
detect meaningful subsequences within these binary sequences. Experi-
mental results show its good performance.
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1 Introduction

Shape plays a key role in our cognitive system: in the perception of shape lies the
beginning of concept formation. Formally, shapes in an image can be defined by
extracting contours from solid objects. Shapes can be represented and analyzed
as the locus of an infinite number of points, which leads to level-sets methods [7].

We define an image as a function u : R2 → R with continuous first derivatives.
Level sets [7], or level lines, provide a complete and contrast-invariant image
description. We define the boundaries of the connected components of a level
set as a level line. These level lines have the following properties: (1) level lines
are closed Jordan curves; (2) level lines at different levels are disjoint; (3) by
topological inclusion, level lines form a partially ordered set.

We call the collection of level lines (along with their level) a topographic
map. The inclusion relation allows to embed the topographic map in a tree-
like representation. For extracting the level lines of a digital image we use the
Fast Level Set Transform (FLST) [6] which computes level lines by bilinear
interpolation. In general, the topographic map is an infinite set and so only
quantized grey levels are considered, ensuring that the set is finite.
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Edge detectors, from which the most renowned is Canny’s [1], rely on the fact
that information is concentrated along contours (regions where contrast changes
abruptly). From one side, only a subset of the topographic map is necessary to
obtain a perceptually complete description. Going to a deeper level, perceptually
important level lines, in general, are so because they contain contrasted pieces.
In summary, we have to prune the topographic map and then prune inside the
level lines themselves.

The search for perceptually important contours will focus on unexpected con-
figurations, rising from the perceptual laws of Gestalt Theory [5]. From an algo-
rithmic point of view, the main problem with the Gestalt rules is their qualitative
nature. Desolneux et al. [3] developed the Computational Gestalt detection the-
ory which seeks to provide a quantitative assessment of gestalts. It is primarily
based on the Helmholtz principle which states that conspicuous structures may be
viewed as exceptions to randomness. In this approach, there is no need to charac-
terize the elements one wishes to detect but contrarily, the elements one wishes to
avoid detecting, i.e., the backgroundmodel. When an element sufficiently deviates
from the background model, it is considered meaningful and thus, detected.

Within this framework, Desolneux et al. [3] proposed an algorithm to detect
contrasted level lines in grey level images, called meaningful boundaries. Further
improvements to this algorithm were proposed by Cao et al. [2] and by Tepper
et al. [8,9]. In this work we address the dissection of meaningful boundaries, de-
veloping an algorithm to select salient pieces contained in them. Each level line
is considered as a periodic binary sequence where, following a partial saliency
model, each point is labeled as salient or non-salient. Then, the goal is to ex-
tract meaningful subsequences of salient points. In order to do so, we extend
to the periodic case an algorithm for binary subsequence detection proposed by
Grompone et al [4].

The remainder of this paper is organized as follows. In Section 2 we recall the
definition by Tepper of meaningful boundaries[8]. In Section 3 we describe the
proposed algorithm. In Section 4 we show examples that prove the pertinence of
the approach and provide some final remarks.

2 Meaningful Contrasted Boundaries

We begin by formally explaining the meaningful boundaries algorithm, as defined
by Tepper et al. [8,9].

Let C be a level line of the image u and let us denote by {xi}i=0...n−1 the n
regularly sampled points of C, with arc-length two pixels, which in the a contrario
noise model are assumed to be independent. In particular the gradients at these
points are independent random variables (the image gradient norm |Du| can be
computed by standard finite differences on a 2× 2 neighborhood). We note by
μk (0 ≤ k < n) the k-th value of the values |Du|(xi) sorted in ascending order.

The detection algorithm consists in rejecting the null hypothesis H0: the line
C with contrasts {μk}k=0...n−1 is observed only by chance. For this we assume
that the values of |Du| are i.i.d., extracted from a noise image with the same
gradient histogram as the image u itself.



Desolneux et al. [3] present a thorough study of the binomial tail B(n, k; p) and
its use in the detection of geometric structures. The regularized incomplete beta
function, defined by I(x; a, b) is an interpolation ˜B of the binomial tail to the

continuous domain ˜B(n, k; p) = I(p; k, n−k+1) where n, k ∈ R [3]. Additionally
the regularized incomplete beta function can be computed very efficiently.

Let Hc(μ) = P(|Du| > μ). For a given line of length l, the probability under
H0 that, some parts with total length greater or equal than l(s,n)(n − k) have

a contrast greater than μ can be modeled by ˜B(n · l(s,n), k · l(s,n);Hc(μ)), where

l(s,n) =
l

s·n acts as a normalization factor [8,9].

Definition 1. Let C be a finite set of Nll level lines of u. A level line C ∈ C is
a ε-meaningful boundary if Nll ·K · min

k<K

˜B(n · l(2,n), k · l(2,n);Hc(μk)) < ε where

K is a parameter of the algorithm. We also note

kmin = argmin
k<K

˜B(n · l(2,n), k · l(2,n);Hc(μk)) (1)

The parameter K controls the number of points that we allow to be likely gen-
erated by noise, that is a line must have no more than K points with a “high”
probability of belonging to the background model. It is simply chosen as a per-
centile of the total number of points in the line.

Def. 1 is motivated by the following proposition (we refer to the work by
Tepper [8] for a complete proof).

Proposition 1. The expected number of ε-meaningful boundaries, in a finite set
of random level lines is smaller than ε.

3 Boundary Clean-up by Detecting Meaningful Periodic
Subsequences

Prop. 1 asserts that if a level line is a meaningful boundary, then it cannot be
entirely generated in white noise (up to ε false detections on the average) but it
can have parts that are likely to be contained in noise.

Cao et al. [2] propose to give an upper bound to the size of those parts.
Assume that C is a piece of level line with L independent points, contained in
a non-edge part, described by the noise model. The probability that L is larger
than l > 0 needs to be estimated, knowing that |Du| ≥ μ. This is exactly the a

posteriori length distribution p(μ; l)
def
= P (L ≥ l | |Du| ≥ μ). The estimation of

this distribution was studied by Cao et al. [2].
Let us now consider an image u with Nll (quantized) level lines. Let us also

denote by Nl the number of all possible sampled subcurves of these level lines.
(Nl =

∑Nll

i=1 ni(ni − 1)/2, where ni is the number of independent points in line
i). As in Prop. 1, it can be proved that Nl · p(μ; l) is an upper bound of the
expected number of pieces of lines of length larger than l with gradient larger
than μ. For a fixed μ, let be l such that Nl ·p(μ; l) < ε. Then, we know that on a
white noise image, on the average, we cannot observe more than ε pieces of level



line with a length larger than l and a gradient everywhere larger than μ. Then
one can define L(μ) = inf{l, Nl · p(μ; l) < ε} and keep every subcurve of any
meaningful boundary with length equal or greater than L(μ), where |Du| ≥ μ.

The value of μ can be seen as a new parameter of the method. Its value can
be fixed arbitrarily using a conservative approach [2]: letting |Du| be less than 1,
means that edges with an accuracy less than one pixel may be detected. Thus,
taking μ = 1 is the least restrictive choice. For μ about 1, values of L(μ) less
than a few hundreds are obtained.

Since L(μ) is a decreasing function of μ, fixing it at a small value produces
large lengths. We are imposing that the contrasted pieces have to be very large
and this is not always the case, as argued before. Furthermore the probability
distribution p(μ; l) has to be estimated. We propose to take a different path to
remove non-contrasted boundary parts.

In Def. 1, pieces of a meaningful boundary are explicitly allowed to be gen-
erated in white noise. We are certainly not interested in these pieces and this
relaxation responds to the fact that we want to retrieve the remaining pieces of
that boundary (i.e. edge region). The desired detection of contrasted parts in a
boundary is very close in spirit to periodic subsequence detection.

3.1 Detecting Periodic Subsequences

Grompone et al. [4] proposed a method for accurately detecting straight line
segments in a digital image. It is based on the Helmholtz principle and hence
parameterless. In the authors’ words, “at the core of the work lies a new way to
interpret binary sequences in terms of unions of segments”.

A sequence S = (si)1≤i≤L of length L is binary if ∀i, si ∈ {0, 1}. A subse-
quence a ⊆ S is defined by a pair of indices

(

a(1), a(2)
)

with 1 ≤ a(1) < a(2) ≤ L,

such that
(∀si, a(1) ≤ i ≤ a(2)

)

si ∈ a. Given a binary sequence S of length L,
an n-subsequence is an n-tuple (a1, . . . , an) of n disjoints subsequences ai ⊆ S.
The set of all n-subsequences in S will be denoted by M(n, S). We define
k(a) = #{si | i ∈ [a(1), a(2)] ∧ si = 1} and l(a) = a(2) − a(1) + 1 (i.e. the
length of a). Notice that #M(n, S) =

(

L
2n

)

[4].

Definition 2. (Grompone et al. [4]) Given a binary sequence S of length L, an
n-subsequence (a1, . . . , an) in M(n, S) is said ε-meaningful if

NFA(a1, . . . , an)
def
=

(

L

2n

) n
∏

i=1

(l(ai) + 1)B(l(ai), k(ai), p) < ε (2)

where p = Pr(si = 1), 1 ≤ i ≤ L. This number is called number of false alarms
(NFA) of (a1, . . . , an).

Proposition 2. The expected number of ε-meaningful n-subsequences in a ran-
dom binary sequence is smaller than ε.

We refer to the work by Grompone et al. [4] for a complete proof.



Fig. 1. A periodic sequence where runs are represented in green. If treated as a non-
periodic sequence, any subsequence detector would detect four subsequences at best,
when in fact the desired result is to detect three subsequences.

A run in S is a maximal subsequence only containing ones, i.e.
(

∀i ∈ [a(1), a(2)], si = 1
)

∧
(

a(1) = 1 ∨ sa(1)−1 = 0
)

∧
(

a(2) = L ∨ sa(2)+1 = 0
)

.

One can restrict the search for n-subsequences to the ones where each of the n
subsequences starts at a run start and ends at a run end [4]. We denote by R
the number of runs in S.

Definition 3. Given a binary sequence S, its maximal ε-meaningful subsequence
(a1, . . . , an)

∗ is defined as

(a1, . . . , an)
∗ def
= argmin

1≤n≤R
(a1,...,an)∈M(n,S)

NFA(a1, . . . , an).

We propose now to extend the above definitions to support periodic binary
sequences. A binary sequence S = (si)1≤i≤L is made periodic by considering
L its period. Periodic sequences are different in nature from their non-periodic
counterparts, see Fig. 1. A definition suitable for the periodic case is needed.

In the periodic case, a subsequence must be defined more carefully. Now a
subsequence a ⊆ S, defined by a pair of indices

(

a(1), a(2)
)

, can belong to one of
two different types:

Intra-subsequences: if a(1) < a(2) then the non-periodic definition holds, i.e.,
1 ≤ a(1) < a(2) ≤ L, and

(∀si, a(1) ≤ si ≤ a(2)
)

si ∈ a.

Inter-subsequences: if a(1) > a(2)
(∀si, 1 ≤ si ≤ a(2) ∨ a(1) ≤ si ≤ L

)

si ∈ a.

Runs are modified accordingly to also cover inter-subsequences. Given a periodic
binary sequence S of period L, a periodic n-subsequence is an n-tuple (a1, . . . , an)
of n disjoints subsequences ai ⊆ S. The set of all n-subsequences in S will be
denoted by M(n, S).

We define k(a) = #{si | i ∈ [a(1), a(2)] ∧ si = 1} and the length of a as

l(a) =

{

a(2) − a(1) + 1, if a is an intra-subsequence;

a(2) + L− a(1) + 1, if a is an inter-subsequence.

Notice that #M(n, S) = 2
(

L
2n

)

since from each pair of points in S two subse-
quences can be constructed.



Definition 4. Given a periodic binary sequence S of period L, an n-subsequence
(a1, . . . , an) in M(n, S) is said ε-meaningful if

NFA(a1, . . . , an)
def
= 2

(

L

2n

) n
∏

i=1

(l(ai) + 1) B(l(ai), k(ai), p) < ε

where p = Pr(si = 1), 1 ≤ i ≤ L. This number is called number of false alarms
(NFA) of (a1, . . . , an).

Proposition 3. The expected number of ε-meaningful n-subsequences in a ran-
dom periodic binary sequence is smaller than ε.

Proof. This proof follows closely the one by Grompone et al. [4] but adapted
to periodic sequences. The expected number of ε-meaningful n-subsequences is
given by

E

⎛
⎝ ∑

(a1,...,an)∈M(n,S)

1NFA(a1,...,an)<ε

⎞
⎠ =

∑
(a1,...,an)∈M(n,S)

P (NFA(a1, . . . , an) < ε) .

NFA(a1, . . . , an) < ε implies that
∏n

i=1 B(l(ai), k(ai), p) < ε
2 ( L

2n)
∏n

i=1(l(ai)+1)
.

Let Ui = B(l(ai), k(ai), p) be a random variable, let α ∈ R
+, and let Pα

U =
P (

∏n
i=1 Ui < α). Then,

Pα
U =

∑

u2,...,un

P

(

n
∏

i=1

Ui < α
∣

∣

∣U2 = u2, . . . , Un = un

)

P (U2 = u2, . . . , Un = un) .

Since the ai are disjoint, the Ui are independent. Then

Pα
U =

∑

u2,...,un

P

(

n
∏

i=1

Ui <
α

u2 . . . un

)

· P (U2 = u2, . . . , Un = un) .

Using the classical lemma P(Ui < α) < α, that P (U2 = u2, . . . , Un = un) ≤
P (U2 ≤ u2, . . . , Un ≤ un), and that there are l(ai) + 1 possible values for Ui,

P

(

n
∏

i=1

Ui < α

)

<

n
∏

i=2

(l(ai) + 1) α <

n
∏

i=1

(l(ai) + 1) α.

Let us recall that #M(n, S) = 2
(

L
2n

)

, then setting α = ε

2 ( L
2n)

∏
n
i=1(l(ai)+1)

gives

the wanted result. 
�
The maximality rule from Def. 3 holds unchanged in the periodic case.

On the implementation side, Grompone et al. [4] describe a dynamic pro-
gramming scheme for the non-periodic case that eases the heavy computational
burden. We show now that implementing the algorithm for detecting periodic
subsequences is indeed straightforward.



image mb mb+cu mb+mps

Fig. 2. Comparison of the results obtained with both clean-up algorithms. The one by
Cao et al. (CU) [2] produces underdetection; this is corrected by using MPS.

image mb mb+mps

Fig. 3. Results of the presented clean-up algorithm. MPS eliminates the vast majority
of the unwanted pieces of level line.

We begin by shifting the periodic sequence S (with R runs), to transform inter-
subsequences into intra-subsequences. A circular shift to the left is used. We then
form a non-periodic sequence S(2) of length 2L from two periods of the periodic
sequence S of period L. Let R(2) be the number of runs in S(2). Two key tricks
allowus to solve the problem: (1) restrict the number of tested subsequences. In the
non-periodic case, we test for n-subsequences for S(2) where 1 ≤ n ≤ R(2). In the
periodic case, we only test for n-subsequences where 1 ≤ n ≤ R; (2) subsequences
longer thanL arenot tested.With these two restrictions, one can simplydetectnon-
periodic subsequences in non-periodic sequenceS(2) and the result will be optimal.

4 Results and Final Remarks

Before applying the detector of meaningful periodic subsequences (MPS) to any
boundary, we need to binarize it since its contrast (or its regularity) takes on



real values. This former problem is solved by thresholding on the contrast (or
on the regularity). In this direction, we claim that a natural choice is μkmin

(see Def. 1, p. 775). A maximal ε-meaningful boundary is thus converted into a
periodic binary sequence. We want to apply the periodic subsequence detection
algorithm from Def. 4 and 3 to that sequence. The only parameter left is p =

Pr(si = 1), 1 ≤ i ≤ L and it is straightforward defined as p
def
= Hc(μkmin).

We finally define the following clean-up rule: For any meaningful boundary,
keep every subcurve belonging to its maximal 1-meaningful subsequence.

This clean-up mechanism does not impose a minimal length to contrasted
parts. The length is adjusted automatically, by choosing the most meaningful
subsequence in the level line. As an additional advantage, there is no need to esti-
mate any probability distribution. Fig. 2 shows an example of the benefits of the
proposed clean-up method over the one by Cao et al. [2]. Their version clearly
produces underdetection: visually important structures are missed (notice the
face in the third image). The proposed algorithm produces a very mild overde-
tection: some small noisy parts are not eliminated but no important structure is
lost. Fig. 3 shows two more examples on images from the BSD database. Notice
that, on the last row, MPS does not remove a few pieces of lines that should be
removed (e.g., the lower wall and the roof). This does not occur because of a
failure in MPS, but because of a faulty binarization, that is, the μkmin was not
optimal in those cases.

In summary, we presented a general and fully automatic algorithm to detect
meaningful subsequences within periodic binary sequences. We apply it to select
salient pieces of level lines in an image, showing good results on natural images.
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